
SOCIO-TECHNICAL SELF-DEVELOPMENT USING

A MICROSERVICE ARCHITECTURE

Johann Sell and Niels Pinkwart
Humboldt Universität zu Berlin, Germany

ABSTRACT

Considering joint optimization and organizational choice, socio-technical systems have to align their technical
component with the ongoing change of the social system. Focusing on decentralized, loosely coupled socio-technical
systems, this challenge becomes more complex, because the various parts of the social system will develop different
requirements for the technical support. Focusing on a case study, we develop requirements and compare different

possible architectures. We approach to use a microservice architecture to support maintenance and further development
of the technical tool.

KEYWORDS

Microservices, Socio-Technical Systems, Evolutionary Organizations, Joint Optimization, Organizational Choice

1. INTRODUCTION

Our work aims to support a loosely coupled socio-technical organization in terms of self-development. We

focus on ensuring compliance of joint optimization and organizational choice as most important challenges

(Trist 2013; Emery 1959). Joint optimization implies that every change in one of both systems (technical or

social) also requires changes in the opposite part. Organizational choice describes a needed degree of

freedom, thus users are allowed to adjust their usage of the supporting system.

The case study Viva con Agua de St. Pauli e.V. (VcA, vivaconagua.org, April 2018) has developed very

heterogeneous requirements regarding its technical part, because of the loosely coupled nature of its social

system. Next to VcA there is an increasing set of organizations boasting the same characteristics, like

foodsharing (foodsharing.de, May 09, 2018), Buurtzorg (buurtzorg.com, May 09, 2018) or FAVI (favi.com,

May 09, 2018) (Laloux 2014). This paper discuses several possible architectures to address the issue of
heterogeneous requirements considering a loosely coupled socio-technical system. We suggest to use

microservices (Newman 2015; Zimmermann 2017; Dragoni et al. 2017) to tackle this issue.

VcA is a non-governmental organization raising awareness and collecting donations for WASH (“Water,

Sanitation and Hygiene”) projects. It is based on decentralized volunteering, organized in loosely coupled

regional groups, called crews (Weick 1976). As already described by (Sell & Pinkwart 2016) its success is

based on open participation and coordination using a web-based tool named Pool. Hence the tool became

part of the social systems self-description and both joined into a socio-technical organization (Kunau 2006).

Unfortunately, joint optimization and organizational choice became impossible to apply, due to limited men

power and inflexibility of the Pools architecture as we will describe in this paper. Additionally, the current

implementation is neither expandable nor maintainable.

We have identified three high level requirements for the technical support system: (R1) Since the crews
are loosely coupled, new technical support may fit only requirements of a few crews. So, the possibility to

add support for complete work processes only for a few crews is needed. (R2) Obviously, crews have to

replace existing technical support of work processes. For example, the general technical support for handling

finances has to be replaced for some crews due to alternative roles that have been evolved. Normally, a crew

has one person responsible for finances, but there are crews separating between a person responsible for

donations and another for housekeeping money. (R3) Since development of software requires a lot of time,

and volunteers already invest a huge amount of time regarding to the goals of VcA, a distinct community of

developers has to evolve. Such a community differs from Open Source communities by the motivation that is

International Conferences e-Health 2018; ICT, Society, and Human Beings 2018;
and Web Based Communities and Social Media 2018

261

not to help themselves and others, but to acquire new skills, and investigate ideas with a huge number of

users. Thus, it is quite likely that it is too much effort to take the time to learn a new technology.

In the end, a decentralized, loosely coupled social system of software developer evolves. Each one

focuses small parts of the technical system and participates in terms of open participation. We are convinced
that such a social system is obliged to consider the ongoing change of VcA and will be able to apply joint

optimization and organizational choice.

2. SOLUTION CONCEPT

We approach to foster self-development of VcA. We aim to create a new loosely coupled, decentralized and
volunteering community of software developers that by themselves are able to build new support functions

for the social system. Thus, dynamic integration of developing teams without the need for training of specific

technologies (R3) or cumbersome bureaucracy is required. This new community of software developers

(Pool-volunteers) has to be separated from the existing volunteers focusing the WASH projects

(WASH-volunteers), since both activities require a lot of time.

2.1 Characterization of Possible Architectures

Basically, we have identified four types of possible architectures: Monolithic systems, modular

implementations, app based extension of core functionality, and microservices. There are socio-technical

communities using their own special purpose tools for loosely coupled volunteering (Dittus et al. 2016).

Other communities compose various technical tools (Gray et al. 2016; Ambe et al. 2016; Reuter et al. 2015).

In general, monolithic architectures exhibit high cohesion between implemented functions (Newman

2015). Thus, software enhancements normally have to use the same set of technologies as the origin.

In contrast, there are applications implemented very modular, like Moodle (moodle.org, February 2018)

or MediaWiki (mediawiki.org/wiki/MediaWiki, February 2018). In general, these modular applications have

a core and can be extended by plugins. Free choice of technology is bounded to its purpose. While developers

can use one technology to extend the core, a second can be used to implement plugins.
Facebook (facebook.com, February 2018), Instagram (instagram.com, February 2018), Slack (slack.com,

February 2018), and Trello (trello.com, February 2018) allow to extend the functions of its software by

third-party apps. Therefore, those apps get user data and a sandbox area to deploy their functionality.

The last opportunity are microservices. First, microservices are independent processes and cohesive in

bounded contexts (Dragoni et al. 2017; Namiot & Sneps-sneppe 2014; Newman 2015; Viennot et al. 2015).

Second, they use message based communication via well-defined interfaces, like RESTful webservices

(Dragoni et al. 2017; Rodriguez 2008). A set of connected services is called a microservice architecture

(Dragoni et al. 2017; Namiot & Sneps-sneppe 2014). Such architectures force the designer to minimize

communication between microservices (loosely coupling) and to implement related behavior inside the same

scope (high cohesion) (Newman 2015).

2.2 Choosing an Architecture Fitting the Requirements

Volunteers of VcA use several different tools to balance their needs (Sell & Pinkwart 2016). However, VcA

is an organization, thus there are important and sensible processes, like the handling of finances.

Furthermore, the need for different user accounts and invisibility of used tools are serious obstacles

considering open participation. Therefore, the usage of many independent tools breaks the organizational

structures. A monolithic or module based architecture requires specific technologies. Thus, (R3) becomes
impossible to fulfill, since developers would need to learn about the technologies.

ISBN: 978-989-8533-77-7 © 2018

262

Adopting the concept of apps for VcA requires its enhancement. First, apps are normally introduced to

allow additional functions, but not to replace existing ones. Thus, the hard separation between core

application and apps has to be softened due to (R1). Furthermore, it should be possible to replace all core

functions with new implementations. Thus, apps become loosely coupled, as in the case of microservices.

Microservices spread responsibility for maintains and support among different teams. Thus, it supports

the management of growing complexity and delegates systems modularity from a technical implementation

to an organizational layer. Modularity represented in organizational structures supports independent

development and deployment (Dragoni et al. 2017) (R1; R2). Furthermore, a microservice architecture allows
different programming paradigms, languages, and database technologies for different parts of the system

(Dragoni et al. 2017; Namiot & Sneps-sneppe 2014; Viennot et al. 2015). Thus, developers with various

expertises can contribute to the new system (R3). SAP, for instance, is developing an additional mobile App.

In the end, self-development of a socio-technical organization will be possible, if the organization needs

decentralized further development. Pool-volunteers can implement specific requirements of individual crews

without changing the whole system.

2.3 Implementation

First, we implement the existing features of the Pool using the new architecture. We have decided to

introduce four microservices addressing the functional requirements, as shown in Figure 1. Drops handles the

representation of volunteers and the authentication. Bloob implements communication support, while Stream

supports the handling of finances and Waves the coordination of volunteers. The new system is called Pool².

The microservice architecture implies several challenges. As described in section 2.1, exchange of data

between services is implemented using RESTful webservices, while the event message broker nats (nats.io,

February 2018) informs about updates. OAuth 2 (oauth.net/2/, February 2018) is used to implement a shared

session to prevent different accounts. Docker (docker.com, March 2018) wraps the microservices inside
standalone container next to each other and allows deployment of heterogeneous technologies.

One central microservice handling the user interface would imply one team of developers has a lot of

responsibility. Thus, every microservice has to implement its own user interface. Ensuring a consistent user

interface across service boundaries becomes a serious obstacle. We propose to adopt the UI Fragment

Composition (Newman 2015). The microservice Dispenser distributes templates containing basic HTML

elements, like a global menu, header or footer. Additionally, it allows reused CSS and a corporate design.

Furthermore, all microservices have to implement the concept of widgets. A widget is a HTML element

with optional CSS. It is used by other services to show content or a function that is in high cohesion to the

widgets provider. Therefore the service is responsible for definition, delivery, and maintenance of the widget.

Its delivery takes up the idea of transclusions (Nelson 1965; Kolbitsch & Maurer 2006). For instance, the

Drops service should implement a widget for an auto completion field that could be used to select a user. We

will implement a JavaScript function, that watches an HTML input field, communicates with Drops, and
shows a list of users. Both concepts apply the paradigms loose coupling and high cohesion to the view layer.

3. CONCLUSION AND OUTLOOK

This paper derives requirements from the characterization of the decentralized, loosely coupled,

socio-technical organization VcA. Different architectures for a technical system are compared to support

Figure 1. Microservice architecture for Pool² with arrows indicating possible communication channels.
Drops (user management), Stream (finances), Bloob (email broadcasting), and Waves (activities and events)

International Conferences e-Health 2018; ICT, Society, and Human Beings 2018;
and Web Based Communities and Social Media 2018

263

socio-technical self-development. A microservice architecture has been identified assisting joint optimization

and organizational choice for organizations like VcA. Additionally, a rough introduction to the

implementation is given and solutions to important challenges are outlined.

Currently, we are implementing a proof of concept. Afterwards, the implications for the social system of
WASH-volunteers have to be explored, like a possibly needed quality assurance or coordination support for

the Pool-volunteers. Moreover, the process of further development has to be investigated: Can a new loosely

coupled social system of Pool-volunteers be established and does the Pool² really enable loosely coupled and

decentralized technical artifacts to form a coherent collaboration tool for daily work?

First, we have to figure out how much additional work is required to integrate a new technology. Effort

can be measured by tracking or estimating time needed by experts. Valid estimations need complete

descriptions of the non-functional requirements regarding the integration of a microservice. Such descriptions

can be analyzed qualitatively, with focus on loosely coupling and high cohesion. The new architecture has to

enforce these principles, since new developers could have few experiences in software architecture.

Obviously, we also have to investigate further adaption by the volunteers. Basic questions are, if they

formulate new requirements and find developers to implement those requirements. At least, our approach
should be validated by applying it to other organizations. Our further research will focus these questions.

REFERENCES

Ambe, A.M.H., Brereton, M.F. & Rittenbruch, M., 2016. Vendors- Perspectives of Coordination in the Information
Technology Offshore Outsourcing Industry: An Exploratory Study from the Philippines. In Proc. CSCW ’16. New
York, USA: ACM Press, pp. 318–333.

Dittus, M., Quattrone, G. & Capra, L., 2016. Analysing Volunteer Engagement in Humanitarian Mapping: Building
Contributor Communities at Large Scale. In Proc. CSCW ’16. New York, USA: ACM Press, pp. 108–118.

Dragoni, N. et al., 2017. Microservices: yesterday, today, and tomorrow. Available at:
https://arxiv.org/pdf/1606.04036.pdf [Accessed February 10, 2017].

Emery, F.E., 1959. Characteristics of sociotechnical systems: A critical review of theories and facts about the effects of
technological change on the internal structure of work organisations; with special reference to the effects of higher
mechanisation and automation, London.

Gray, M.L. et al., 2016. The Crowd is a Collaborative Network. In Proc. CSCW ’16. New York, USA: ACM Press,
pp. 134–147.

Kolbitsch, J. & Maurer, H., 2006. Transclusions in an HTML-Based Environment. CIT, 14(2), pp.161–173.

Kunau, G., 2006. Facilitating computer supported cooperative work with socio-technical self-descriptions. Technische
Universität Dortmund. Available at: http://hdl.handle.net/2003/22226.

Laloux, F., 2014. Reinventing Organizations 1st ed., Brussels: Nelson Parker.

Namiot, D. & Sneps-sneppe, M., 2014. On micro-services architecture. INJOIT, 2(9), pp.24–27.

Nelson, T.H., 1965. Complex information processing: a file structure for the complex, the changing and the
indeterminate. In Proc. ACM ’65. New York, USA: ACM Press, pp. 84–100.

Newman, S., 2015. Building Microservices 1st ed. M. Loukides, B. MacDonald, & K. Brown, eds., O’Reilly Media.

Reuter, C. et al., 2015. XHELP: Design of a Cross-Platform Social-Media Application to Support Volunteer Moderators
in Disasters. In Proc. CHI ’15. New York: ACM Press, pp. 4093–4102.

Rodriguez, A., 2008. RESTful Web services: The basics. Available at: https://www.ibm.com/developerworks/library/
ws-restful/ [Accessed March 17, 2017].

Sell, J. & Pinkwart, N., 2016. Rambla: Supporting collaborative group creativity for the purpose of concept generation.
In T. Yuizono et al., eds. Proc. CRIWG ’16. Kanazawa, Japan: Springer, pp. 81–97.

Trist, E.L., 2013. Organizational Choice: Capabilities of Groups at the Coal Face under Changing Technologies - The
Loss, Re-discovery & Transformation of a Work Tradition 1st ed., London: Routledge.

Viennot, N. et al., 2015. Synapse: a microservices architecture for heterogeneous-database web applications. In Proc.
EuroSys ’15. New York, USA: ACM Press, pp. 1–16.

Weick, K.E., 1976. Educational Organizations as Loosely Coupled Systems. ASQ, 21(1), pp.1–19.

Zimmermann, O., 2017. Microservices Tenets: Agile Approach to Service Development and Deployment. CSRD, 32(3),
pp.301–310.

ISBN: 978-989-8533-77-7 © 2018

264

