
Towards a Classification for Programming Exercises

Nguyen-Thinh Le and Niels Pinkwart

Humboldt Universität zu Berlin

Germany

{nguyen-thinh.le, niels.pinkwart}@hu-berlin.de

Abstract. When researchers of the AIEDCS (AI-supported Education for Com-

puter Science) community want to exchange programming exercises as base-

lines for e.g., evaluation purposes, several questions related to the difficulty of

exercises will arise: What kind of programming exercises are supported by an

intelligent learning environment? How difficult are the programming exercises?

In this paper, we investigate programming exercises supported by fifteen exist-

ing intelligent learning environments for the domain of programming and have

learned that these exercises can be classified into three classes: 1) exercises

with one single solution, 2) exercises with different implementation variants,

and 3) exercises with different solution strategies. The contribution of this clas-

sification is two-fold. First, it can be used to help designers of intelligent learn-

ing environments for programming apply/devise appropriate modeling tech-

niques for a specific class of programming exercises that are intended to sup-

port the programming/learning process of students. Second, it helps researchers

of the AIEDCS community communicate more accurately when they want to

discuss programming exercises.

Keywords: Programming exercises, classification, intelligent tutoring systems

1 Introduction

Usually, in a programming course of an undergraduate or graduate program, students

are requested to solve programming exercises using a language’s interpreter (if the

machine model of the language requires), a compiler, and a text editor or an integrat-

ed development environment. That is, students have to solve programming problems

by developing programs in free-form.

A variety of intelligent learning environments for programming has been devised

and employed in order to help students acquire problem solving skills and principles

in the domain of programming by providing, for instance, adaptive feedback or So-

cratic dialogues in natural language as a communication means. In order to apply or

devise appropriate AI techniques, the initial question is how programming exercises

should look like. It is very challenging for building an intelligent learning environ-

ment where students are allowed to solve programming exercises in free-form as they

usually do, because powerful capability of understanding student’s solutions needs to

be modeled in the system. Thus, when developing an intelligent learning environment

for programming, it is required to make a trade-off between restricting the problem

solving creativity of students and developing a powerful intelligent technique in order

to understand a large space of possible solutions submitted by students. Depending on

the type of programming exercises, appropriate AI techniques have been devised for

building intelligent learning environments for programming. If researchers intend to

exchange programming exercises for, e.g., evaluation purposes, the first question they

would ask is: Is the difficulty level of programming exercises to be exchanged appro-

priate?

The aim of this paper is to identify the common characteristics of programming

exercises supported by existing intelligent learning environments for programming

and proposing a classification for programming exercises. The goal is to use this clas-

sification for programming exercises to define a shared task of collecting and sharing

programming exercises (and students’ solutions) between researchers of the AIEDCS

community.

2 Related Work

With respect to learning outcomes, there exist several educational learning taxon-

omies among that Bloom’s taxonomy [4] and SOLO taxonomy [3] are most widely

used. These taxonomies can be used to design courses at various levels of granularity

(e.g., [10]), to design teaching and assessment materials (e.g., [14]), and to analyze

student responses to exercises in order to measure student’s progress (e.g., [21]).

In the context of categorizing educational problems that are used to develop prob-

lem solving skills, Le et al. [12] proposed a general (i.e., not domain specific) classifi-

cation based on three qualitative dimensions: the existence of solution strategies, the

implementation variability for each solution strategy, and the verifiability of solu-

tions. The classification divides educational problems into five classes: 1) problems

that have one single solution, 2) problems that can be solved by applying one solution

strategy with different implementation variants, 3) problems that can be solved with a

known number of typical solution strategies, 4) problems that have a great variety of

solution strategies beyond the anticipation of a teacher where solution correctness can

be verified automatically, and 5) problems whose solution correctness cannot be veri-

fied automatically. This classification has been developed for categorizing education-

al problems in a general sense. Here, in this paper, we propose to apply it in the con-

text of programming exercises.

3 A Classification for Programming Exercises

Before programming exercises can be classified, we investigate typical exercises

that have been supported by existing intelligent learning environment for program-

ming. For that purpose, we have selected fifteen systems that were used in quantita-

tive and/or qualitative evaluation studies (Table 1). The first column of the table

shows the name and literature of the system. The second column describes the pro-

gramming language to be learned and level of the target group. The third column

reproduces a sample of typical programming exercises supported by a specific sys-

tem. In order to keep the description of the exercises authentic, we will cite them lit-

erally. Some sentences in bold depict the interface given to the student to solve a pro-

gramming exercise. The interface is usually illustrated by a picture in literature.

Table 1. Typical programming exercises supported by intelligent learning systems

System Language & Level Exercises

Lisp-Tutor

[2]

LISP;

No information

about level oft he

target group is

available

„Define rightp. It takes three arguments side1, side2, and

side3, which represent the lengths of of the three sides of a

given triangle, where side3 is the longest side. rightp tests

whether the three sides form the right triangle. In a right

triangle, the sum of the squares of side1 and side2 is equal to

the square of side3. However, your function should allow for

a measurement error of 2 percent. In other words, your func-

tion should return t if the sum of the squares of the first two

sides is within 2 percent of the square of the third side.

For example (rightp 3 4 5.01) = t, because 3 squared + 4

squared = 25, which is within 2 percent of 5.01 squared.”

A structured editor which automatically balances paren-

theses is given. When the student types a LISP keyword,

a new template is presented.

JITS [16,

17]

Basic Java con-

structs (variables,

operators, looping

structures);

First programming

course at the Col-

lege and University

level

“Problem:

Write a program called “Exponentiation” which calculates

2N, where N is a user specified number. For example, if N

were assigned the value 4, then the result would be 24 =

2x2x2x2 = 16.

Program specifications:

This program requires the use of a for-loop structure. A

skeleton structure of the solution is given. Fill in the code to

complete this program.

OUTPUT>Result: 16”

A skeleton program is given.

ELM-

ART [20]

LISP;

Introductory uni-

versity course

Exercise Type 1:

“Define a function CUBOID-VOLUME-NEW. This func-

tion expects as its argument a three elements containing the

side lengths of the cuboid. Example:

(CUBOID-VOLUME-NEW * (2 4 5).).

40

(CUBOID-VOLUME-NEW * (10 50 6).).

3000

(CUBOID-VOLUME-NEW * (0 1000 2).).

0

The self-defined function MY-SECOND and MY-THIRD

can be used in the construction of the function. Type in your

solution here:”

A text-box for the answer is given.

Exercise Type 2:

“What is the result of evaluating the expression?

(ERROR if the evaluation results in an error):

(REST ‘(A B C D))”

A text-box for the answer is given.

Hong [9] Prolog

(no information

about level of the

intended target

group)

“Write a program which reverses the elements of a list into

another list.”

(If the student requests help, then a template is given)

“reverse(<arguments>).

reverse(<arguments>):-

 <pre-redicates>, reverse(<arguments>),post-predicate>.”

Kumar

[11]

C++;

CS2

A program is given.

“Assume that all the parameters are passed by Value-Result

when main() calls the function convert(). Indicate the final

value of the variable area and all the changes to the elements

of the array depth after the execution of the program.”

Slots for entering values are given.

Ludwig

[15]

C++;

Introductory Uni-

versity level

The system “allows the student to edit his or her programs in

a controlled text editor, offer programs for analysis, then

submit them for grading.”

Truong

[18]

Java;

“beginning stu-

dents” of Infor-

mation Technology

“Write a simple program that obtains two integer values –

lowerLimit and upperLimit from the user. Display all inte-

gers between owerLimit and upperLimit in ascending order.”

An interface with slots is given.

Al-Imamy

[1]

C;

Principles of Busi-

ness Programming

course

“The user will have the program’s main structure and the

control (X) to delete any statement (except the main struc-

ture) and the control (U) to add a new statement. Pressing the

control (U) will display a list of all valid statements at the

location.”

A program template with slots is given.

JTutors

[6]

Java APIs;

Introductory course

“a quiz allows the student to test his knowledge of the API

by filling the blanks”

HabiPro

[19]

Java:

Programming

course at the uni-

versity level

4 types of exercise:

Exercise Type 1: finding the mistake in a program

“Correct the mistake in this exercise”

A program is given.

A text-box for the answer is given.

Exercise Type 2: put a program in the correct order

“To solve the exercises the screen is divided into two parts.

In the first one the disarranged program appears. When the

students choose a sentence it is automatically put into the

second window. At the end, students check if they have

ordered the program correctly. In this case, the program is

presented with comments and indenteds.”

Exercise Type 3: predicting the results

“At the beginning, programs without comments and varia-

bles with random names will be shown to the students and

they must guess what the program does. Next, a similar

program will be shown but in this case the program will have

adequate comments and significant names of variables so

that students can see that in the second case it is easier to

trace a program”

Exercise Type 4: completing a program

“Students must write one sentence that is omitted. In this

exercise we try to make sure that there are different solu-

tions. The system only accepts the best solution.”

JavaGuide

[8]

Java;

Introductory pro-

gramming classes

Parameterized questions “What is the final value of result?”

QuizPack

[5]

C;

Programming-

related classes

Parameterized questions

Ask-elle

[7]

Haskell;

Bachelor students

at the university

level

“Write a function that creates a list with all integers between

a given range: range :: Int ! Int ! [Int]

For example:

> range 4 9

[4, 5, 6, 7, 8, 9]”

The name of the function along with its parameters is

displayed:

range x y = *

INCOM

[13]

Prolog;

Graduate Universi-

ty level

“Calculate the return after investing an amount of money at a

constant yearly interest rate”

A program template with two slots is given: one slot for

clause head, another slot for clause body.

Adopting the three qualitative dimensions that Le et al. [12] employed for classify-

ing educational problems, we analyze programming exercises that have been support-

ed by existing intelligent learning environments. We attempt to assign them into ap-

propriate classes.

Class 1: Programming exercises have a single correct solution. Programming

exercises of this class are usually given in form of a quiz which consists of a program,

a question and a gap to be filled with correct value. When solving such programming

exercises, students have to understand the given program code and input a correct

solution into a pre-specified gap. Using such programming environments, we cannot

trace problem solving steps of students. The following systems provide programming

exercises of this class: JavaGuide [8], QuizPack [5], Exercise Type 2 provided by

ELM-ART [20], JTutors [6]. HabiPro [19] also supports exercises of this class (Exer-

cise Type 1 and Type 3), for them one single correct solution is expected. Another

type of programming exercises also belongs to this class: these are characterized

through a template consisting of several slots in addition to an exercise description

(e.g., Kumar’s system [11], Truong’s system [18], Al-Imamy’s system [1]). These

systems allow students to input only specific correct values into slots. If one slot is

filled with an incorrect value, then the student will receive feedback accordingly.

Class 2: Programming exercises can be solved by different implementation

variants. Programming exercises of this class are provided with a specific exercise

description. In addition to a problem statement, usually, a specification about the solu-

tion strategy to be applied is given or a program skeleton is pre-specified. Since stu-

dents have the possibility to modify values (i.e., program statements), alternative im-

plementation variants can be developed. The following systems support programming

exercises of this class: JITS [16, 17]; ELM-ART [20]; Hong’s system [9] in guiding

mode where it provides a program template that contains several slots, and thus, many

implementation variants are possible; HabiPro’s exercises of Type 2 [19] allow stu-

dents to change the order of program’s statements and for this type of exercises, alter-

native implementation variants are possible.

Class 3: Programming exercises can be solved by applying alternative solution

strategies. Programming exercises of this class enable students to apply different

solution strategies which have been anticipated by the exercise’s author(s) and allow

students to implement each solution strategy in different variants. The following sys-

tems provide programming exercises of this class: the LISP-tutor is able to trace dif-

ferent problem-solving steps of a student and disambiguate the intended solution

strategy of the student by asking him/her to select one of available helper functions

from a menu; In the automatic error analysis mode, Hong’s system [9] supports prob-

lem solving in free-form; HabiPro’s exercises of Type 4 allow students to apply dif-

ferent solution strategies; Ask-elle [7] gives hint in addition to an exercise description

that the student can choose one of proposed solution strategies and for each solution

strategy, the student can develop alternative implementation variants by

holes (denoted by *); Using INCOM [13], students have the option to add many

Prolog clauses and subgoals as required, thus, alternative solutions strategies are pos-

sible and since the slots (that represent a clause head and a clause body) can be filled

with code in different ways, alternative implementation variants can be developed.

From the investigation of fifteen systems above, we could not identify program-

ming exercises that correspond to Class 4 proposed in [12]. This can be explained by

the fact that domain knowledge modeled in these systems is limited by the number of

solution strategies that can be anticipated by the exercise’s author. E.g, Ask-elle re-

quires that students implement one of pre-specified solution strategies; INCOM com-

pares the similarity between the student’s solution and the solution strategies (that are

represented in form of a semantic table) and gives feedback in the context of the most

plausible anticipated solution strategy; Hong’s system and HabiPro have domain

models that contain a set of reference solutions which represent alternative solution

strategies. Programming exercises of Class 5 [12] are not supported by existing intel-

ligent learning systems in literature, neither. Solutions of programming exercises of

this class cannot be verified automatically, because in addition to the formal correct-

ness of a program, more subjective criteria (e.g., aesthetics, low consumption of com-

puting resources) need to be considered.

4 Relations between the Classification for Programming

Exercises and PISA-Levels of Proficiency for Mathematics

The previous section showed that, in the classification of [12], the existing program-

ming learning environments support classes 1 through 3. How does this compare to

other, more general, classifications? One prominent international programme that

provides such classifications is PISA (Programme for International Student Assess-

ment). While PISA has not proposed a specific literacy model for Computer Science,

frameworks for Mathematics, Reading, Science, Problem Solving and Financial liter-

acy1 have been published. As there are considerable similarities between Mathematics

and Computer Science literacy, we next compare the proposed classification for pro-

gramming exercises and the PISA proficiency levels in Mathematics. PISA defines

six levels of proficiency in Mathematics (cf. Appendix) whereas the highest level

(level six) demands highest cognitive capability, and thus this proficiency scale repre-

sents an empirical measure of the cognitive demand for each question/exercise.

The classification of programming exercises proposed in this paper suggests that

Class 1 consists of exercises that require students to fill a correct value in a gap or to

fill several values into several pre-specified slots. In order to be able to input correct

value(s) into a gap or slots, the student need to understand a given program or a quiz.

That is, they need to understand given information and to be able to process them.

This requirement is in accordance with the description of proficiency Level 1 that

requires that “they [students] are able to identify information and to carry out routine

procedures…They [students] can perform actions that are obvious…”

Class 2 of programming exercises consists of exercises that provide a specific ex-

ercise description. Usually, a specific solution strategy to be applied is given. In order

to solve exercises of this class correctly, students not only need to understand infor-

mation given in the exercise, but also they need to be able to apply a specific solution

strategy that is described in the exercise statement. That is, they need to establish the

relevance of the suggested solution strategy with a specific problem situation. In addi-

tion, they need to be able to implement the specific solution strategy correctly. This

required capability is in line with the requirements of proficiency Level 2: “Students

can interpret and recognize situations in contexts that require no more than direct

inference. They can extract relevant information from a single source and make use of

a single representational mode. Students at this level can employ basic algorithms,

formulae, procedures, or conventions”.

1 PISA 2012 Frameworks - Mathematics, Problem Solving and Financial Literacy
http://www.oecd.org/pisa/pisaproducts/pisa2012draftframeworks-

mathematicsproblemsolvingandfinancialliteracy.htm

Class 3 of programming exercises allows students to apply different solution strat-

egies anticipated by the human tutors. In order to be able to solve programming exer-

cises of this class, students need to know in advance what kind of solution strategies

are appropriate to solve the given programming problem, then they are required to

implement one of possible solution strategies correctly. Thus, this requirement corre-

sponds to the proficiency Level 3 that “students can execute clearly described proce-

dures, including those that require sequential decisions. They can select and apply

simple problem solving strategies.” In addition to the capability of choosing an ap-

propriate solution strategy and implementing a solution strategy correctly, in order to

solve programming exercises of this class, students also need to be able to explain

their problem solving steps (e.g., HabiPro), and this capability is required by profi-

ciency Level 4 that requires that “they [students] can construct and communicate

explanations and arguments based on their interpretations, arguments, and actions.”

We have argumentatively attempted to establish a connection between the classifi-

cation for programming exercises and the proficiency levels for Mathematics. Of

course, this needs to be validated empirically using representative programming exer-

cises of each class. We can notice that no programming exercises supported by exist-

ing intelligent learning environments for programming match proficiency Level 5 and

Level 6 for Mathematics.

5 Conclusion

In this paper, we have applied the classification for education problems provided in

[12] in order to classify programming exercises supported by existing intelligent

learning environments. Based on investigation of fifteen existing intelligent learning

environments for programming, three classes of programming exercises have been

identified: 1) exercises with one single solution, 2) exercises with different implemen-

tation variants, and 3) exercises with different solution strategies. The contribution of

this classification is twofold. First, designers of intelligent learning environments can

choose or develop an appropriate modeling technique for a specific class of pro-

gramming exercises. Second, this classification serves researchers of the AIEDCS

community with a communication means to talk about sorts of programming exercis-

es more precisely when they intend to exchange their learning materials (program-

ming exercises), e.g. for evaluation purposes. We compared the proposed classifica-

tion for programming exercises with the proficiency scale for Mathematics of PISA.

We could identify correspondence between the Class 1 and Class 2 of the classifica-

tion for programming exercises with proficiency Level 1 and Level 2, whereas cogni-

tive demands for Class 3 programming exercises are in line with proficiency Level 3

and Level 4, and no classes of programming exercises that have been reviewed fulfill

requirements of proficiency Level 5 and Level 6.

6 References

1. Al-Imamy, S.; Alizadeh, J. & Nour, M. A.: On the Development of a Programming Teach-

ing Tool: The Effect of Teaching by Templates on the Learning Process. Journal of Infor-

mation Technology Education, vol. 5, 271-283 (2006).

2. Anderson, J. A. and Reiser, B. J.: The LISP tutor: it approaches the effectiveness of a hu-
man tutor. Journal Byte, 10(4), 1985, pp. 159-175.

3. Biggs, J.B. and Collis, K.F.: Evaluating the quality of learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome). Academic Press, New York (1982).

4. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H. and Krathwohl, D.R.: Taxonomy of

Educational Objectives: Handbook 1 Cognitive Domain. Longmans, London (1956).

5. Brusilovsky, P. and Sosnovsky, S.: Individualized exercises for self-assessment of pro-
gramming knowledge: An evaluation of QuizPACK. Journal on Educational Resources in

Computing (JERIC), ACM, 5 (2005).

6. Dahotre, A.: jTutors: A Web-Based Tutoring System For Java APIs (2011).

http://hdl.handle.net/1957/20562

7. Gerdes, A.; Jeuring, J., and Heeren, B.: An interactive functional programming tutor. In
Proceedings of the 17th ACM annual conference on Innovation and Technology in Com-

puter Science Education, 250-255 (2012).

8. Hsiao, I.-H.; Sosnovsky, S. A., and Brusilovsky, P.: Adaptive Navigation Support for Pa-
rameterized Questions in Object-Oriented Programming. In Proceedings of the 4th Euro-

pean Conference on Technology Enhanced Learning EC-TEL, Springer, 88-98 (2009).

9. Hong, J.: Guided programming and automated error analysis in an intelligent Prolog tutor.
International Journal of Human-Computer Studies, Academic Press, 61, 505-534, (2004).

10. Howard, Richard A., Carver, Curtis A. and Lane, William D.: Felder's learning styles,

Bloom's taxonomy, and the Kolb learning cycle: tying it all together in the CS2 course.

Proceedings of the 27th SIGCSE Technical Symposium on CS education, ACM (1996).

11. Kumar, A. N.: Explanation of step-by-step execution as feedback for problems on program
analysis, and its generation in model-based problem-solving tutors. Technology, Instruc-

tion, Cognition and Learning (TICL) Journal, 4 (2006).

12. Le, N. T., Loll, F. and Pinkwart, N.: Operationalizing the Continuum between Well-

defined and Ill-defined Problems for Educational Technology. IEEE Journal Transactions
on Learning Technologies, 6(3), 258-270 (2013).

13. Le, N. T. and Pinkwart, N.: Adding Weights to Constraints in Intelligent Tutoring Sys-

tems: Does it Improve the Error Diagnosis? In Proceedings of the 6th European Confer-

ence On Technology Enhanced Learning (ECTEL), 233 – 247, Springer Verlag (2011).

14. Lister, R.: On Blooming First Year Programming, and its Blooming Assessment. Proceed-
ings of the Australasian Conference on Computing Edu., ACM Press, 158-162 (2000).

15. Shaffer, S. C.: Ludwig: an online programming tutoring and assessment system. The
SIGCSE Bulletin, ACM, 37(2), 56-60 (2005).

16. Sykes, E. R.: Qualitative Evaluation of the Java Intelligent Tutoring System. Journal of
Systemics, Cybernetics and Informatics, 3(5), 49-60 (2006).

17. Sykes, E. R. and Franek, F.: Inside the Java Intelligent Tutoring System Prototype: Parsing
Student Code Submissions with Intent Recognition. In Proceedings of IASTED Interna-

tional Conference Web-based Education (2004).

18. Truong, N., Roe, P. and Bancroft, P.: Static analysis of students' Java programs
Proceedings of the Sixth Australasian Conference on Computing Education – Vol. 30,

Australian Computer Society, Inc., 317-325 (2004).

19. Vizcaíno, A., Contreras, J., Favela, J., and Prieto, M.: An Adaptive, Collaborative Envi-

ronment to Develop Good Habits in Programming. In Proceedings of the 5th International

Conference on Intelligent Tutoring Systems, Springer-Verlag, 262-271 (2000).

20. Weber, G. and Brusilovsky, P.: ELM-ART: An Adaptive Versatile System for Web-based

Instruction. International Journal of AI in Education, 12, 351-384 (2001).

21. Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K.A., and Pra-

sad, C.: An Australasian study of reading and comprehension skills in novice program-

mers, using the bloom and SOLO taxonomies. In Proceedings of the 8th Australasian Con-

ference on Computing Edu., vol. 52, Australian Computer Society, Inc, 243-252 (2006).

Appendix: PISA 2012: Six levels of Mathematics Proficiency
“At Level 6 students can conceptualise, generalise, and utilise information based on their inves-

tigations and modelling of complex problem situations. They can link different information

sources and representations and flexibly translate among them. Students at this level are capa-

ble of advanced mathematical thinking and reasoning. These students can apply this insight and

understandings along with a mastery of symbolic and formal mathematical operations and

relationships to develop new approaches and strategies for attacking novel situations. Student at

this level can formulate and precisely communicate their actions and reflections regarding their

findings, interpretations, arguments, and the appropriateness of these to the original situations.

At Level 5 students can develop and work with models for complex situations, identifying

constraints and specifying assumptions. They can select, compare, and evaluate appropriate

problem solving strategies for dealing with complex problems related to these models. Students

at this level can work strategically using broad, well-developed thinking and reasoning skills,

appropriate linked representations, symbolic and formal characterisations, and insight pertain-

ing to these situations. They can reflect on their actions and formulate and communicate their

interpretations and reasoning.

At Level 4 students can work effectively with explicit models for complex concrete situa-

tions that may involve constraints or call for making assumptions. They can select and integrate

different representations, including symbolic, linking them directly to aspects of real-world

situations. Students at this level can utilise well-developed skills and reason flexibly, with some

insight, in these contexts. They can construct and communicate explanations and arguments

based on their interpretations, arguments, and actions.

At Level 3 students can execute clearly described procedures, including those that require

sequential decisions. They can select and apply simple problem solving strategies. Students at

this level can interpret and use representations based on different information sources and rea-

son directly from them. They can develop short communications reporting their interpretations,

results and reasoning.

At Level 2 students can interpret and recognise situations in contexts that require no more

than direct inference. They can extract relevant information from a single source and make use

of a single representational mode. Students at this level can employ basic algorithms, formulae,

procedures, or conventions. They are capable of direct reasoning and making literal interpreta-

tions of the results.

At Level 1 students can answer questions involving familiar contexts where all relevant in-

formation is present and the questions are clearly defined. They are able to identify information

and to carry out routine procedures according to direct instructions in explicit situations. They

can perform actions that are obvious and follow immediately from the given stimuli.”

