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Abstract. The constraint-based modeling (CBM) approach for deve-
loping intelligent tutoring systems has shown useful in several domains.
However, when applying this approach to an exploratory environment
where students are allowed to explore a large solution space for prob-
lems to be solved, this approach encounters its limitation: It is not well
suited to determine the solution variant the student intended. As a con-
sequence, system’s corrective feedback might be not in accordance with
the student’s intention. To address this problem, this paper proposes to
adopt a soft computing approach for solving constraint satisfaction prob-
lems. The goal of this paper is two-fold. First, we will show that classical
CBM is not well-suited for building a tutoring system for tasks which
have a large solution space. Second, we introduce a weighted constraint-
based model for intelligent tutoring systems. An evaluation study shows
that a coaching system for logic programming based on the weighted
constraint-based model is able to determine the student’s intention cor-
rectly in 90.3% of 221 student solutions, while a corresponding tutoring
system using classical CBM can only hypothesize the student’s intention
correctly in 35.5% of the same corpus.

Keywords: intelligent tutoring systems, constraint satisfaction prob-
lems, weighted constraint-based model, cognitive diagnosis, evaluation.

1 Introduction

An intelligent tutoring system (ITS) is used to support students individually to
solve problems. Research on ITSs has made considerable progress and some sys-
tems have been integrated into regular classrooms (e.g., [6]). Constraint-based
modelling (CBM) [15] is one of the promising approaches for building ITSs. This
technique assumes that a cognitive skill can be acquired in form of declarative
knowledge. This approach has been applied successfully to the domains of na-
tural language [12], SQL [13], and for database design [14]. The strength of this
approach is that the space of correct solutions is modelled by using constraints
to represent a number of domain principles and properties of correct solutions
instead of enumerating every correct solution. Furthermore, it is not necessary to
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anticipate errors possibly made by students. The goals of this paper are twofold.
First, we argue that the pure CBM approach is limited in providing appropriate
feedback to solutions for problems whose solution space is relatively large, e.g.,
in programming. Second, we propose and evaluate a weighted constraint-based
model which adopts a soft computing approach for solving constraint satisfac-
tion problems: each constraint is enriched with a weight value indicating the
importance of the constraint. The weighted constraint-based model is superior
to the pure CBM approach with respect to the capability of error diagnosis.

2 A Limitation of a CBM Tutoring System

We illustrate a limitation of the CBM approach in the example domain of pro-
gramming. According to [9], a programming problem might have several solution
strategies and each strategy can be implemented in different solution variants.
The sample task Investment : “Calculate the return after investing an amount
of money at a constant yearly interest rate” can be solved by applying different
solution strategies, including the following two:

1. Analytic strategy: The profit of investing a sum of money with a yearly
interest rate is calculated based on mathematical geometric series.

2. Tail recursive strategy: A variable can be used to accumulate the sum of
investing money and its interest after each year.

In logic programming, the analytic strategy and tail recursive strategy can be
implemented as follows:
Analytic strategy:
invest(Money,Rate,Period,Return):-Return is Money*(Rate+1)^Period.
Tail recursive strategy:
inv(M,_,P,Ret):- P=0,M=Ret.
inv(M,R,P,Ret):-P>0, NM is M*R+M, NP is P-1, inv(NM,R,NP,Ret).

Each solution strategy can be implemented in many solution variants. For in-
stance, the tail recursive strategy can be implemented in many ways by varying
the order of the two clauses or the order of the second and third subgoal in
the second clause, by choosing one of two unification techniques (implicit and
explicit), or by using the commutative and distributive laws in mathematics
to transform arithmetic expressions. As a result, there exist several thousands
of correct implementations for the problem Investment in total. How can con-
straints be used to model such a large solution space?

Ohlsson [15] proposed using only constraints to model specific properties of
correct solutions. If a solution violates a constraint, the solution does not sa-
tisfy a semantic requirement of correct solutions. If the analytic solution strat-
egy above should be modelled using constraints, we have to identify all possible
pro-perties required to implement this strategy. For instance, the following con-
straint represents a property which requires the correct implementation of the
exponent term of the analytic formula. Note, for simplicity, this constraint as-
sumes that the order of the argument positions in the clause head is fix.
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IF a calculation subgoal S exists AND one multiplication term Tm exists on the
right hand-side of S AND Tm consists of two product factors AND one factor
is a variable unified with the 1st position of the clause head AND the 2nd factor
is an exponential term Te

THEN the exponent of Te is unified with the 3rd position of the clause head AND
the exponent basis is a sum of the value 1 and a variable unified with the
2nd position of the clause head

This constraint is specified with five propositions in the relevance part (IF-
clause). Such a constraint, whose relevance part contains many conditions, tends
to fail in erroneous situations, because the relevance part is not robust against
minor deviations from the specified situation. A complex constraint with a con-
junction of conditions in the relevance part becomes irrelevant for a student
solution if a single one of the conjuncts fails. For example, the following stu-
dent solution, which implements the analytic strategy, would not match the
relevance part of the constraint above, because in the clause body of the stu-
dent solution the multiplication term consists of one product factor (namely
(Rate+1)^Period), while the relevance part of the constraint requires two.
A sample erroneous student solution:
invest(Money,Rate,Period,Return):-Return is (Rate+1)^Period.

Thus, the constraint above can be satisfied even though this undesired result
might have been caused by another error elsewhere in the student solution (e.g.,
one product factor is missing). The potential that complex constraints might
become useless is obvious when specifying constraints for the domain of pro-
gramming. Because the relevance part of a constraint should describe a problem
state, it makes no sense to make the relevance part simpler. (If the satisfaction
part of a constraint is highly specific, then the constraint can be broken into
several simpler constraints according to the rule: A→B∧C ≡ (A→B)∧(A→C)).
The approach of using constraints as the only means to model correct solutions
produces not only complex but also task-specific constraints. Every time new
tasks need to be integrated into a CBM system, it is necessary to specify new
task-specific constraints. This is not an easy undertaking task for authors who
are not familiar with the constraint representation.

Instead of specifying task-specific requirements in constraints, Ohlsson and
Mitrovic [16] suggested using an ideal solution to capture the characteristics of
correct solutions and defining constraints to compare the necessary components
of the ideal solution with a student solution. The approach of using an ideal so-
lution to encapsulate the semantic requirements of solutions has the advantage
that manually created complex constraints can be avoided to a certain extent.
Furthermore, it is not necessary to specify new constraints for a new task be-
cause task-specific requirements are contained in the ideal solution, assuming
that the existing set of constraints can cover the learning domain sufficiently.
However, choosing an ideal solution among many alternatives for a programming
problem is not an easy task. Assuming that an ideal solution for the problem
Investment is available, similar to the way of defining constraints using an ideal
solution, we might define constraints to cover different solution variants in logic
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programming. For instance, to solve the sample task Investment, the tail recur-
sive strategy requires implementing a guard which checks whether the investment
period is positive before it can be decremented recursively. The guard can be
implemented in a variety of ways: e.g., P>0, P>=1, 0<P, 1=<P. If we choose the
implementation of the tail recursive strategy as an ideal solution, the following
constraint checks the correctness of an arithmetic expression and its variants,
where �, �s ∈ {=<, >=, >, <} and r is a function which finds a reverse oper-
ator for an arithmetic comparator according to the following rules: r(>)→<,
r(<)→>, r(=<)→>=, r(>=)→=<.

IF In the ideal solution, there exists an arithmetic test X � Y AND SX �s SY
is a corresponding subgoal in the student solution

THEN �s is identical to �, and (SX, SY ) correspond to (X, Y ) OR �s = r(�), and
(SX, SY ) correspond to (Y, X)

This constraint is useful for capturing different solution variants of a guard which
is required by the tail recursive strategy. However, this constraint is meaningless
if student solutions implementing the analytic strategy are diagnosed, because
this constraint is intended to check the guard (specified in the IF-clause) and the
analytic strategy does not require one. The problem would even be more serious
if a constraint is specified to require the existence of a guard like the following.

IF In the ideal solution, there exists an arithmetic test X � Y
THEN a corresponding SX �s SY exists in the student solution
HINT A guard is missing.

If this constraint is used to evaluate a student solution which implements the
analytic strategy, then it would be violated and the error diagnosis results in a
feedback “A guard is missing” which is obviously misleading. This is because
the solution strategy the student intended to implement is not the same as the
one the constraints are based on (tail recursive strategy). This problem has also
been identified in the domain of SQL in [11, p. 43] and [7, p. 321], as is discussed
in [18, p. 85]. This problem raises the need to hypothesize the solution strategy
underlying a solution during the process of diagnosing errors. Once the solution
strategy of the student has been identified, it makes sense to evaluate constraints
in the context of that specific solution strategy only.

To determine the most plausible hypothesis about the student’s solution vari-
ant in the context of language learning, Menzel [12] proposed to count the num-
ber of constraint violations for each hypothesis. The hypothesis which causes
least constraint violations is assumed to be plausible. Yet, the author indicated
that this kind of measure is too gross, because constraints which represent gram-
mar rules might not have the same level of importance. For example, if the
sentence “These fish stinks” is diagnosed, two hypotheses can be generated: 1)
a constraint (C1) requiring the agreement of determiner-noun is violated; 2) a
constraint (C2) representing the agreement of noun-verb cannot be satisfied. If
only the number of violated constraints is used to evaluate each hypothesis, this
might result in inaccurate diagnoses, because researchers in language learning
might consider C1 as more or less severe than C2.
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As a result, we conclude that the classical CBM approach is limited in pro-
viding appropriate feedback to solutions of problems whose solution space is re-
latively large, e.g., in programming. In the next section, we introduce a weighted
constraint-based model which adopts the idea of a probabilistic approach for solv-
ing constraint satisfaction problems to improve the capability of error diagnosis
of CBM tutoring systems.

3 A Weighted Constraint-Based Model for ITS

In order to coach the student, an ITS needs to identify shortcomings in the
student solution and to provide appropriate feedback according to the student’s
intention. Hence, the student solution needs to be analyzed correctly. In the
approach proposed in this paper, a weighted constraint-based model (WCBM)
serves this purpose. The model includes four modeling components: a semantic
table, a set of constraints, constraint weights, and a set of transformation rules.
The semantic table represents solution strategies for a given problem. Each solu-
tion strategy is described by a set of semantic components. Constraints are used
to establish a mapping between the student solution and requirements in the
semantic table and to check general well-formedness conditions. Domain-specific
transformation rules can be exploited to extend the coverage of different solution
variants. A constraint weight represents the importance of each constraint. The
error diagnosis process is controlled using these four components.

3.1 Semantic Table

Instead of using a single ideal solution to capture task-specific requirements,
the WCBM approach presented in this paper is built on a so-called semantic
table which serves two proposes: 1) modeling several solution strategies, and 2)
representing model solutions in a relational form. The first characteristic serves
to hypothesize the most plausible strategy underlying a student solution. The
second one has the advantage that solution variants (e.g., created by changing
the order of solution components) can easily be covered. Table 1 illustrates a
partial semantic table for the problem Investment, covering two alternative so-
lution strategies (more could easily be added), where the first row represents the
generalized description of the analytic solution strategy and the remaining ones
are the generalized description of the tail recursive solution strategy.

3.2 Constraints

In this framework, constraints are employed to model the solution space for each
problem and to identify errors based on this model. We distinguish between two
types of constraints: general and semantic constraints.
General Domain Principles: A domain is characterized by certain principles,
which every solution variant of any problem must adhere to and which are in-
dependent of task-specific requirements. For instance, in logic programming, it
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Table 1. An partial semantic table for the example problem Investment

Strategy CI Head SI Subgoal Description

Analytic 1 p(S,R,P,Ret) 1 Ret is S*(R+1)^P Using a formula

Tail recursive 1 p(M, ,P,Ret) 1 P=0 Recursion stops

Tail recursive 1 p(M, ,P,Ret) 2 Ret=M Recursion stops

Tail recursive 2 p(M,R,P,Ret) 1 P>0 Check period

Tail recursive 2 p(M,R,P,Ret) 2 NM is M*R+M Calculate new money

Tail recursive 2 p(M,R,P,Ret) 3 NP is P-1 Update period

Tail recursive 2 p(M,R,P,Ret) 4 p(NM,R,NP,Ret) Recur with new period

CI: clause index; SI: subgoal index

is required that all variables on the right hand-side of an arithmetic calcula-
tion subgoal (e.g., X is A+B) must be instantiated. Otherwise, the evaluation of
this arithmetic expression will fail. Such domain principles can be modeled by
means of general constraints. These constraints can be instantiated by constraint
schemas of type (1), where the problem situation X and the condition Y can be
composed of many elementary propositions using conjunction or disjunction op-
erators. A problem situation X describes a static state of solution components
required to solve an arbitrary task in the domain. If a student solution violates
one of the general constraints, the student did not consider the corresponding
principle of the domain.
Type (1): IF problem situation X is relevant THEN condition Y must be satisfied

Semantic Correctness: Using task-specific information specified in the se-
mantic table, constraints can be specified to check the semantic correctness of
a student solution (STS). We refer to this kind of constraints as semantic con-
straints which have the following schemas. Constraint schemas (2.1) and (2.2)
check for missing or superfluous components in the student solution, respectively.

Type (2.1):
IF in the semantic table, a component X exists

THEN in the STS, a component corresponding to X exists

Type (2.2):
IF in the STS, a component Y exists

THEN in the semantic table, a component corresponding to Y exists

If the goal is to check a required value of a component, the following schema can
be applied:

Type (2.3):
IF in the semantic table, a component Z exists and has value A

THEN in the STS, a component corresponding to Z has value A

To model different solution variants for a concept (e.g., an arithmetic compari-
son), constraint schema of type (3) can be applied to cover two possible variants
using the OR-operator.

Type (3):

IF in the semantic table, a component X exists
THEN in the STS, a component corresponding to X OR a variant of

X exists
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3.3 Transformation Rules

To extend the coverage of the solution space for a problem, various transfor-
mation rules which are domain-specific can be exploited, for instance: program
transformation in the domain of programming, model transformation in the do-
main of computational modeling, or mathematical transformation rules.

3.4 Constraint Weights

As discussed in Section 2, classical CBM tutoring systems might provide mis-
leading diagnostic results and are not well suited to decide on the most plausible
hypothesis about the student’s solution variant, because constraints are solely
based on a binary logic (constraint is either violated or not). We need a means
to enhance the error diagnosis capability of classical CBM tutoring systems. To
serve this purpose, we adopt approaches to softening constraints in a constraint
satisfaction problem (CSP), because constraint-based error diagnosis is a CSP
whose goal is to identify inconsistencies between an erroneous solution and a
constraint system.

The most popular approaches to softening constraints include fuzzy CSP [1],
partial CSP [4], cost-minimizing CSP1[17], and probabilistic CSP frameworks [2].
The probabilistic CSP approach is most appropriate for constraint-based error
diagnosis, because it does not evaluate a constraint system partially (like the
partial CSP framework), nor is it necessary to specify constraints with possible
instantiations of constraint variables in advance (like fuzzy and cost-minimizing
CSP frameworks). This approach has been applied successfully to enhance the
quality of error diagnosis, e.g., in the context of a natural language parser [3].
In the approach proposed in this paper, we adopt the probabilistic approach to
enhance the diagnosis capability of classical CBM tutoring systems by attaching
a weight, indicating the measure of importance, to each constraint.

Searching the most plausible hypothesis about the student’s solution variant,
we need to evaluate the plausibility of all possible hypotheses. For this purpose,
adopting the probabilistic approach, we apply a multiplicative model: constraint
weights are taken from the interval [0; 1]. The value 1 represents the weight
for least important constraints and 0 indicates the weight for constraints which
model the most important requirements. Constraints of the latter type can be
considered hard constraints. The importance of a constraint is determined based
on the role of the components being investigated. Constraints checking a compo-
nent which contributes more information to the overall correctness of the solution
should receive a weight close to the value 0. The determination of the impor-
tance level for constraints resembles the assessment of written examinations by a
human tutor: if a solution contains more important components, then it receives
a better mark. Constraint weight values need to be adjusted manually to yield
acceptable diagnostic results.

1 This term is also referred to as weighted CSP in the literature.
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3.5 Error Diagnosis

Given a student solution, the error diagnosis process generates hypotheses about
it by matching the student solution against each of the solution strategies spe-
cified in the semantic table (left part of Fig. 1). The matching process initializes
global mappings representing hypotheses about the strategy underlying the stu-
dent solution. Then, the hypothesis generation process continues to generate
hypotheses about the student’s solution variant by matching components of the
student solution against the ones representing the selected solution strategy.
That is, highest-level components of the student solution are matched against
components of the same level specified for each solution strategy in the seman-
tic table, similarly for middle-level and lowest-level components. The matching
process results in local mappings which represent hypotheses about the student’s
solution variant. They are used to complete the global mappings. Depending on
the structural hierarchy of a solution, local mappings are generated according to
the levels of that hierarchy.

Fig. 1. The process of error diagnosis

After hypotheses on the lowest component level have been generated, they
are evaluated with respect to the plausibility, and the best ones are selected
using the Beam criterion Z (the right part of Fig. 1). The plausibility of each
hypothesis is computed by multiplying the weights of constraints violated by
that hypothesis according this formula, where Wi is the weight of a violated
constraint: PlausibilityProd(H) =

∏N
i=1 Wi.

The plausibility of each generated hypothesis can be used as a Beam criterion
to restrict the space of hypotheses to the most plausible ones: Only a fraction of
most plausible hypotheses whose plausibility score is higher than Z (0 ≤ Z ≤ 1)
are selected for each level. The best selected hypotheses on the lower level are
used to multiply the space of hypotheses on the next higher level. This procedure
of generating hypotheses, selecting the best ones using the Beam criterion, and
multiplying the space of hypotheses of the next level continues up to the highest
one of the structural hierarchy. At this level, the process of generating strategy
hypotheses is completed. The error diagnosis process is finished by evaluating
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the strategy hypotheses with respect to their plausibility and choosing the best
hypothesis for the selected solution strategy. Diagnostic information is derived
from constraint violations resulting from the plausibility computation of the
most plausible strategy hypothesis.

3.6 Example

Following is a sample student solution in logic programming for the problem
Investment :
Clause Type Implementation
SC1 base interest(Amount,_,0,Amount).
SC2 recursive interest(Amount,Rate,Duration,End):-

X is Amount+Amount*Rate/100, Duration>0,
NewDura is Duration-1,interest(X,Rate,NewDura,End).

According to the algorithm of the error diagnosis, first, the student solution is
matched to the generalized solution description of the analytic strategy, then,
the tail recursive strategy. This process results in two global mappings, where
SP is the solution provided by the student:
Hstrategy={map(Strategy Analytic, SP )}
Hstrategy={map(Strategy Tail Recursive, SP )}

On the solution variant level, the error diagnosis process matches SP against the
semantic components of each solution strategy. Since the structural hierarchy of
a logic program consists of clause, subgoal, argument/operator, multiplication
term, and product factor (where the last two levels exist only if the solution
contains mathematical expressions), the matching process is carried out on the
corresponding levels of the hierarchy. For instance, the matching between SP
and the generalized description of the strategy tail recursive (cf. Table 1) on the
clause level results in a single mapping Hclause which has two entries. The first
component (Ci) of each entry represents the expression specified in the general-
ized description and the second one (SCi) is provided by the student solution.
Hclause={map(C1, SC1), map(C2, SC2)}

On the subgoal level, the subgoals of the student’s clause are mapped against
the subgoals of the corresponding clause of the generalized description. For ex-
ample, taking the second element of the mapping Hclause above, subgoals of C2
are matched against subgoals of SC2. Considering, for instance, only arithmetic
calculation subgoals, matching the two arithmetic calculation subgoals of the
student’s clause SC2 against two arithmetic calculation subgoals of the general-
ized description’s clause C2 results in two mappings of arithmetic subgoals:
Hsubgoal(cal)= {map(NP is P-1, DecDuration is Duration-1),

map(Ret is NM+R*NM, X is Amount+Amount*Rate/100)}
Hsubgoal(cal)= {map(NP is P-1, X is Amount+Amount*Rate/100),

map(Ret is NM+R*NM, NewDura is Duration-1)}
On the argument/operator level, the arguments of a student’s subgoal are
matched against the arguments of the corresponding subgoal of the general-
ized description. E.g., DecDuration is Duration-1, an arithmetic subgoal of
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the student solution, is matched against the subgoal NP is P-1 of the general-
ized description: arguments on the left hand-side and on the right hand-side are
matched, respectively:
Hargument={map(NP, DecDuration), map(P-1, Duration-1)}.

Similarly, the hypothesis generation process continues to the product factor level.
After local mappings have been generated on the product factor level, their plau-
sibility is evaluated by invoking the constraints of that level. Based on the plau-
sibility score of each local mapping, a set of best mappings is selected and used
to multiply the space of local mappings on the next higher level, namely the
multiplication terms. Again, each of the local mappings on the multiplication
term level is evaluated with respect to its plausibility. The process of evaluating
local mappings, choosing the best ones, and extending the space of mappings on
the higher level continues until the clause level is reached. At this level, a space
of global mappings for each generalised solution description is established.

The algorithm next evaluates the plausibility of these global mappings and
determines the one which has the highest score for each generalised solution
description. According to the first column of Table 2, the hypothesis that the
student has implemented the strategy tail recursive is more plausible because it
has the highest plausibility score (0.25). The second column of the table shows
diagnoses resulting from the evaluation of each hypothesis. The evaluation of
the most plausible hypothesis results in the following diagnostic information:
Hint 1 In the 2nd clause, the denominator 100 is superfluous.
Hint 2 In the 2nd clause, a variable is expected instead of Betrag/100.

Table 2. Plausibility of hypotheses about the implemented solution strategy

Str.; Score Weight; Hints

A; 1e-006 0.01; If you intend to define a non-recursion predicate,
then it must exist at least a clause of type non-recursive.
0.01; The predicate definition has more base case than required.
0.01; The predicate definition has more recursive case than required.

T; 0.25 0.5; In the 2nd subgoal, the denominator 100 is superfluous.
0.5; In the 2nd clause, a variable is expected instead of Betrag/100.

Str. A: Analytic strategy; Str. T: Tail recursive strategy.

4 Evaluation

To test whether the weighted constraint-based model is more capable than the
classical CBM approach with respect to its diagnostic capability (of course, a
more precise error diagnosis component can be used to give better learning sup-
port), we have used the intention analysis capability of a tutoring system for
logic programming named INCOM [8]. The purpose of the intention analysis is
to determine the rate of student solutions whose solution strategy and compo-
nents are identified correctly by the system. In literature, this kind of evaluation
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technique is also noted as algorithm analysis [5,10], because the approach of
identifying the solution strategy is based on anticipated algorithms for a pro-
gramming problem.

To compare the diagnostic capability of the weighted constraint-based model
with the classical CBM approach, we used two versions of INCOM. The first
one applies the weighted constraint-based model (WCBM-INCOM). A modi-
fied version of INCOM uses constraints without weight values (CBM-INCOM),
and corresponds to a classical CBM tutoring system. Here, the plausibility of
hypotheses about the solution strategy intended by the student is computed
by summing up the number of constraint violations caused by each hypothe-
sis: PlausibilityAdd(H) = |C|, where C is the set of all constraint violations
caused by each hypothesis H . (Note, this formula does not use the weight value
of constraints like the formula PlausibilityProd).

4.1 Study Design

For the evaluation study, we collected exercises and solutions from past writ-
ten examinations. The examination candidates had attended a course in logic
programming which was offered as a part of the first semester curriculum in
Informatics. The following seven tasks have been collected from the written ex-
aminations (here, the tasks are described briefly).

1. Access to specific elements within an embedded list;
2. Querying a data base and applying a linear transformation to the result;
3. Modification of all elements of a list subject to a case distinction;
4. Creation of an n-best list from a data base;
5. Computing the sum of all integer elements of a list;
6. Counting the number of elements in an embedded list;
7. Finding the element of an embedded list which has the maximum value for

a certain component.

For these problems, 221 student solutions were selected according to the following
criteria:

– Any piece of code which satisfies minimal requirements of interpreting it as
a Prolog program is considered a solution

– Syntax errors in the solutions are ignored (because during the written ex-
amination the students did not have access to a computer)

– Both correct and incorrect solutions are taken into account.

For conducting the intention analysis, we involved a human expert who inspected
every student solution manually. Student solutions which could be understood
by the human expert, were classified as “understandable”, the others as “not
understandable”. Then, all “understandable” solutions were given as input to
the two systems under comparison (WCBM-INCOM and CBM-INCOM), which
resulted in two lists of constraint violations – one for each system. The human
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expert examined the two lists of constraint violations and decided whether the
systems analyzed the student solution correctly (in terms of determining the
solution variant).

4.2 Results

Table 3 summarizes the statistics of the evaluation. The number of available
student solutions per task is indicated in the second column. The third column
represents the number of solutions classified as “not understandable”. The fourth
and the fifth column show the absolute and relative amount of solutions which
have been analyzed correctly by the WCBM-INCOM system. Similarly, the sixth
and the seventh column indicate the absolute and relative number of solutions
analyzed correctly by CBM-INCOM.

On average, 90.3% (s.d.=11.0%) of 221 collected student solutions could be
analyzed correctly by WCBM-INCOM [8], while CBM-INCOM could achieve
correct intention analysis in 35.5% (s.d.=19.9%) of the same solution corpus. In
all tasks, the statistics show that the intention analysis capability of WCBM-
INCOM is better than the one of CBM-INCOM. In particular, we notice that
for Tasks 1-3, the intention analysis capability of CBM-INCOM is higher than
50%, whereas for Tasks 4-7 the intention analysis capability of CBM-INCOM
is remarkably worse (Task 6 has the worst intention analysis with only 9.9%
correct analysis). This can be explained by the fact that the complexity of Tasks
4-7 is much higher than the one of Tasks 1-3 – here, more possible solution
strategies can be (and have been) applied and more implementation variants can
be created. The statistics also show that the diagnosis accuracy of the WCBM-
INCOM does not show this significant difference between easy and more complex
tasks: apparently, adding the constraint weights was sufficient for achieving a
much better diagnosis performance.

We next want to illustrate this effect with a concrete example from Task 6 (c.f.
Section 4.1) which can be solved by applying either a naive recursive strategy
or a tail recursive strategy.

Table 3. Evaluation of the intention analysis

WCBM-INCOM CBM-INCOM
Task Solutions Not U. C.A.# C.A.% C.A.# C.A.%

1 10 0 10 100.0 5 50.0

2 11 0 10 90.9 7 63.6

3 6 1 4 66.7 3 50.0

4 17 1 16 94.1 5 29.4

5 58 2 54 93.1 8 13.8

6 81 0 79 97.5 8 9.9

7 38 2 34 89.5 12 31.6

Sum 221 6 207 48
Avg.(sd.) 90.3 (11.0) 35.5 (19.9)

Not U.: Not Understandable; C.A.: Correct Analysis.
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countz(N,L):- L=[], N is 0.
countz(N,L):- L=[Head|Rest], countz(N1, Rest), N is N1+1.

The results of error diagnosis executed by WCBM-INCOM and CBM-INCOM
for the erroneous student solution above are shown in Table 4. Here, CBM-
INCOM was not able to decide on the most plausible hypothesis about the stu-
dent’s solution variant, because two hypotheses of CBM-INCOM (naive recursive
and tail recursive) have the same plausibility score (each hypothesis produces
five constraint violations). On the contrary, WCBM-INCOM decided on the hy-
pothesis that the student implemented the naive recursive strategy because the
plausibility score of this solution strategy (0.064) is higher than the one of the
tail recursive strategy (1e-010).

Table 4. Intention analysis for the sample student solution

WCBM-INCOM CBM-INCOM
Strategy P lausibilityProd P lausibilityAdd

Naive recursive 0.064 5

Tail recursive 1e-010 5

In addition to this example, where CBM-INCOM was not able to choose the
most plausible hypothesis, there were many cases of wrong intention analysis
provided by CBM-INCOM. It even favoured a wrong solution strategy if this
had more (but less severe) errors. Here, adding the weights to constraints solved
the problem and improved the error diagnosis.

5 Conclusion and Outlook

In this paper, we have argued that the constraint based modelling approach,
while useful for ITS development in general, may reach its limitation when it
is applied for developing tutoring systems for tasks which have a large solution
space. An example for this effect from the domain of programming has been
discussed. Additionally, we have introduced a weighted constraint-based model
which adopts a probabilistic approach for solving constraint satisfaction prob-
lems. In a study, we have shown that this approach is more capable than the
pure CBM with respect to error diagnosis: A tutoring system for logic program-
ming based on this extended model was able to analyze the student’s intention
correctly in 90.3% of 221 student solutions, while a corresponding system which
is based on the classical CBM approach was able to achieve a correct intention
analysis in only 35.5% of the same corpus of student solutions.

While the examples in this paper were all chosen from logic programming, we
believe that the results are valid also beyond this field. Specifically, it is possi-
ble to easily apply the weighted constraint-based model to functional program-
ming languages because they are also instances of the declarative programming
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paradigm. This characteristic, the atemporal nature, of declarative programming
languages makes possible to formulate and to check the well-formedness condi-
tions for a program in a static manner. Whether the weighted constraint-based
model can also be applied to other declarative domains (e.g., computational
modeling) or other programming paradigms (e.g., imperative programming) is
a open question which we are currently investigating.
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