
248 Int. J. Learning Technology, Vol. 9, No. 3, 2014

Example-based feedback provision using
structured solution spaces

Sebastian Gross*
Department of Informatics,
Humboldt-Universität zu Berlin,
Unter den Linden 6,
10099 Berlin, Germany
E-mail: sebastian.gross@hu-berlin.de
*Corresponding author

Bassam Mokbel, Benjamin Paassen and
Barbara Hammer
CITEC Cognitive Interaction Technology Center of Excellence,
Bielefeld University,
Inspiration 1 (Zehlendorfer Damm 199),
33594 Bielefeld, Germany
E-mail: bmokbel@techfak.uni-bielefeld.de
E-mail: bpaassen@techfak.uni-bielefeld.de
E-mail: bhammer@techfak.uni-bielefeld.de

Niels Pinkwart
Department of Informatics,
Humboldt-Universität zu Berlin,
Unter den Linden 6,
10099 Berlin, Germany
E-mail: niels.pinkwart@hu-berlin.de

Abstract: Intelligent tutoring systems (ITSs) typically rely on a formalised
model of the underlying domain knowledge in order to provide feedback
to learners adaptively to their needs. This approach implies two general
drawbacks: the formalisation of a domain-specific model usually requires a
huge effort, and in some domains it is not possible at all. In this paper,
we propose feedback provision strategies in absence of a formalised domain
model, motivated by example-based learning approaches. We demonstrate the
feasibility and effectiveness of these strategies in several studies with experts
and students. We discuss how, in a set of solutions, appropriate examples
can be automatically identified and assigned to given student solutions via
machine learning techniques in conjunction with an underlying dissimilarity
metric. The plausibility of such an automatic selection is evaluated in
an expert survey, while possible choices for domain-agnostic dissimilarity
measures are tested in the context of real solution sets of Java programs.
The quantitative evidence suggests that the proposed feedback strategies and

Copyright © 2014 Inderscience Enterprises Ltd.

Example-based feedback provision using structured solution spaces 249

automatic example assignment are viable in principle, further user studies in
large-scale learning environments being the subject of future research.

Keywords: example-based feedback; machine learning; intelligent tutoring
system; ITS; prototype-based clustering.

Reference to this paper should be made as follows: Gross, S., Mokbel, B.,
Paassen, B., Hammer, B. and Pinkwart, N. (2014) ‘Example-based feedback
provision using structured solution spaces’, Int. J. Learning Technology,
Vol. 9, No. 3, pp.248–280.

Biographical notes: Sebastian Gross received his Diploma degree in
Business Information Systems from Clausthal University of Technology.
After graduating, he joined the research group ‘Human-Centered Information
Systems’ headed by Prof. Pinkwart in October 2011. In July 2013, he
followed Prof. Pinkwart to Humboldt-Universität zu Berlin, and is currently
working in the research project ‘Learning feedback in intelligent tutoring
systems’ (FIT).

Bassam Mokbel is currently a PhD student at Bielefeld University, in
the research group for theoretical computer science within the Center
of Excellence for Cognitive Interaction Technology (CITEC). He studied
computer science at Clausthal University of Technology, where he received
his Diploma degree in 2009, and became a research assistant in the
state-funded collaborative research program ‘IT ecosystems’ about complex
and heterogeneous distributed computer systems. He joined the CITEC in
April 2010, and is currently working in the context of the DFG priority
programme 1527 for ‘Autonomous learning’.

Benjamin Paassen received his Bachelor’s degree in Cognitive Informatics
from Bielefeld University. Since 2012, he has been working as a research
assistant in the DFG-funded research project ‘Learning feedback in intelligent
tutoring systems’ (FIT) at Bielefeld University.

Barbara Hammer, after completing her diploma studies in pure mathematics in
1995, received her PhD in Computer Science in 1995 and her Venia Legendi
in Computer Science in 2003, both from the University of Osnabrück,
Germany. From 2000–2004, she was leading the junior research group
‘Learning with Neural Methods in Structured Domains’ which was funded
within the frame of an innovation initiative of Lower Saxony, before
accepting an offer as a Professor for Theoretical Computer Science at
Clausthal University of Technology in 2004. Starting from April 2010, she
moved to the CITEC Center of Excellence at Bielefeld University as a
Professor for Theoretical Computer Science for Cognitive Systems.

Niels Pinkwart has a research background at the intersection of computer
science, educational and collaborative technology, and human computer
interaction. From 1995 to 1999, he studied computer science and mathematics
at the University of Duisburg-Essen, where he also completed his
PhD in 2005 as a member of the COLLIDE research team. After a
post-doctoral position at the HCI Institute of Carnegie Mellon University
(2005/2006), he accepted offers for Assistant Professor and Associate
Professor positions at Clausthal University of Technology where he lead the
research group ‘Human-Centered Information Systems’. In 2013, he moved to

250 S. Gross et al.

Humboldt-Universität zu Berlin where he heads the research group ‘Computer
Science Education/Computer Science and Society’.

This paper is a revised and expanded version of a paper entitled ‘Feedback
provision strategies in intelligent tutoring systems based on clustered solution
spaces’ presented at 10. e-Learning Fachtagung Informatik (DeLFI), Germany,
September 26, 2012.

1 Introduction

Motivation

Intelligent tutoring systems (ITSs) have greatly advanced in recent years. These learning
supporting systems aim to provide intelligent, one-on-one, computer-based support to
students. Current ITSs typically require a formalised domain model since they need to
judge whether and why a given student solution is correct or wrong. Hence, a challenge
in ITS research is to extend the applicability of such systems to ill-defined domains
which lack a single strong domain theory (Lynch et al., 2010b). Even besides that,
a formalisation of the underlying domain knowledge is usually a substantial amount
of work even in well-defined domains: researchers have reported 100–1,000 hours of
authoring time needed for one hour of instruction (Murray et al., 2003).

Ill-definedness in ITSs

Most of the ITS research and development has been conducted in domains which are
characterised by a well-accepted theory or model that makes it possible unambiguously
to classify problem solutions as correct or incorrect. Not all domains of teaching
and inquiry are that well-defined, indeed most are not. In domains such as law,
argumentation, history, art, essay writing or intercultural competence, most problems are
ill-defined and have ambiguous solutions that can be argued for (and against!) but that
are impossible to verify formally (Voss, 2006; Reitman, 1965; Lynch et al., 2010b).

For those reasons, the notion of ill-definedness presents a number of unique
challenges for ITS researchers. While general, transferable system design principles
are still lacking, Pople (1982) endorsed the development of systems that support the
exploration of alternate problem hypotheses to prevent early student commitment.
Jonassen (1997) proposed a problem solving process and a series of pedagogical
recommendations including the development of case bases and supporting the
construction of knowledge bases that reflect real-world knowledge. Lynch et al. (2006)
identified four human tutoring strategies that were applicable for incorporation into ITSs
also for ill-defined problems: case studies, collaboration, weak theory scaffolding and
expert review. Tutoring systems can be constructed that support these strategies (Lynch
et al., 2010a; Aleven et al., 2008, 2007, 2006).

Yet, while some noteworthy attempts at designing ITS systems for ill-defined
problems have been made, these are overall currently not as successful as ITSs have
shown to be for well-defined ones, and general system design principles are still
lacking. One reason for this is that, unlike their electronic counterparts, human tutors
can give hints in situations where no unique answer exists or where the judgment

Example-based feedback provision using structured solution spaces 251

of the correctness of a student answer is not clear – which is a characteristic factor
of ill-definedness (Voss, 2006; Reitman, 1965). Humans are capable of providing
feedback in situations where they do not have explicit full domain knowledge but
where they have some limited previous experience or where they have already seen
alternative solutions by means of adaptation and re-characterisation strategies (Piaget,
1972; Reitman, 1965; Simon, 1973): they adopt situation dependent representations of
possible problem solutions based on examples, and they learn how to compare two
solutions and to align their relevant parts. Based on this learned alignment, humans can
give feedback about which parts of a new student solution seem wrong in comparison
to known examples that are considered as correct.

Approaches for ITSs in ill-defined domains

This observation provides a motivation for designing technical systems which partially
mimic human behaviour in such settings by the incorporation of artificial intelligence or
data mining techniques. For instance, Fournier-Viger et al. (2010) and Nkambou et al.
(2011) proposed a hybrid approach for supporting tutoring services. They combined
an expert-system with model-tracing and data mining approaches in order to support
learners in operating a robotic arm. Using a cognitive model, main steps for moving the
robotic arm were modelled as a set of rules with declarative knowledge. Data mining
techniques were used to extract frequently occurring parts from the records of user
solutions. Based on these parts, problem-solving steps were suggested to users.

Current research on ITSs for ill-defined problems also includes the work of Ogan
et al. (2009) who developed a tutoring system for intercultural competence where
students were given an authentic problem in cultural translation, and the system guided
them in a clear analysis process consisting of noticing key features, making analyses,
receiving feedback, and then reflecting upon their choices. In Walker et al. (2008),
models of discussion posts were used to provide feedback to learners. Student solutions
were analysed and compared to the model using keyword extraction.

Example-based learning has shown to be effective in supporting learning also
in ill-defined domains. In the NavEx tutor, annotated program code examples were
provided to students in order to give explanations to learners instead of providing bare
solutions (Brusilovsky and Yudelson, 2008).

In this contribution, we investigate the possibility to generate feedback automatically
by analysing and exploiting inherent structures in solution spaces using visualisation and
clustering techniques known from machine learning (ML). We demonstrate how this
approach works independently from the specific domain in which the ITS is applied,
and propose suitable feedback strategies relying on example-based learning.

The general idea is that example-based feedback can be generated automatically, as
long as a data-driven model is able to assign a suitable example solution to a given
student solution. Our approach relies on two prerequisites:

1 The given learning task can be solved in several different ways by students, and
from these possibilities a small number of common solution strategies emerges
naturally. Although learners are not explicitly restricted to one of these common
strategies (e.g., infinitely many solutions might theoretically exist for a task), this
is a fair assumption, since typical educational tasks are designed to achieve certain
learning goals and are of limited complexity. Therefore, in a sufficiently large

252 S. Gross et al.

collection of correct student solutions, there would likely exist clusters of similar
solutions which implement the same general solution approach.

2 A collection of student solutions is available, including correct/high-quality
solutions. Alternatively, a set of designated sample solutions, designed by domain
experts to cover common ways to solve the task, is available.

Based on these assumptions, we examine ways to detect and exploit structures in a set
of solutions (for ill-defined and well-defined problems). We show how data proximity
measures and ML techniques can be utilised for this purpose, and how based on these
structures, feedback can be given to students.

Paper overview

First, we discuss feedback strategies based on structured solution spaces in Section 2.
Next, in Section 3, we review some relevant existing approaches to apply ML in
the domain of ITSs, and we discuss how ML techniques can be used to exploit
structures in given solution spaces (independently of a specific domain). As a crucial
factor influencing these techniques, we identify the representation of data and the
corresponding proximity measures, and we address this topic in detail. The feasibility
of the proposed techniques and feedback provision strategies is demonstrated in several
evaluation studies from students’ as well as experts’ perspectives (Section 4). In
Section 5, we evaluate several proximity measures in terms of their ability to capture
inherent structure in datasets consisting of real student solutions. Finally, we summarise
the results and provide an outlook over future research perspectives in Section 6.

2 Feedback strategies based on clustered solution spaces

Typically, feedback in ITSs aims to accompany the learning process, instructing learners
in order to support them in finding and correcting mistakes or misconceptions in
their solutions. In various studies feedback has demonstrated to play a significant
role in instruction (Mory et al., 2004). Research on feedback provision considered
aspects such as how feedback messages should be formulated (e.g., response accuracy,
correct answer, hints, examples) (Melis, 2005), when a system should intervene to
provide feedback (e.g., immediately, or after some time has elapsed) (Kulik and Kulik,
1988), or which pedagogical theory of learning it should be based on. For instance,
Zakharov et al. (2005) implemented pedagogical strategies based on the theory of
learning from performance errors (Ohlson, 1996) in the EER-Tutor, a constraint-based
tutor (Mitrovic et al., 2001) for database design. By re-engineering feedback, they
derived principles for how feedback messages should be designed to be effective. Aleven
and Koedinger (2002) proposed an effective metacognitive strategy implemented in
a geometry cognitive tutor which provides support for guided learning by doing and
explaining. In addition to feedback on issues a learner did wrong, positive feedback
can help learners to learn better. More recently, research on feedback has refined
these aspects. Mitrovic et al. (2013) have shown that providing positive feedback in a
constraint-based SQL tutor improves learning at twice the speed than only providing
negative feedback on mistakes to learners. In order to help students become better

Example-based feedback provision using structured solution spaces 253

help-seekers, Roll et al. (2011) examined the use of metacognitive feedback about
learners’ help-seeking behaviour to avoid their under- or overusage of feedback.

As argued above, one possible way to help learners understand concepts of a specific
domain is example-based learning encouraging learners’ self-explanation behaviour
(Renkl et al., 1998). In our approach, we propose the use of examples to provide
feedback in order to help students identify mistakes and misconceptions in their
solutions. In our approach, we assume there is a means to identify similarities among
a set of solutions. In this case, a newly submitted student solution can be analysed and
compared to the existing set of solutions. We further assume that a solution which is
highly similar to the student solution can be identified in the existing set. This highly
similar solution serves as a counterpart, which can then be used for a fine-grained
comparison and to provide feedback to a student solution. Here, we distinguish two
feedback strategies:

F1 Parts in the student solution which differs partially but implements the same
problem solving strategy as its counterpart are highlighted, without showing
the actual counterpart to the learner.

F2 Parts of the student solution are contrasted to parts of its counterpart which
implements the same problem solving strategy, without explicitly highlighting
differences between the student solution and its counterpart.

The strategies F1 and F2 aim to help learners focus on potential mistakes in their
solutions which might require attention by identifying and providing dissimilar parts
in otherwise similar solutions from peers. Feedback strategy F1 focuses on guiding
learners towards reflecting on their solution and explaining it without showing the
counterpart. The learner is asked to explain the highlighted parts in her solution, thus
identifying potential mistakes or misconceptions. Feedback strategy F2 requires a
learner to understand the contrasted part, to identify the corresponding pieces of her
solution, and to compare both parts in order to find a possible mistake. The contrasted
part can then directly be used by the learner to improve her solution. Therefore, a learner
might transform and adapt the specific characteristics of the counterpart to her solution.

Both feedback strategies can be applied independently of each other, but can
also can be combined simultaneously as well as consecutively. Combining both
strategies simultaneously supports a learner in identifying similarities by highlighting
and contrasting dissimilar parts of her solution and its counterpart, and may thus help
the learner focus on specific differences. A consecutive combination of both strategies
may be used to adapt the feedback to the learner’s needs and progress depending on
the strategy which had been applied previously. For instance, applying strategy F2
successfully for a particular learner can lead to applying strategy F1 in future feedback
provisions about similar misconceptions. If providing feedback via strategy F1 did not
help a learner to improve her solution, strategy F2 can be applied in similar cases of
misconceptions.

Figures 1 to 3 illustrate how feedback strategies F1 and F2 can be applied: [F1]
Partial differences between the student’s solution and the counterpart are highlighted
in the student’s solution (see Figure 1). [F2] The student’s solution is contrasted to
the counterpart by showing both side-by-side (see Figure 2). [F1+ F2] In addition,
both strategies can be combined simultaneously by contrasting student’s solution to the
counterpart and highlighting the partial differences in student’s solution (see Figure 3).

254 S. Gross et al.

Figure 1 Highlighting of parts in student’s solution

Figure 2 Comparison of solutions, (a) student’s solution (b) representative solution

(a) (b)

Figure 3 Comparison of solutions with highlighting of parts, (a) student’s solution
(b) representative solution

(a) (b)

Level of detail in feedback provision

A crucial aspect in feedback provision is the level of detail of the provided feedback
and how to effectively design instructions. For a review on effective instructional
explanations in example-based learning, see the work of Wittwer and Renkl (2010).
In our approach, feedback must be designed to provide sufficient information about
a (potential) mistake to a learner in order to help her to identify and correct this
mistake. However, feedback must also guarantee that a learner attempts to reflect on her
solution and to explain (potential) mistakes herself. Thus, considering both requirements,
we propose to adapt feedback regarding learner’s needs and demands. Starting with
an initial level of detail of a suitable counterpart, the feedback could be extended
successively by larger parts of the counterpart and reduced, respectively, depending
on the learners’ progress in learning. Moreover, feedback could also be extended
according to the learners’ demands. Accompanied by meta-cognitive feedback about her
help-seeking behaviour as proposed by Roll et al. (2011), such an approach could help
learners find the right balance between too less and too much feedback content of a
counterpart.

Example-based feedback provision using structured solution spaces 255

Quality of counterparts

For feedback strategies F1 or F2 being successful, it is crucial that differing parts of two
solutions reveal relevant information about a potential misconception or error. Therefore,
these strategies seem most suitable in circumstances where solutions are widely
semantically or structurally similar (thus aiming at the same overall solution strategy),
but differ in few parts only. Thus, the dissimilar parts could be an indication of a mistake
or a misconception in the problem solving strategy. Highlighting such potentially
erroneous parts or contrasting these parts to corresponding parts of counterparts is a
possible way to provide feedback to learners. In a set of student solutions, however,
there is usually no guarantee that the counterpart solution is correct (unless, of course,
there is a domain model to check this). Here, we distinguish two cases:

1 information about the quality of solutions is (partially) available

2 no information about the quality of solutions is available.

2.1 Feedback provision using representative solutions

In the first case [illustrated in Figure 4(a)], we assume that information about the
quality of solutions is (partially) available. This information could, for instance, be
based on expert gradings. Then, the solution space consisting of student solutions can
be structured so that similar solutions are assigned to the same class. Finally, for each
cluster of the solution space a representative (student) solution is identified which

• has a high structural similarity to all other solutions in the cluster (i.e., it is the
centre of the cluster)

• has a good quality (i.e., it is a solution which solves the task accurately).

Alternatively, sample solutions implemented by domain experts could be added to the
set of student solutions, and assigned to suitable clusters, which then serve as high
quality solutions representing a class [shown via large symbols in Figure 4(a)].

Figure 4 Clustering of student solutions, (a) with representative (b) without representative
(c) with drop-out

(a) (b) (c)

256 S. Gross et al.

By applying feedback provision strategies F1 or F2, a student solution is structurally
and/or semantically compared to the representative solution of the same cluster and
differences between the solutions are highlighted and contrasted, respectively. The
consequence of providing such feedback could be that the student solution improves and
moves qualitatively towards the representative solution [illustrated in Figure 4(a)].

Design of representative solutions

In order to provide feedback to learners based on representative solutions, a system
must be capable to identify a suitable sample for a given student solution. This requires
that a set of representative solutions cover typical (and optimal) strategies which solve a
given problem. The number of possible and/or valid problem solving strategies depends
on the curriculum and the learning goals of a specific domain. For instance, a task of
a curriculum in Java programming could ask learners to check if a given string is a
palindrome. This task could be solved using loop statements, iterating over single letters
or a built-in method of the Java application programming interface (API). Considering
the learning goals of the task, a tutor could allow any of the strategies or she could
exclude particular strategies. Although the given task is ill-defined since a wide range of
possible solutions exist, such learning tasks naturally cause an emergence of a relatively
small number of solution strategies, and thus, a limited number of representative
solutions to be prepared.

However, it remains a challenge to reliably assign an unseen student solution, for
which feedback is requested, to a representative solution. The underlying similarity
measure has to be abstract enough to distinguish different solution strategies, but at the
same time invariant with respect to individual details in the implementation style. We
will discuss these aspects in Section 3.2.

2.2 Feedback provision without representative solutions

In the second case [illustrated in Figure 4(b)], we assume that no information on the
quality of solutions is available. Thus, the solution space can be structured in order to
cluster similar solutions in the same class, but representative correct solutions cannot be
identified to compare to student solutions. At first sight, this vagueness of correctness
seems to be a crucial disadvantage. Yet, with suitable feedback messages accompanying
the highlighting or contrasting, this issue can be addressed. Typical messages can be
formulated as self reflection prompts which have shown to be an effective form of
intervention (Chi et al., 1989). Since a contrasted solution could be erroneous, a message
should explicitly point out the vagueness of correctness. For example, students can be
asked not only to reflect on their own solution but also on the contrasted solution
to identify misconceptions. In the domain of fractions, this approach of learning by
erroneous examples has been shown to help students learn from common errors of other
students (Tsovaltzi et al., 2010).

Modelled in a procedure of peer reviewing (Topping, 1998), students could also help
each other to improve their solutions. Peer reviewing has shown to produce assessment
results of good quality as long as four to five reviews for a solution are available (Cho
and Schunn, 2007). While peer reviews have the advantage that they build up domain
knowledge over time (and thus make the computation of representatives possible), their

Example-based feedback provision using structured solution spaces 257

disadvantage is that results (and thus, feedback) for a newly submitted solution are
usually not available instantly. To avoid this disadvantage, another possible option is
peer tutoring (Goodlad and Hirst, 1989; Merrill et al., 1992).

Figure 5 sketches a student solution with a dialogue between student and peer
tutor. The peer tutor can recommend a change of erroneous parts of the solution. This
feedback can help the student to improve her solution. As a side effect, also the peer
tutor gets trained in finding and avoiding mistakes.

Figure 5 Dialogue-based peer tutoring

In this second case, the ITS does not compute feedback directly but acts as a mediator
between students. Since the reviewer/peer tutor is a student who is in a learning process
herself and does not possess expert knowledge, the ITS has to choose both student
and reviewer/peer tutor intelligently. Student and reviewer must be selected in such a
way that the student profits by reviewer’s tips and the reviewer is not overwhelmed by
reviewing student’s solution. As examined in Walker et al. (2012), the adaptive peer
tutoring assistant (APTA) could help students noticing relevant feedback in order to
improve their learning in peer tutoring. The solution structure clustering can be helpful
here, since it can guarantee that both students have submitted at least a structurally
similar (though possibly not equally good) solution.

2.3 Feedback provision for drop-out solutions

In a third case [shown in Figure 4(c)], we assume that the solution space can be
structured but there may be single student solutions (shown via blurred symbols in
the figure) which cannot be assigned to a suitable cluster due to a lack of structural
or semantic characteristics in the student solution or an odd problem solving strategy
which fundamentally differs from strategies represented by the existing classes of the
solution space. Here, the purpose of an ITS should be to identify which problem solving
strategy the student intended to implement and thus to provide appropriate feedback to
the student in order to guide her towards this strategy. In this case, peer tutoring can
help a student to firstly identify fundamental misconceptions and mistakes. Alternatively,
the student could be presented with all available representative solutions (or if possible
abstractions of them) in order to select the most appropriate solution implementing
the problem solving strategy the student intended to implement. Based on the selected
representative solution, the student can then be guided to successfully implement this
strategy using the proposed example-based feedback provision strategies.

3 ML of solution spaces

The discussed feedback provision strategies are based on the assumption that meaningful
examples can be identified in a given set of solutions, and that student solutions can

258 S. Gross et al.

be assigned to these examples in an appropriate manner. This raises the question how
to implement these aspects with automatic data-driven methods. In this section, we will
discuss how prototype-based ML methods can be utilised for this purpose. We will focus
on the important role of data representation techniques and proximity measures, which
crucially determine the formation of structures in the solution space.

Let us assume that a set of correct student solutions is given for a learning task.
As described above, feedback can then be generated based on a sufficient number of
examples, which are essentially high-quality solutions, either included in a database of
student solutions, or provided by experts as designated sample solutions. The remaining
problems are:

a assigning a given student solution to a suitable example

b identifying prototypical (high-quality) solutions in a database, which can serve as
meaningful examples

c identifying adequate groups of students for peer tutoring.

In the following, we will describe how data proximity measures and ML techniques can
address these challenges.

Mathematical formalisation

We assume a set of data points {x1, . . . , xn} is given, where points xi, i ∈ {1, . . . , n}
refer to student solutions. The points {s1, . . . , sm} are examples based on which
feedback can be generated. Examples either refer to designated sample solutions
provided by experts, or to prototypical (high-quality) student solutions in a given
database. Since they are, in either case, solutions themselves, they are always specific
for the learning task. We require that all student solutions and sample solutions
are represented in the same form, and will discuss details about practical data
representations later in Section 3.2.

The fundamental mathematical component for our purpose is the notion of
proximity: d(xi, xj) constitutes a fixed measure which assigns a positive value to every
pair of data points, indicating their dissimilarity. Without loss of generality, we will
use only a dissimilarity or distance measure in the formalisation, instead of a notion of
similarity. Similarity values can easily be transferred to dissimilarities, as described in
Pekalska and Duin (2005). We use the term proximity for both notions, depending on
the context. For example, d(xi, xj) = 0 indicates that two student solutions are equal; a
large value indicates that the solutions are very dissimilar. So far, d is just some abstract
proximity, we will later discuss different choices in the context of an ITS. For now,
we will assume that d evaluates the dissimilarity of a pair of solutions in a desired and
meaningful way. Using the proximity measure d, we can address problem (a): for a
given student solution xi, the most similar (and thus possibly most suited) example can
be selected simply by

argmin
j

d(xi, sj), j ∈ {1, . . . ,m} .

Example-based feedback provision using structured solution spaces 259

To address (b) and (c), various ML techniques can be applied based on the proximity d.
We propose prototype-based clustering, since it is directly beneficial to solve problem
(b) by finding prototypical points in the data, while also identifying groups in the data to
address (c). After the training a prototype-based model, the model represents the data in
terms of a small number of k prototypes {w1, . . . ,wk}. They decompose the data space
into clusters by assigning a data point xi to wj iff the latter is closest to the data point.
Once prototypes are fixed, i.e., the model has been trained, any yet unknown solution xu
can be assigned to one cluster in the same way. Thus, decisions why a certain element
xi or any unknown solution xu belongs to a given class can be substantiated by referring
to this prototype wj and examining the respective closest solution. The decomposition
of the data space is equivalent to identifying k groups containing very similar solutions,
which can be utilised for peer tutoring, i.e., (c). Examples could be selected from the
database by considering correct/high-quality student solutions which are very similar to
a respective prototype, which addresses problem (b).

So far, we established the theoretical basics of how proximity measures and
prototype-based clustering techniques can be applied to solve the three stated problems
(a), (b), and (c). In the following, we will discuss in detail some techniques that can be
used to implement this in a practical ITS, and how data can be represented. For practical
examples, we will refer mainly to a scenario of an ITS for programming.

3.1 Data representation and proximity

Most classical ML methods restrict data formats to finite-dimensional real vectors,
i.e., a representation of data in terms of a finite number of descriptive features. This
kind of representation is based on capturing meaningful characteristics of the data in
separate numerical values, which usually are (complex) statistics about the underlying
subjects. The typical way to express the proximity between a pair of feature vectors is
to calculate a distance in the underlying vector space, usually the Euclidean distance.
While there is ongoing research about feature extraction techniques, it remains hard
to integrate highly contextual, compositional aspects in the feature encoding. The
question of how compositional aspects can be represented in connectionist approaches
has been the subject of an extensive debate (Hammer, 2002). Although low-level
representations in terms of vectors provide a high robustness against noise, complex data
or data structures require high-dimensional feature vectors for an adequate description.
This increases the computational complexity, and, more severely, it often prohibits
fast learning due to the curse of dimensionality [which expresses all phenomena that
appear with high-dimensional data, and that affect the behaviour and performances of
learning algorithms (Verleysen and François, 2005)]. Another disadvantage of vectorial
representations is that the more complex and meaningful features are often hand-tailored
for a specific problem or domain. This kind of feature selection and construction often
constitutes a rather expensive part of the system design, while still underlying principled
limitations. To avoid the necessity for domain-specific customisations, ML algorithms
must be able to operate on fairly general representations of the solutions in an ITS.

Related topics have recently been addressed in ML research, under the subject of
structure learning and autonomous learning (Douglas and Sejnowski, 2007): generally,
there is a tendency to enhance vectorial data representations which preserve the
statistical robustness but enable a high-level integration of structural and functional
aspects. Examples for this research include dedicated structure kernels, recursive models,

260 S. Gross et al.

or metric learners (Hammer and Jain, 2004). Modern data analysis schemes therefore
use proximity measures which directly evaluate the (dis)similarity of a pair of subjects,
without the need to encode the data in a (possibly inappropriate or inapplicable)
feature representation. These measures can take various contextual characteristics into
account. Popular applications involve gene sequences (Gusfield, 1997), audio signals
(Müller, 2007), texts (Li et al., 2004; Gusfield, 1997), or data from motion capturing
(Müller, 2007). Corresponding state-of-the-art ML approaches, including unsupervised
clustering and visualisation, as well as supervised learning, rely mainly on some
notion of proximity during the training process. Popular examples include kernel and
relational clustering and classification methods (Hasenfuss and Hammer, 2010), as well
as nonlinear dimensionality reduction for visualisation (van der Maaten and Hinton,
2008). In the context of ITSs, the question now occurs how proximity measures can
be realised practically for the given data xi, and how the solutions can be represented
in a suitable way. Now, we will have a closer look at different possibilities to define
proximity measures on such data, referring to different levels of structural complexity
from vectorial to graph-based representations.

3.2 Features of proximity measures

As the primary distinguishing feature of proximity measures, we regard the form of
representation on which the measures operate, i.e., how solutions are represented to
directly apply the measure. These representations can be categorised by their structural
complexity, i.e., how much structural information they can represent directly:

1 a finite-dimensional feature vector

2 a symbolic sequence

3 a tree or a graph with annotations of nodes and edges.

In the following, we will briefly describe some existing proximity measures in each
category. We assume that solutions can be represented in some (formal) language,
like, e.g., English essays, computer programs, UML diagrams, etc. Apart from this, we
will keep the discussion rather general at this point, but will later formalise the discussed
measures with respect to our application scenario for programming classes.

1 To encode a solution as a feature vector, one can use standard approaches from
classical text and document mining. For example, by extracting the term
frequencies within a document (i.e., a solution) in relation to all documents we
gain tf-idf weights as a feature vector (Salton and Buckley, 1988). Depending on
the syntax of the solution, the idea of ‘terms’ can be transferred to any
appropriate symbolic or syntactic entity. In general, a feature encoding represents
a solution in terms of predefined (possibly complex) statistics, while the order of
syntactic elements (or the relationship between them) is usually not (or only
implicitly) considered. Therefore, to include structural information it must be
encoded within the features explicitly. With a feature vector for every solution,
canonical proximity measures are distances in the underlying vector space, most
commonly the Euclidean distance, which can be computed efficiently.

Example-based feedback provision using structured solution spaces 261

2 To consider the proximity based on a sequence, we can transfer established string
similarity measures to operate on the syntactic elements of the solutions, like the
normalised compression distance (NCD), or alignment measures commonly used
in bioinformatics and text mining (Li et al., 2004; Gusfield, 1997). In contrast to a
statistical view on the data in form of features, proximity measures for sequences
explicitly take the order of symbols into account.

3 The similarity of graph or tree structures can be calculated via structure kernels
(Neuhaus and Bunke, 2006; Moschitti et al., 2008). Tree kernels are
well-established, e.g., for syntax trees in computer linguistics. For instance, to
compare a pair of solutions consisting of English text, natural language
processing (NLP) techniques can derive trees or graphs from the syntax
(Moschitti et al., 2008). These proximity measures aim to consider the symbols
(usually annotated on the nodes) together with their mutual relationships
represented by edges. Here, the performance of the algorithms is a limitation for
practical applications. Since it is known that subgraph isomorphism is an
NP-complete problem, effective algorithms need to rely on strong restrictions of
the problem to guarantee feasible running times (Ullmann, 1976). Therefore, tree
kernels are more suitable for large-scale applications than general graph kernels.

The measures we discussed are domain-independent, provided the solutions can be
represented in the required form. Since measures from class 3 consider structural
relationships, but generally suffer from high computational complexity, they are thus
not suited for large-scale applications. We will not consider them in the following
experiments, but as a subject of ongoing work. In contrast, measures from class 1 and 2
have feasible running times, and facilitated good results in other ML applications. In
Section 5, we provide a quantitative study on their performance in association with
clustering and classification techniques on artificial and real student solutions.

Proximity of Java programs

As stated, we assume that solutions are given in some (formal) language. Therefore
they can always be transferred to syntax trees, where syntactic elements are annotated
nodes, see e.g., NLP approaches (Moschitti et al., 2008). A relational analysis of syntax
elements yields additional edges which can create cycles, so that we arrive at a general
graph. In the following we assume that solutions are (or could be) represented as
graph structures, with different kinds of meta information annotated on the nodes and
edges. Each node represents a (syntactic or semantical) element of the solution, and
edges establish relationships between these elements. This is a very general format,
which is able to represent a variety of different data, including solutions in existing
ITSs, e.g., argumentation diagrams (Loll and Pinkwart, 2013).

In our application scenario, we consider syntax trees of Java programs. We used a
parser (the official Oracle Java Compiler API) to derive a syntax tree from the Java
source code of a given solution. Solutions xi, i = {1, . . . , n} are thus trees Gi = (Vi, Ei)
comprised of sets of vertices Vi and edges Ei. All vertices are attributed to a certain
node type or label, which is a symbol from the finite alphabet Σ = {l1, . . . , lT }, by
a relation R ⊂ V × Σ. The nodes represent syntactic units of the program and their
types represent a general category like the declaration of a variable, a function call, a

262 S. Gross et al.

logical expression, a variable assignment, etc. The alphabet is defined by the parser and
is therefore the same for all solutions in the set.

We can derive tf-idf weights as vectors ti ∈ RT using the classic way
described, e.g., in Salton and Buckley (1988), regarding the term frequency as the
frequency of the respective symbol, and each syntax tree as a document. Based on the
vectors ti, tj , we define the distance between the respective pair of solutions as the
Euclidean distance:

dtfidf(xi, xj) =

√√√√ T∑
r=1

(
[ti]r − [tj]r

)2
.

This feature encoding captures statistics about the symbols, however their ordering
(and other relations between them) are not considered.

In contrast, alignment measures take into account the sequential ordering of symbols.
For this purpose, we encode the syntax trees as sequences qi ∈ Σ∗ by visiting vertices
in a depth-first-search order, and concatenating the annotated symbols. This ordering
corresponds to the original sequence of the statements in the Java source code which are
represented by the nodes. A global alignment of two such sequences q1 and q2 consists
of an extension of either sequence to q̄1 and q̄2 ∈ (Σ ∪ { })∗ where denotes a gap,
such that q̄1 and q̄2 have equal length. This allows us to accumulate costs by the sum

|q̄1|∑
i=r

d
(
[q̄1]r, [q̄2]r

)
where d refers to some pairwise similarity function for symbols from Σ ∪ { }, e.g., a
simple delta function. The proximity of two sequences q1 and q2 can then be defined
as maximum proximity taken over all possible global alignments. Alternatively, if noise
is present, one can rely on local alignment which can disregard parts of the sequences
if they do not match, meaning that the optimum is taken over all alignments of all
possible subsequences of the sequences q1 and q2. In either case, dynamic programming
enables an efficient computation of these terms (Gusfield, 1997). For two solutions
qi, qj , we refer to the overall similarity score of a local alignment by a(qi, qj). For
further convenience and consistency, we invert the similarity as proposed in Pekalska
and Duin (2005) to obtain the dissimilarity value

dalign(xi, xj) = a(qi, qi) + a(qj ,qj)− 2a(qi, qj) .

The third proximity measure that we consider is the normalised compression distance
(NCD), which also operates on arbitrary symbolic strings (Li et al., 2004). The NCD
is based on an approximation of the Kolmogorov complexity and compares two strings
by referring to their compressed sizes as given by a real world compressor, like (in our
case) the Lempel-Ziv-Markov chain compressor (LZMA). Considering the solutions as
sequences (in the same way as for local alignment), we refer to the compressed size of
a sequence qi as z(qi), and denote the concatenation of two sequences as qiqj . Then,
the NCD is defined as:

dNCD(xi, xj) =
z(qiqj)−min{z(qi), z(qj)}

max{z(qi), z(qj)}
.

Example-based feedback provision using structured solution spaces 263

Syntax, structure, and semantics of Java solutions

The three dissimilarity measures as discussed above deal with different structural levels
of the program, taking into account different structural invariances. In this context,
structural invariance means that some changes of the syntax do not affect the result
of the dissimilarity measure. For example, to some extent the NCD measure can cope
with the permutation of program blocks, while an alignment is always bound to the
sequential ordering of the input sequences. On an abstract level, it would be desirable if
these invariances corresponded to semantic invariances of the program, where semantics
refers to the actual algorithm implemented.

In case of the Java language (like most programming languages), a particular source
code (i.e., the structured syntax) produces only one semantic result, whereas a particular
result can be generated by various incarnations of code. Following this fact, there exist
syntactic invariances w.r.t. semantics, for example, a simple syntactic invariance would
be the renaming of variables in the code, or the arbitrary ordering of parts of the
program which can be executed concurrently and independently of each other. These
kinds of invariances are merely special instances of a generally nonlinear relationship
between syntax and semantics, meaning that small variations of the syntax may lead to
drastic semantic changes and vice versa. The dissimilarity measures as proposed above
do not explicitly take this into account, being based on a domain-agnostic premise in
the first place, albeit some of these invariances can be captured by the above-introduced
measures.

Not only in the Java domain, the described nonlinear characteristics pose a challenge
regarding feedback provision, depending on the given learning assignment or task. We
note that it is not necessary to restrict to only one dissimilarity measure, rather they
can be regarded in parallel, or they can be applied in a hierarchical fashion, thereby
realising different invariances at different levels of detail.

3.3 Prototype-based clustering

Having defined suitable dissimilarity measures for solutions, we will now focus on
ML techniques which extract and exploit structures in a solution space based on these
dissimilarities. In literature, clustering is a common tool for the inference of structure
from (Java) programs. Typically, the focus lies on the structuring of a single source
code file, package, or project only, see e.g., Bailey et al. (2012) and Kuhn et al.
(2007), or a direct feature description of the program or its semantics is used, the
latter requiring domain-specific knowledge (Striewe and Goedicke, 2011, 2013). In
contrast, we are interested in clustering techniques based on domain-agnostic pairwise
dissimilarity measures as introduced above.

Many different ML techniques are currently available to infer representative
prototypes given a set of data points (Kohonen, 1995). Most techniques have
been proposed for data represented by Euclidean vectors, which makes them
unsuitable for our purposes. Relational Neural Gas (RNG) constitutes one extension to
non-Euclidean dissimilarities (Hasenfuss and Hammer, 2010; Hammer and Hasenfuss,
2007) of the form d(xi, xj) where we assume symmetry (d(xi, xj) = d(xj , xi)) and
normalisation of the self-dissimilarities (d(xi, xi) = 0). It aims at finding prototypes
which are as representative for their cluster as possible. This aim is formalised
mathematically by the objective to place prototypes at positions such that the average

264 S. Gross et al.

dissimilarity within clusters is minimal. Thereby, prototypes are represented implicitly
as linear combinations wj =

∑
i αjixi with

∑
i αji = 1. It was shown that any distance

calculation between the ‘artificial’ prototypes and ‘real’ solutions can be evaluated
implicitly, based on the known dissimilarities only. Therefore, standard numeric methods
can be used to optimise the objective function. A number k of representative prototypes
of the form wj =

∑
i αjixi results this way, although their explicit form is never

referred to during training, since the vectorial representation of the input data remains
unknown. Instead, the explicit prototypes can be approximated by the respective
closest explicit solution(s) and utilised for example-based feedback strategies. From a
pedagogical point of view, depending on the scenario, one might also consider to select
the closest high-graded or high-quality solution as representative samples.

3.4 Preliminary evaluation

For validating our approach of automated feedback provision based on clustered solution
spaces in a preliminary test study, we applied the RNG clustering algorithm to a
small real world dataset. Our goal was to estimate the potential of unsupervised
ML to analyse the solution space of a real ITS for programming courses. Three
data proximity measures and data representations were used in the process. Our
evaluation was performed using a set of solutions from a Java programming class
(first semester students) at Clausthal University consisting of 165 student solutions,
where the programming assignment was to create a function which decides for any given
input sentence whether palindromes or pangrams are contained. A grade assigned by a
human expert was available for every student solution. For a more detailed description
of the dataset, see Section 4.2.

We extracted a descriptive string representation from each given Java source
code, using the plagiarism detection software Plaggie (Ahtiainen et al., 2006). This
results in a string signature for every solution, which is a sequence of symbols, each
encoding the node types appearing in the syntax tree. The procedure is similar to
the one we describe in Section 3.2. Three different proximity measures were applied
based on the string signatures of the solutions, each resulting in a matrix D of
pairwise dissimilarities. To investigate which measure is most suited to infer meaningful
clusters, we created 3-dimensional visualisations of each dissimilarity dataset, using
the state-of-the-art dimensionality reduction technique t-distributed stochastic neighbour
embedding (t-SNE) (van der Maaten and Hinton, 2008).

One of the measures (greedy string tiling) is a specialised proximity measure for
plagiarism detection in documents, and has also been used for Java programs (Ahtiainen
et al., 2006). For this measure, the visualisation of the pairwise proximities clearly
showed a structure of four clusters, which was the most distinctive and noticeable
pattern observed in the experiment. Therefore, we performed a clustering by RNG
based on these proximities, fixing the number of prototypes to four, with regard to the
articulate 4-cluster structure in the visualisation. Figure 6 shows a t-SNE visualisation
of the data, clustered by RNG. The color of the mapped data points marks their cluster
assignment found by RNG, which clearly is consistent with the 4-cluster structure. The
highlighted points have been identified as examples in the set of student solutions, by
picking the closest high-graded solution to the respective prototype. In a small expert
survey, the plausibility of this automatic choice was evaluated (see Section 4.1).

Example-based feedback provision using structured solution spaces 265

Figure 6 The figure shows a visualisation of proximities for Java programs for an early
evaluation using a proximity measure from Ahtiainen et al. (2006), specialised
for plagiarism detection (see online version for colours)

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60

1
2
3
4

Note: The different colors for the data points show the result of RNG clustering, where four
examples are identified within high-quality student solutions (the large symbols).

4 Evaluation of feedback provision strategies

Next, we investigated the feasibility of feedback strategies as described in Section 2 with
datasets of introductory programming courses and conducted a study in a class where
students were taught programming in Java. First, we conducted an expert evaluation with
four experts to investigate the quality of the automatic clustering and example selection.
Furthermore, we examined the effectiveness of the proposed feedback provision from
an expert’s point of view. The experts were highly experienced and fully qualified to
check and assess Java programs due to their long experience as human tutors in Java
programming courses.

4.1 Expert survey

To determine the effectiveness of the proposed feedback provision strategies we
examined the following hypotheses:

H1 Comparing a student solution to a representative solution helps a student to
improve her solution if

a feedback provision strategy F1 is applied without explicitly showing the
representative solution

266 S. Gross et al.

b feedback provision strategy F2 is applied without explicitly highlighting
potentially erroneous parts in the student solution.

H2 Clustering with RNG (see Section 3.4) assigns student solutions to suitable
clusters represented by a solution with a high similarity to each solution
within the cluster.

Hypothesis H1a was evaluated by asking the four human experts whether or not the
proposed feedback strategy F1 is appropriate in order to help the student to improve
her solution. Hypotheses H1b and H2 were evaluated by asking the human experts
whether or not a representative solution is suitable for a direct comparison. We based
our examination on a solution space (see Figure 6) which was clustered using RNG
(see Section 3.4), expecting that each cluster consists of student solutions with a
high similarity to each other. The structured solution space was then used to select a
student solution, a suitable representative solution of the same cluster and a second
representative solution of a different cluster.

Each of the four human tutors was instructed to check and assess student solutions
by an evaluation sheet. The evaluation sheet contained three questions for every student
solution:

1 How do you rate the solution?

2 Which of the proposed representative solutions is suitable for a direct comparison?

3 How useful is the highlighting of potentially erroneous parts for improving the
student’s solution?

The first question should be answered on a scale from 1 (very poor) to 5 (very good).
For the second question, the experts could select from four options:

1 the representative solution for the cluster as found by RNG
(described in Section 3.4)

2 a randomly selected solution of the other clusters

3 both solutions

4 none of them.

The third question should also be answered on a scale from 1 (not useful) to 5 (useful).
Two feedback provision strategies were examined in this evaluation. We were

interested in whether or not the provision of feedback by comparing to a representative
solution can potentially help students to improve their solutions. The results implied that
the appropriate feedback provision strategy depends on the rating of the solution. Thus,
all analyses were performed considering the quality of the student solution. The experts
were asked to give a score on a five-point scale (1 = not useful, 5 = very useful) rating
how useful feedback strategy F1 is (see Table 1). Furthermore, they should select a
representative solution which is suitable for applying feedback strategy F2 (see Table 2).

The poorer the rating of the solution, the better the feedback strategy F1 was
assessed by the experts. For very poor solutions, the feedback strategy was highly rated
with an average of 4.83. For solutions that already have a good quality, a comparison

Example-based feedback provision using structured solution spaces 267

to a representative solution does not make much sense, because the solution cannot be
improved.

Table 1 Average score for feedback provision strategy F1

n rating mean sd median

12 Very poor 4.83 0.389 5
15 Poor 4.20 1.082 5
16 Average 3.44 1.315 4
40 Good 3.1 1.355 3
78 Very good 1.95 1.247 1

Table 2 Selected options for feedback provision strategy F2

n Rating Representative solution Both (3) None (4)
Of the same cluster (1) Of a different cluster (2)

12 1 0 3 9 0
15 2 4 4 7 0
16 3 1 7 5 3
40 4 15 11 6 8
78 5 11 15 11 41

161 - 31 40 38 52

The evaluation indicated that the experts did not rate a comparison of a (very) good
solution to a representative solution as valuable in most cases. However, they stated
that for (very) poor solutions, a comparison to both representative solutions would be
educationally beneficial.

The evaluation confirmed our expectations that the feedback provision strategies
proposed in Section 2 can help a student to improve her solution. For solutions which
are assessed as (very) poor, highlighting potentially erroneous parts in the student’s
solution makes sense. Also, for (very) poor solutions, representative solutions are
suitable for a direct comparison.

The result of the clustering algorithm did not assign student solutions to suitable
clusters unambiguously. The four experts identified the closest cluster representative
in 31 out of 70 cases only. This can be traced back to two possible reasons: the
structure inferred by the clustering algorithm or, alternatively, the given task could be
too crude such that the found representative prototypes do not yet allow for a sufficient
level of detail, resulting in a different assignment of solutions to prototypes by experts.
This possibility is substantiated by the fact that two different solutions were ranked as
suitable by experts in many cases. Alternatively, The chosen metric based on which the
clustering is made can be yet unsuited to accurately mirror the relevant semantics of the
considered programming task. Nevertheless, it has been demonstrated unambiguously
that feedback provision strategies based on similarity of solutions to known cases and,
in particular, feedback by highlighting differences were considered as a suitable strategy
to deal with incorrect student solutions.

268 S. Gross et al.

4.2 Expert clustering

In the previous evaluation, we asked four human tutors of a Java programming course
to decide whether or not feedback provision strategies as proposed in Section 2 can
help students to improve their solutions. As a result of this survey we determined
that clustering using RNG did not assign student solutions to suitable clusters
unambiguously. It might be the case that the metric used to calculate the pairwise
similarity of solutions did not cover appropriately semantic and structural characteristics
of Java programs. In order to understand which characteristics of Java programs
are distinguishing features and to build a ground truth for evaluating new clustering
approaches, two human experts clustered a set of student solutions manually. The
solution set consisted of 107 Java programs which had been implemented by students
of an introductory programming course and had been graded by human experts.

In the task, the students were asked to implement a Java program which checks
whether or not a given text

1 is a palindrome

2 contains a palindrome

3 is a pangram.

The human tutors detected two different strategies for each subtask (1–3) (see Table 3).
They clustered the solutions using a three-bit coding, one bit for each subtask
representing one of the two strategies. Thus, the set of student solutions were structured
in eight clusters and an additional cluster for solutions which could not be assigned to
a suitable cluster due to the fact that the experts could not identify a comprehensible
problem solving strategy in a specific student solution caused by a lack of semantic
and/or structural meaning.

Table 3 Implemented strategies in student solutions as detected by human experts

(1) is palindrome (2) has palindrome (3) is pangram

1 Reverses string using Splits string into words Checks each letter
built-in function or loop using built-in function from a to z using a loop
and checks whether and checks words using
or not origin string and implemented strategy
reversed string are equal for subtask (1)

2 Compares letters Splits string using loop Checks each letter
from outer inwards and checks words using from a to z manually

implemented strategy
for subtask (1)

The combination of one of the two strategies for each of the three subtasks built the
coding for the clusters. Table 4 shows the coding for each of the eight strategies and an
additional cluster for non-assignable solutions and its corresponding cluster size.

What lessons do we learn from the expert clustering? It is noticeable that the experts
considered both structural as well as semantic characteristics of solutions to cluster
solutions. In subtasks (1) and (2), the experts abstracted from structural variations to

Example-based feedback provision using structured solution spaces 269

similar semantic strategies, whereas in subtask (3) the experts distinguished between
structural variances of a similar semantic approach. Furthermore, we can determine that
a solution of a specific task may consist of several subtask-specific strategies which
may also be implemented in solutions of other classes. That implies that a fine-grained
comparison of substructures in solutions could also include solutions of other classes.
For instance, strategy one of subtask (1) can be found in clusters coded by 111, 112,
121, and 122. Thus, a representative solution of each of these clusters could be used to
provide feedback (as described in Section 2) to a student solution which is potentially
erroneous in the specific subtask.

Table 4 Strategies and cluster sizes

Coding 111 112 121 122 211 212 221 222 -
Number of solutions 31 2 3 2 19 5 8 5 32

4.3 Laboratory study

In a first expert survey (see Section 4.1), we asked experts whether the provision of
feedback as described in Section 2 can help a student to improve her solution. The
evaluation confirmed our expectation that example-based feedback provision makes
sense from experts’ point of view. Next, in a small lab study, we conducted a
Wizard of Oz study to determine how the provision of feedback affected student
solutions. Therefore, we observed the effect of feedback on changes in student solutions
and their quality.

For the evaluation, we used a web-based programming environment enabling
students to write, compile and execute program code written in Java. The code editor
supported syntax highlighting as known from popular development environments such
as Eclipse or Netbeans. In addition to standard error messages generated by the Java
compiler and interpreter, students were able to request feedback to their solutions. They
were informed that an ITS would generate this feedback. However, a human expert
generated the feedback on request using a web-based tutor interface and provided it
to the student interface. The human tutor was able to select parts of both the student
solution and a suitable solution representing the cluster student’s solution belongs to.
For this purpose, a set of sample solutions implementing the most common problem
solving strategies for the given task was prepared in advance.

The study was conducted, separated into two parts, by presenting a video lecture
with slide show about repeat statements in Java, and a following task where students
were asked to implement a Java program (involving repeat statements) using the web
based programming environment.

While conducting the exercise, students were allowed to request feedback as often
as they wanted, to use their documents and records about the course, and to gather
information using the internet. The human tutor (an experienced Java tutor) generated
and provided feedback immediately on request, processing a queue with feedback
requests. Applying strategy F2 means that a student has to match a contrasted part
to an appropriate part in her solution, which might have been difficult in our setting
(1st semester non-computer science students being introduced to Java programming). We
therefore decided to apply strategy F2 simultaneously with strategy F1. Thus, we tested

270 S. Gross et al.

both strategy F1 and the combination F1+F2 in the experiments. The human expert
was free to choose which one to provide upon a specific request, taking into account
learner’s needs.

The study was attended by five students, four of them requested feedback at least
once. Overall feedback was requested 17 times. Due to the small test group and the lack
of a control group, we did not statistically analyse the results but performed a qualitative
analysis of student solutions. The human expert, who also provided feedback during the
study, assessed each single solution step of each participant when the student requested
feedback (R), and after one of the feedback provision strategies (F1 or F1+F2) was
applied. In Table 5, we show an example how a student solution improved over time
by providing feedback.

Table 5 Feedback requests and provision and expert’s rating over time

Time 0:00 5:49 8:59 14:19 19:48 22:08 23:18 26:47 32:21
Action R F1, R F1+F2 R F1+F2, R F1+F2 R F1+F2, R -
Score 2 2 2 3 4 4 4.5 5 5.5

On a scale from 0 to 8 points, the students finally achieved, on average, 7.1 points
(sd = 1.084). The expert’s rating showed that the the student solutions improved over
time (as shown in Table 5). The qualitative analysis of the student solutions revealed
that, in some cases, the improvement can be directly explained by the provision of
feedback. This is supported by students’ responses. The four students were asked on
a scale of 1 (not useful) to 5 (very useful) how the provision of feedback helped
them to improve their solutions. On average they gave a rating of 4.25 (sd = 0.9574,
median = 4.5).

5 Quantitative comparison of proximity measures for clustering solutions

For the following experiments, we use five datasets consisting of Java programs. One
dataset was constructed by a tutoring expert as a test benchmark, and is comprised of
deliberately designed solutions which emulate student solutions. The other four datasets
contain real student solutions, collected in the context of programming courses for
business students at Clausthal University. Each individual solution in a set comes from
a distinct student and was graded by an expert. In every dataset, we parse the given
Java programs and preprocess the syntax trees as described in Section 3.2. Based on the
tree representation, we used three different proximity measures in total:

• tf-idf : the Euclidean distance dtfidf between the tf-idf weight vectors

• Alignment: dissimilarities dalign obtained via local alignment by the
Smith-Waterman algorithm on the dfs-sequences of node types

• NCD: dissimilarities dNCD from the normalised compression distance between the
dfs-sequences of node types.

Example-based feedback provision using structured solution spaces 271

5.1 Dataset descriptions

Artificial data: As a first testbed, we use an artificially created dataset, with 48
programs deliberately written to contain certain characteristics. The programs were
created by a human tutoring expert, who was asked to implement different strategies
to solve the following overall task: For a given input sentence (i.e., a sequence of
strings separated by whitespaces), decide whether all words are palindromes. 8 different
strategies emerged from the combination of three design choices which the expert
used in the programs, which are inspired by the outcome of the survey discussed in
Section 4.2:

1 Does the solution use Java utility functions or only own methods based on
primitive language concepts?

2 Does the solution consider the input to be of type String or an array of characters?

3 Does the solution split the sentence into words first and then decide whether the
single words are palindromes, or does it iterate over the input sentence as a
whole?

Therefore, we can address each of the eight algorithmic approaches by a 3-bit code,
which we will refer to in the following by a code of three letters A or B referring to
the above order, e.g., ABB. For each of the eight strategies, the expert implemented a
prototypical solution (numbered 0 in our experiments), along with five slight variations
(numbered 1–5). These six solutions for each strategy simulate six different students
using the same overall approach, but with subtle modifications in the details. The six
programs are thus mostly equal on an algorithmic level, but are different in programming
style (more comments, different names of methods and variables). Each respective
variant number 5 contains stronger modifications which slightly alter the algorithmic
trace (swapped method declarations or operations, and additional lines of code, e.g., for
storing interim data). In total, the dataset therefore consists 48 solutions in eight
subsets, each with six solutions, where a distinct cluster structure is expected. Thus,
we have a clear predefined structure in this dataset, which consists of eight clusters. A
two-dimensional embedding of the proximities by dNCD is shown in Figure 7.

‘Newton’ data: These are 144 real student solutions, where the learning task was to
numerically determine the zero of a given 2nd order polynomial by Newton’s method.

‘Tax’ data: The 155 real student solutions in this set calculate the income tax according
to American standards for a given income profile.

‘TextCheck’ data: This set consists of 68 student solutions taken from the expert
clustering described in Section 4.2. We were only able to use 68 out of the total 107
solutions, since we had to rely on syntactically correct programs which could pass
the necessary parsing and preprocessing without any failure. The experts categorised
the solutions according to eight possible strategies of which one is not included in
our reduced set, so our data is comprised of seven classes in total. In general, the
solutions are very heterogeneous and the classes are highly imbalanced, some consisting
of only two or three solutions. Note that the students are beginner-level programmers,
and are not involved in computer-science-focused curricula. Therefore, some solutions

272 S. Gross et al.

implement rather unusual behaviour, such as replacing upper case letters by lower case
letters with distinct if-clauses for every letter in the alphabet, sometimes even nested
if-else statements. These tough conditions demonstrate the ill-defined characteristics of
the domain and pose a challenge for domain-independent proximity measures.

‘Tasks’ data: This set consists of 438 real student solutions, and is the joint set of the
three previous real datasets, i.e., ‘Newton’ (144 solutions), ‘Tax’ (155 solutions), and an
extended version of the ‘TextCheck’ with 139 solutions. With a meaningful proximity
measure, we expect that this data would show a clear structural separation into three
clusters, which might contain further sub-clusters. A two-dimensional embedding of the
proximities by dNCD is shown in Figure 8.

5.2 Results for cluster validity

To evaluate possible choices for proximity measures in a quantitative fashion, we assess
the ‘distinctiveness’ of the clusters as they are obtained by a RNG clustering. We
used the well-established Davies-Bouldin cluster validity index (Liu et al., 2010), which
indicates how well the given clusters are separated from each other and form tight
groups in themselves. It evaluates a ratio of the distances within clusters (i.e., cluster
‘density’) versus the distances between cluster centres (i.e., their overall ‘spread’), which
ultimately gives a quantitative assessment about the spatial separability or distinctiveness
of the given clustering. This evaluation has the practical advantage that it does not rely
on ground truth about factually meaningful clusters in the data, information which can
only be gathered from human experts specific to the domain and the task. Instead, we
can only judge which of the measures leads to the most distinct and less ambiguous
cluster structure in association with RNG clustering.

Figure 7 2D t-SNE embedding of the pairwise proximities dNCD for the Artificial dataset
(see online version for colours)

01
2

3

4

5

0

1 23
4

5

0
1

2
34

5
0

12
3

4
5

0

1

2
3

4

5

0
12

3

4
5

0
1

2
3

4

5

01

2 34

5

AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB

Example-based feedback provision using structured solution spaces 273

Figure 8 2D t-SNE embedding of the pairwise proximities dNCD for the ‘Tasks’ dataset
(see online version for colours)

Newton
Tax
TextCheck

In our evaluation, the pairwise proximities of all solutions were calculated for each
dataset by the three mentioned proximity measures: dtfidf, dNCD, dalign. The respective
proximities serve as input for subsequent clustering by RNG, in which we trained
the model using different numbers of prototypes k = {2, . . . , 8}. The resulting cluster
assignments are evaluated by the Davies-Bouldin index. Table 6 6 shows, for each
dataset and proximity measure, the results of the Davies-Bouldin cluster validity
measure, where smaller values are better. The respective clusterings for the evaluation
were obtained with RNG using different numbers of prototypes k = {2, . . . , 8}. Each
table entry states the respective best of those results, and the corresponding number
of prototypes is given in braces. Since the values are hard to interpret on their own,
the number printed in italics below serves as a reference. It states the outcome of the
Davies-Bouldin measure if the data is assigned randomly to k clusters (instead of the
given clustering by RNG with k prototypes). Since a random assignment does not adhere
to the structure present in the data, it reflects upon a worst case value. The results
show that local alignment dissimilarities dalign and tf-idf distances dtfidf had the best
overall ratings with respect to the corresponding reference value. This indicates that
these measures exhibit the most distinct structures in the data. Looking at the number of
clusters for the respective best results, we can generally observe that they are either at
the high end of the given spectrum of choices, with k = {7, 8}, or at the low end, with
k = {2, 3}. Intermediate settings for k = {4, 5, 6} were thus rated lower, which means
that partitionings of the data were generally more distinct for smaller or larger k. This
seems plausible, since we can expect a hierarchical nature of clusters in the data: on the
one hand, there are few major strategies to solve the given learning tasks which yield a
small number of fairly big clusters; on the other hand there are smaller design choices
within the major strategies which would form sub-clusters. Depending on the proximity

274 S. Gross et al.

measure, separating either the large- or the small-scale structures yields the best result
in the validity index.

For the Artificial and the TextCheck data, we know a semantically plausible cluster
separation, since the solutions were categorised by human experts. The selected best
number of clusters in the table sometimes coincides with this known categorisation. In
case of the Artificial data together with the measures dNCD and dtfidf, the best value
was achieved by RNG clustering with eight prototypes, which corresponds to the actual
number of solution strategies in the data, see the data description above. The alignment
measure dalign comes close with k = 7. From the expert survey conducted on the
TextCheck dataset, described in Section 4.2, we know that eight solution strategies were
identified. However, for technical reasons the solutions for one of the classes could not
be parsed, therefore the best index for the dNCD measure yields the correct number of
clusters in the data, with 7. The Tasks dataset is comprised of three different learning
tasks, wherefore we expect the most distinctive clustering at k = 3. However, the best
index for all proximity measures was achieved with two clusters.

Table 6 Results of the Davies-Bouldin cluster validity measure

Dataset name dalign dNCD dtfidf

Artificial 0.40 (7) 0.67 (8) 0.36 (8)
3.46 2.34 3.33

Newton 1.00 (2) 1.75 (2) 1.22 (8)
1.37 2.03 2.51

Tax 0.80 (3) 2.08 (8) 0.83 (8)
1.59 2.81 2.71

TextCheck 0.92 (2) 1.96 (7) 1.10 (2)
1.34 2.70 1.40

Tasks 0.71 (2) 1.06 (2) 1.53 (2)
1.29 1.49 1.73

Note: To avoid good assignments by coincidence, we took the mean over ten repeats using a
different random assignment each time.

5.3 Results for nearest neighbour classification

While the previous evaluation gives us a vague indication of the plausibility of our
approach, we next examine the performance of the proximity measures in the presence
of predefined cluster structures. For the Artificial and the TextCheck data, a semantically
plausible classification of each solution is given in terms of a certain solution strategy
that it implements. The Tasks data is comprised of solutions for three different learning
tasks, so we know the respective task to which a solution belongs, and we can expect
an articulate cluster structure according to these three groups. For these datasets, we
can therefore evaluate classification techniques and compare the different proximity
measures. Every data point xi is attributed a class label ci which identifies its class
membership by a nominal value. We use a simple k-nearest-neighbour classifier (k-NN),
in which the classification model relies only on known pairwise proximities, without
the need to train a model. There are more sophisticated classification algorithms in
the ML literature, but we restrict our analysis to this simple technique to focus

Example-based feedback provision using structured solution spaces 275

our comparison on the characteristics of the proximity measures only. The resulting
classification accuracies for a 3-NN are reported in Table 7. For the Artificial and Tasks
data, accuracies are generally high. This shows that all proximity measures are able to
capture the (rather articulate) structure in the data distributions. In the latter case, the
three learning tasks from which the solutions originate can be distinguished accurately,
which is expected from a meaningful proximity measure. The Artificial data poses a
slightly harder challenge since the eight groups of solution strategies are distinguished
in by rather subtle changes in the original Java source code. Here, the NCD shows a
slightly better performance than the other two measures. The TextCheck data contains
the most challenging class structure, since the real student solutions are heterogeneous
and the classes are highly imbalanced. Still, the classification by a simple 3-NN can
identify over 40% of the data points accurately, in case of the proximities from NCD
and local alignment.

Table 7 Classification accuracies of a 3-NN classifier with different proximity measures on
the three datasets where predefined class labels were given

Dataset name dalign dNCD dtfidf

Artificial 0.94 1.00 0.94
Tasks 0.98 1.00 0.98
TextCheck 0.41 0.43 0.34

6 Conclusions and outlook

Learning increasingly takes place in environments where human tutors are not able to
accompany the learning process directly. For example, massive open online courses
(MOOCs) support the distributed learning process via the internet but also bring
new challenges (Kop, 2011). These technological developments result in a demand of
automatisms which are able to support learning independently from a tutor.

In this paper, we have demonstrated a possible way to automatically provide ITS
feedback in the absence of explicit formal domain models, thereby circumventing the
need to tailor an ITS to a particular domain or task. Our domain-agnostic approach
is based on example-based feedback strategies, which rely solely upon comparing the
learner’s solution to an appropriate example solution. In several evaluation studies, we
examined whether these feedback strategies can help students to improve their solutions.
The evaluation confirmed our expectations concerning the proposed feedback provision
strategies. Highlighting of potentially erroneous parts in students’ solutions makes sense
according to the experts, particularly for solutions which are assessed (very) poor. Also,
students rated the provision of feedback as described in Section 2 as valuable. In a
qualitative analysis of student solutions, the positive effect of feedback provision was
confirmed.

To automate the selection of suitable examples in a given feedback scenario, we
proposed the use of ML techniques which automatically structure a solution space
(as defined by a set of student solutions for a task), thereby exploiting clusters of similar
solutions. As a major challenge for this approach, we recognised that the proximity
measure is of substantial concern to exhibit structure in the solution space and to
facilitate the automatic selection. We have discussed three domain-agnostic choices for

276 S. Gross et al.

proximity measures and provided initial quantitative evidence that clustering based on
these measures can adequately capture the structure in real solution sets. In future
research, we want to investigate how to automatically adapt a parameterised metric
according to the given data, e.g., metrics which can take into account the discriminative
relevance of certain parts of a given solution. Therefore, the transfer of relevance
learning approaches known in the ML literature would offer a promising theoretical
foundation, see Schneider et al. (2009) for example.

Since our method uses generic data representations and feedback strategies, it could
be integrated easily into existing ITS software. Compared to traditional ITSs, we can
summarise several practical advantages of our approach: it is possible to generate
automatic feedback in situations where formalised domain knowledge is missing or
even impossible, processing and analysing solutions by hand is no longer necessary
to adapt an ITS to the learning task or domain, and the approach is applicable to a
wide range of ITS domains using the same generic mechanisms. While domain-agnostic
automatic feedback provision poses a great challenge, we have introduced principles for
the integration in practical modern ITSs.

However, since the proposed approach involves state-of-the-art ML techniques, it
currently requires administrative users such as tutors or domain experts to have some
background knowledge about the underlying mechanisms. In our future work, we will
therefore further advance the implementation of a domain-independent middleware
(Gross et al., 2013) which facilitates the construction of intelligently supported learning
systems independently from the underlying (formalised) domain knowledge using
typical re-usable components of ITSs, exchangeable plug-ins, and ML techniques as
described above. This middleware will then enable ITS researchers and developers to
use the system to process and analyse student solutions independently from the domain
being taught, and to request feedback based on sample solutions.

Currently, our feedback method relies on representative solutions for the different
strategies to solve the task. In future research, we will investigate other possibilities
by providing feedback based on the closest known correct solution instead of a very
limited number of representatives only on the one hand, and will refer to a more detailed
proximity measure which is able to compare programs in a more fine-grained way.

Acknowledgements

This work was supported by the German Research Foundation (DFG) under the grant
‘FIT – learning feedback in intelligent tutoring systems’ (PI 767/6 and HA 2719/6). The
FIT project is part of the priority programme (SPP) ‘Autonomous learning’.

References
Ahtiainen, A., Surakka, S. and Rahikainen, M. (2006) ‘Plaggie: GNU-licensed source code

plagiarism detection engine for Java exercises’, in Proceedings of the 6th Baltic Sea
Conference on Computing Education Research: Koli Calling, Baltic Sea ‘06, pp.141–142,
ACM, New York, USA.

Aleven, V. and Koedinger, K. (2002) ‘An effective metacognitive strategy: learning by doing
and explaining with a computer-based cognitive tutor’, Cognitive Science, Vol. 26, No. 2,
pp.147–179.

Example-based feedback provision using structured solution spaces 277

Aleven, V., Ashley, K.D., Lynch, C. and Pinkwart, N. (Eds.) (2006) Proceedings of the Workshop
on Intelligent Tutoring Systems for Ill-Defined Domains at the 8th International Conference
on Intelligent Tutoring Systems (ITS), Jhongli, Taiwan, National Central University.

Aleven, V., Ashley, K.D., Lynch, C. and Pinkwart, N. (Eds.) (2007) Proceedings of the Workshop
on AIED Applications for Ill-Defined Domains at the 13th International Conference on
Artificial Intelligence in Education (AIED), Los Angeles, CA, USA.

Aleven, V., Ashley, K.D., Lynch, C. and Pinkwart, N. (Eds.) (2008) Proceedings of the Workshop
on Intelligent Tutoring Systems for Ill-Defined Domains at the 9th International Conference
on Intelligent Tutoring Systems (ITS), Montreal, Canada.

Bailey, M., Lin, K-I. and Sherrell, L. (2012) ‘Clustering source code files to predict change
propagation during software maintenance’, in Proceedings of the 50th Annual Southeast
Regional Conference, ACM-SE ‘12, pp.106–111, ACM, New York, NY, USA.

Brusilovsky, P. and Yudelson, M. (2008) ‘From webex to navex: interactive access to annotated
program examples’, Proceedings of the IEEE, June, Vol. 96, No. 6, pp.990–999.

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P. and Glaser, R. (1989) ‘Self-explanations:
how students study and use examples in learning to solve problems’, Cognitive Science,
Vol. 13, No. 2, pp.145–182.

Cho, K. and Schunn, C.D. (2007) ‘Scaffolded writing and rewriting in the discipline: a web-based
reciprocal peer review system’, Computers & Education, April, Vol. 48, pp.409–426.

Douglas, R. and Sejnowski, T. (2007) Report of the NSF Workshop on Future Challenges for
the Science and Engineering of Learning, July.

Fournier-Viger, P., Nkambou, R., Nguifo, E.M. and Mayers, A. (2010) ‘Its in ill-defined domains:
toward hybrid approaches’, in ITS 2010, pp.749–751, Springer.

Goodlad, S. and Hirst, B. (1989) Peer Tutoring: A Guide to Learning by Teaching, Kogan Page.
Gross, S., Mokbel, B., Hammer, B. and Pinkwart, N. (2013) ‘Towards a domain-independent its

middleware architecture’, in N-S. Chen, R. Huang, Kinshuh, Y. Li and D.G. Sampson (Eds.):
Proceedings of the 13th IEEE International Conference on Advanced Learning Technologies
(ICALT), pp.408–409.

Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences – Computer Science and
Computational Biology, Cambridge University Press.

Hammer, B. and Hasenfuss, A. (2007) ‘Relational neural gas’, in J. Hertzberg, M. Beetz
and R. Englert (Eds.): KI 2007: Advances in Artificial Intelligence, 30th Annual German
Conference on AI, KI 2007, Vol. 4667 of Lecture Notes in Artificial Intelligence,
pp.190–204, Springer, Berlin.

Hammer, B. and Jain, B.J. (2004) ‘Neural methods for non-standard data’, in ESANN,
pp.281–292.

Hammer, B. (2002) ‘Compositionality in neural systems’, in M. Arbib (Ed.): Handbook of Brain
Theory and Neural Networks, 2nd ed., pp.244–248, MIT Press.

Hasenfuss, A. and Hammer, B. (2010) ‘Topographic mapping of large dissimilarity datasets’,
Neural Computation, Vol. 22, No. 9, pp.2229–2284.

Jonassen, D.H. (1997) ‘Instructional design models for well-structured and ill-structured
problem-solving learning outcomes’, Educational Technology Research and Development,
Vol. 45, No. 1, pp.65–94.

Kohonen, T. (1995) Self-organizing Maps, Springer.
Kop, R. (2011) ‘The challenges to connectivist learning on open online networks: learning

experiences during a massive open online course’, The International Review of Research in
Open and Distance Learning, Special Issue-Connectivism: Design and Delivery of Social
Networked Learning, Vol. 12, No. 3.

278 S. Gross et al.

Kuhn, A., Ducasse, S. and Gírba, T. (2007) ‘Semantic clustering: identifying topics in
source code’, Information and Software Technology, 12th Working Conference on Reverse
Engineering, Vol. 49, No. 3, pp.230–243.

Kulik, J.A. and Kulik, C. (1988) ‘Timing of feedback and verbal learning’, Rev. of Educational
Research, Vol. 58, No. 1, pp.79–97.

Li, M., Chen, X., Li, X., Ma, B. and Vitanyi, P. (2004) ‘The similarity metric’, Information
Theory, IEEE Transactions on, December, Vol. 50, No. 12, pp.3250–3264.

Liu, Y., Li, Z., Xiong, H., Gao, X. and Wu, J. (2010) ‘Understanding of internal clustering
validation measures’, in G.I. Webb, B. Liu, C. Zhang, D. Gunopulos and X. Wu (Eds.):
ICDM, pp.911–916, IEEE Computer Society.

Loll, F. and Pinkwart, N. (2013) ‘Lasad: flexible representations for computer-based collaborative
argumentation’, International Journal of Human-Computer Studies, Vol. 71, No. 1,
pp.91–109.

Lynch, C., Ashley, K.D., Aleven, V. and Pinkwart, N. (2006) ‘Defining ill-defined domains:
a literature survey’, in V. Aleven, K.D. Ashley, C. Lynch and N. Pinkwart (Eds.):
Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at
the 8th International Conference on Intelligent Tutoring Systems (ITS), pp.1–10, National
Central University, Jhongli, Taiwan.

Lynch, C., Ashley, K.D., Mitrovic, A., Dimitrova, V., Pinkwart, N. and Aleven, V. (Eds.) (2010a)
Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at the
10th International Conference on Intelligent Tutoring Systems (ITS), Pittsburgh, PA, USA.

Lynch, C., Ashley, K.D., Pinkwart, N. and Aleven, V. (2010b) ‘Concepts, structures, and goals:
redefining ill-definedness’, International Journal of Artificial Intelligence in Education,
Vol. 19, No. 3, pp.253–266.

Müller, M. (2007) Information Retrieval for Music and Motion, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Melis, E. (2005) ‘Choice of feedback strategies’, in Cognition and Exploratory Learning in the
Digital Age (CELDA 2005), IADIS, Vol. 12.

Merrill, D.C., Reiser, B.J., Ranney, M. and Trafton, J.G. (1992) ‘Effective tutoring techniques:
a comparison of human tutors and intelligent tutoring systems’, Journal of the Learning
Sciences, Vol. 2, No. 3, pp.277–305.

Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B. (2001) ‘Constraint-based tutors: a success
story’, in Proceedings of the 14th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, pp.931–940, Springer-Verlag,
London, UK.

Mitrovic, A., Ohlsson, S. and Barrow, D.K. (2013) ‘The effect of positive feedback in a
constraint-based intelligent tutoring system’, Computers & Education, Vol. 60, No. 1,
pp.264–272.

Mory, E.H. (2004) Feedback Research Revisited, pp.745–783, Association for Educational
Communications and Technology.

Moschitti, A., Pighin, D. and Basili, R. (2008) ‘Tree kernels for semantic role labeling’, Comput.
Linguist., June, Vol. 34, No. 2, pp.193–224.

Murray, T., Blessing, S. and Ainsworth, S. (Eds.) (2003) Authoring Tools for Advanced
Technology Learning Environments, Kluwer Academic Publishers, Dordrecht.

Neuhaus, M. and Bunke, H. (2006) ‘Edit distance-based kernel functions for structural pattern
classification’, Pattern Recognition, Vol. 39, No. 10, pp.1852–1863.

Nkambou, R., Fournier-Viger, P. and Nguifo, E.M. (2011) ‘Learning task models in ill-defined
domain using an hybrid knowledge discovery framework’, Know-Based Syst., February,
Vol. 24, No. 1, pp.176–185.

Example-based feedback provision using structured solution spaces 279

Ogan, A., Aleven, V. and Jones, C. (2009) ‘Advancing development of intercultural competence
through supporting predictions in narrative video’, International Journal of Artificial
Intelligent in Education, August, Vol. 19, No. 3, pp.267–288.

Ohlson, S. (1996) ‘Learning from performance errors’, Psychological Review, Vol. 103,
pp.241–262.

Pekalska, E. and Duin, R.P. (2005) The Dissimilarity Representation for Pattern Recognition.
Foundations and Applications, World Scientific.

Piaget, J. (1972) The Psychology of the Child, Basic Books, New Yor, NY.
Pople, H.E. (1982) ‘Heuristic methods for imposing structure on ill-structured problems:

the structuring of medical diagnostics’, in P. Szolovits (Ed.): AI in Medicine, pp.119–190,
Westview Press, Boulder (CO).

Reitman, W.R. (1965) Cognition and Thought: An Information Processing Approach, John Wiley
and Sons, New York, NY.

Renkl, A., Stark, R., Gruber, H. and Mandl, H. (1998) ‘Learning from worked-out examples:
the effects of example variability and elicited self-explanations’, Contemporary Educational
Psychology, Vol. 23, No. 1, pp.90–108.

Roll, I., Aleven, V., McLaren, B.M. and Koedinger, K.R. (2011) ‘Improving students’
help-seeking skills using metacognitive feedback in an intelligent tutoring system’, Learning
and Instruction, Vol. 21, No. 2, pp.267–280.

Salton, G. and Buckley, C. (1988) ‘Term-weighting approaches in automatic text retrieval’,
Inf. Process. Manage., August, Vol. 24, No. 5, pp.513–523.

Schneider, P., Biehl, M. and Hammer, B. (2009) ‘Adaptive relevance matrices in learning vector
quantization’, Neural Comput., December, Vol. 21, No. 12, pp.3532–3561.

Simon, H.A. (1973) ‘The structure of ill-structured problems’, Artificial Intelligence, Vol. 4,
No. 3, pp.181–201.

Striewe, M. and Goedicke, M. (2011)‘Using run time traces in automated programming tutoring’,
in G. Rößling, T.L. Naps and C. Spannagel (Eds.): ITiCSE, pp.303–307, ACM.

Striewe, M. and Goedicke, M. (2013) ‘Analyse von programmieraufgaben durch
softwareproduktmetriken’, in A. Spillner and H. Lichter (Eds.): SEUH, Vol. 956 of CEUR
Workshop Proceedings, pp.59–68, CEUR-WS.org.

Topping, K. (1998) ‘Peer assessment between students in colleges and universities’, Rev. of
Educational Research, Vol. 68, No. 3, pp.249–276.

Tsovaltzi, D., Melis, E., McLaren, B., Meyer, A-K., Dietrich, M. and Goguadze, G. (2010)
‘Learning from erroneous examples: when and how do students benefit from them?’,
in M. Wolpers, P. Kirschner, M. Scheffel, S. Lindstaedt and V. Dimitrova (Eds.): Sustaining
TEL: From Innovation to Learning and Practice, Vol. 6383 of Lecture Notes in Computer
Science, pp.357–373, Springer, Berlin Heidelberg.

Ullmann, J.R. (1976) ‘An algorithm for subgraph isomorphism’, J. ACM, January, Vol. 23, No. 1,
pp.31–42.

van der Maaten, L. and Hinton, G. (2008) ‘Visualizing data using t-sne’, J. of Mach. Learn.
Res., November, Vol. 9, pp.2579–2605.

Verleysen, M. and François, D. (2005) ‘The curse of dimensionality in data mining and time
series prediction’, in Computational Intelligence and Bioinspired Systems, pp.758–770,
Springer.

Voss, J.F. (2006) ‘Toulmin’s model and the solving of ill-structured problems’, in D.H.B. Verheij
(Ed.): Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation,
pp.303–311, Springer, Berlin.

280 S. Gross et al.

Walker, E., Ogan, A., Aleven, V. and Jones, C. (2008) ‘Two approaches for providing adaptive
support for discussion in an ill-defined domain’, in Proc. of a Workshop at ITS, Montreal
Canada, June 23, pp.1–12.

Walker, E. , Rummel, N., Walker, S. and Koedinger, K. (2012) ‘Noticing relevant feedback
improves learning in an intelligent tutoring system for peer tutoring’, in S. Cerri, W.
Clancey, G. Papadourakis and K. Panourgia (Eds.): Intelligent Tutoring Systems, volume
7315 of Lecture Notes in Computer Science, pp.222–232, Springer, Berlin Heidelberg.

Wittwer, J. and Renkl, A. (2010) ‘How effective are instructional explanations in example-based
learning? A meta-analytic review’, Educational Psychology Review, Vol. 22, No. 4,
pp.393–409.

Zakharov, K., Mitrovic, A. and Ohlsson, S. (2005) ‘Feedback micro-engineering in eer-tutor’,
in Proc. AIED 2005, pp.718–725, Press.

