

AIED 2013 Workshops Proceedings
Volume 9

The First Workshop on AI-supported
Education for Computer Science

(AIEDCS 2013)

Workshop Co-Chairs:

Nguyen-Thinh Le1
Kristy Elizabeth Boyer2

Beenish Chaudhry3
Barbara Di Eugenio4
Sharon I-Han Hsiao5

Leigh Ann Sudol-DeLyser6

 1Clausthal University of Technology, Germany
 2North Carolina State University, USA

3Indiana University Bloomington, USA
4University of Illinois Chicago, USA

 5Columbia University, USA
6New York University, USA

https://sites.google.com/site/aiedcs2013/

https://sites.google.com/site/aiedcs2013/

 ii

Preface
The global economy increasingly depends upon Computer Science and

Information Technology professionals to maintain and expand the infrastructure on
which business, education, governments, and social networks rely. Demand is growing
for a global workforce that is well versed and can easily adapt ever-increasing
technology. For these reasons, there is increased recognition that computer science and
informatics are becoming, and should become, part of a well-rounded education for
every student. However, along with an increased number and diversity of students
studying computing comes the need for more supported instruction and an expansion in
pedagogical tools to be used with novices. The study of computer science often
requires a large element of practice, often self-guided as homework or lab work.
Practice as a significant component of the learning process calls for AI-supported tools
to become an integral part of current course practices.

Designing and deploying AI techniques within computer science learning
environments presents numerous challenges. First, computer science focuses largely on
problem solving skills in a domain with an infinitely large problem space. Modeling
possible problem solving strategies of experts and novices requires techniques that
address many types of unique but correct solutions to problems. In addition, there is
growing need to support affective and motivational aspects of computer science
learning, to address widespread attrition of students from the discipline. AIED
researchers are poised to make great strides in building intelligent, highly effective AI-
supported learning environments and educational tools for computer science and
information technology. Spurred by the growing need for intelligent learning
environments that support computer science and information technology, this
workshop will provide a timely opportunity to present emerging research results along
these lines.

June, 2013
Nguyen-Thinh Le, Kristy Elizabeth Boyer, Beenish Chaudhry,

Barbara Di Eugenio, Sharon I-Han Hsiao, and Leigh Ann Sudol-DeLyser

 iii

Program Committee

Co-Chair: Nguyen-Thinh Le, Clausthal University of Technology, Germany
(nguyen-thinh.le@tu-clausthal.de)
Co-Chair: Kristy Elizabeth Boyer, North Carolina State University, USA
(keboyer@ncsu.edu)
Co-Chair: Beenish Chaudry, Indiana University Bloomington, USA
(bchaudry@indiana.edu)
Co-Chair: Barbara Di Eugenio, University of Illinois Chicago, USA
(bdieugen@uic.edu)
Co-Chair: Sharon I-Han Hsiao, Columbia University, USA
 (ih2240@columbia.edu)
Co-Chair: Leigh Ann Sudol-DeLyser, New York University, USA
(leighannsudol@gmail.com)

James Lester, North Carolina State University, USA
Niels Pinkwart, Clausthal University of Technology, Germany
Peter Brusilovsky, University of Pittsburgh, USA
Michael Yudelson, Carnegie Learning, USA
Tomoko Kojiri, Kansai University, Japan
Fu-Yun Yu, National Cheng Kung University, Taiwan
Tsukasa Hirashima, Hiroshima University, Japan
Kazuhisa Seta, Osaka Prefecture University, Japan
Davide Fossati, Carnegie Mellon University, Qatar
Sergey Sosnovsky, CeLTech, DFKI, Germany
Tiffany Barnes, North Carolina State University, USA
Chad Lane, USC Institute for Creative Technologies, USA
Bruce McLaren, Carnegie Mellon University, USA
Pedro José Muñoz Merino, Universidad Carlos III de Madrid, Spain
Wei Jin, University of West Georgia, USA
John Stamper, Carnegie Mellon University, USA
Sajeesh Kumar, University of Tennessee, USA

http://www.sis.pitt.edu/~peterb/
https://sites.google.com/site/myudelson/home
http://www.dfki.de/~sosnovsky/
http://www.cs.cmu.edu/~bmclaren/
http://www.cs.cmu.edu/~bmclaren/
http://www.it.uc3m.es/pedmume/index.html
http://www.uthsc.edu/allied/him/faculty.php

 iv

Table of Contents

Sequential Patterns of Affective States of Novice Programmers 1
Nigel Bosch and Sidney D’Mello.

Towards Deeper Understanding of Syntactic Concepts in Programming 11
Sebastian Gross, Sven Strickroth, Niels Pinkwart and Nguyen-Thinh Le.

An Intelligent Tutoring System for Teaching FOL Equivalence 20
Foteini Grivokostopoulou, Isidoros Perikos and Ioannis Hatzilygeroudis.

Informing the Design of a Game-Based Learning Environment for Computer 30
Science: A Pilot Study on Engagement and Collaborative Dialogue
Fernando J. Rodriguez, Natalie D. Kerby and Kristy Elizabeth Boyer.

When to Intervene: Toward a Markov Decision Process Dialogue Policy for 40
Computer Science Tutoring
Christopher M. Mitchell, Kristy Elizabeth Boyer and James C. Lester.

Automatic Generation of Programming Feedback; A Data-Driven Approach 50
Kelly Rivers and Kenneth R. Koedinger.

JavaParser; A Fine-Grain Concept Indexing Tool for Java Problems 60
Roya Hosseini and Peter Brusilovsky.

Sequential Patterns of Affective States of Novice
Programmers

Nigel Bosch1 and Sidney D’Mello1,2

Departments of Computer Science1 and Psychology2, University of Notre Dame
Notre Dame, IN 46556, USA

{pbosch1, sdmello}@nd.edu

Abstract. We explore the sequences of affective states that students experience
during their first encounter with computer programming. We conducted a study
where 29 students with no prior programming experience completed various
programming exercises by entering, testing, and running code. Affect was
measured using a retrospective affect judgment protocol in which participants
annotated videos of their interaction immediately after the programming ses-
sion. We examined sequences of affective states and found that the sequences
Flow/Engagement ↔ Confusion and Confusion ↔ Frustration occurred more
than expected by chance, which aligns with a theoretical model of affect during
complex learning. The likelihoods of some of these frequent transitions varied
with the availability of instructional scaffolds and correlated with performance
outcomes in both expected but also surprising ways. We discuss the implica-
tions and potential applications of our findings for affect-sensitive computer
programming education systems.

Keywords: affect, computer programming, computerized learning, sequences

1 Introduction

Given the unusually high attrition rate of computer science (CS) majors in the U.S.
[1], efforts have been made to increase the supply of competent computer program-
mers through computerized education, rather than relying on traditional classroom
education. Some research in this area focuses on the behaviors of computer program-
ming students in order to provide more effective computerized tutoring and personal-
ized feedback [2]. In fact, over 25 years ago researchers were exploring the possibility
of exploiting artificial intelligence techniques to provide customized tutoring experi-
ences for students in the LISP language [3]. This trend has continued, as evidenced by
a number of intelligent tutoring systems (ITSs) that offer adaptive support in the do-
main of computer programming (e.g. [4–6]).

One somewhat neglected area in the field is the systematic monitoring of the affec-
tive states that arise over the course of learning computer programming and the im-
pact of these states on retention and learning outcomes. The focus on affect is moti-
vated by considerable research which has indicated that affect continually operates
throughout a learning episode and different affective states differentially impact per-

1

mailto:sdmello%7d@nd.edu

formance outcomes [7]. Some initial work has found that affective states, such as
confusion and frustration, occur frequently during computer programming sessions [8,
9] and these states are correlated with student performance [10].

The realization of the important role of affect in learning has led some researchers
to develop learning environments that adaptively respond to affective states in addi-
tion to cognitive states (see [11] for a review). Previous research has shown that affect
sensitivity can make a measurable improvement on the performance of students in
other domains such as computer literacy and conceptual physics [12, 13]. Applying
this approach to computer programming education by identifying the affective states
of students could yield similarly effective results, leading to more effective systems.

Before it will be possible for an affect-sensitive intelligent tutoring system to be
successful in the computer programming domain, more research is needed to deter-
mine at a fine-grained level what affective states students experience and how affect
interacts and arises from the students’ behaviors. Previous work has collected affec-
tive data at a somewhat coarse-grained level in a variety of computer programming
education contexts. [10] collected affect using two human observers, and were able to
draw conclusions about what affective states led to improved performance on a com-
puter programming exam. [14] induced affect in experienced programmers using
video stimuli, and found that speed and performance on a coding and debugging test
could be increased with high-arousal video clips.

In our previous work [15], we examined the affect of 29 novice programmers at
20-second intervals as they solved introductory exercises on fundamentals of comput-
er programing. We found that flow/engagement, confusion, frustration, and boredom
dominated the affect of novice programmers when they were not in a neutral state.
We found that boredom and confusion were negatively correlated with performance,
while the flow/engagement state positively predicted performance. This paper contin-
ues this line of research by exploring transitions between affective states.

Specifically, we test a theoretical model on affect dynamics that has been proposed
for a range of complex learning tasks [16]. This theoretical model (Fig. 1) posits four
affective states that are crucial to the learning process: flow/engagement, confusion,
frustration, and boredom. The model predicts an important interplay between confu-
sion and flow/engagement, whereby a learner in the state of flow/engagement may
encounter an impasse and become confused. From the state of confusion, if an im-
passe is resolved the learner will return to the state of flow/engagement, having
learned more deeply. This is in line with other research which has shown that confu-
sion helps learning when impasses are resolved [17]. On the other hand, when the
source of the confusion is never resolved, the learner will become frustrated, and
eventually bored if the frustration persists.

Researchers have found some support for this theoretical model of affective dy-
namics in learning contexts such as learning computer literacy with AutoTutor [16],
unsupervised academic research [18], and narrative learning environments [19]. We
expect the theoretical model to apply to computer programming as well.

2

We posit that en-
countering unfamiliar
concepts, syntax and
runtime errors, and
other impasses can
cause confusion in a
computer programmer.
When those impasses
are resolved, the pro-
grammer will be better
equipped to anticipate
and handle such im-
passes in the future,
having learned some-
thing. Alternatively, if
the impasses persist,

programmers may become frustrated and eventually disengage, entering a state of
boredom in which it is difficult to learn.

To explore the applicability of this model to the domain of novice computer pro-
gramming, this paper focuses on answering the following research questions: 1) what
transitions occur frequently between affective states? 2) how are instructional scaf-
folds related to affect transitions? and 3) are affective transitions predictive of learn-
ing outcomes? These questions were investigated by analyzing affect data collected in
a previous study [15] where 29 novice programmers learned the basics of computer
programming over the course of a 40-minute learning session with a computerized
environment, as described in more detail below.

2 Methods

Participants were 29 undergraduate students with no prior programming experience.
They were asked to complete exercises in a computerized learning environment de-
signed to teach programming fundamentals in the Python language. Participants
solved exercises by entering, testing, and submitting code through a graphical user
interface. Submissions were judged automatically by testing predetermined input and
output values, whereupon participants received minimal feedback about the correct-
ness of their submission. For correct submissions they would move on to the next
exercise, but otherwise would be required to continue working on the same exercise.

The exercises in this study were designed in such a way that participants would
likely encounter some unknown, potentially confusing concepts in each exercise. In
this manner we elicited emotional reactions similar to real-world situations where
computer programmers face problems with no predefined solutions and must experi-
ment and explore to find correct solutions. Participants could use hints, which would
gradually explain these impasses and allow participants to move on in order to pre-

Fig. 1. Theoretical model of affect transitions.

3

vent becoming permanently stuck on an exercise. However, participants were free to
use or ignore hints as they pleased.

Exercises were divided into two main phases. In the first phase (scaffolding), par-
ticipants had hints and other explanations available and worked on gradually more
difficult exercises for 25 minutes. Performance in the scaffolding phase was deter-
mined by granting one point for each exercise solved and one point for each hint that
was not used in the solved exercises. Following that was the second phase (fadeout),
in which they had 5 minutes to work on a debugging exercise, and 10 minutes to work
on another programming exercise with no hints. In this study we will not consider the
debugging exercise because it was only 5 minutes long. Performance was determined
by two human judges who examined each participant’s code, determined the number
of lines matching lines in the correct solution, and resolved their discrepancies.

Finally, we used a retrospective affect judgment protocol to assess student affect
after they completed the 40-minute programming session [20]. Participants viewed
video of their face and on-screen activity side by side, and were polled at various
points to report the affective state they had felt most at the polling point. The temporal
locations for polling were chosen to correspond with interactions and periods of no
activity such that each participant had 100 points at which to rate their affect, with a
minimum of 20 seconds between each point. Participants provided judgments on 13
emotions, including basic emotions (anger, disgust, fear, sadness, surprise, happi-
ness), learning-centered emotions (anxiety, boredom, frustration, flow/engagement,
curiosity, confusion/uncertainty) and neutral (no apparent feeling).The most frequent
affective states, reported in [15], were flow/engagement (23%), confusion (22%),
frustration (14%), and boredom (12%), a finding that offers some initial support for
the theoretical model discussed in the Introduction.

3 Results and Discussion

We used a previously developed transition likelihood metric to compute the likeli-
hood of the occurrence of each transition relative to chance [21].

 𝐿(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 → 𝑁𝑒𝑥𝑡) = Pr(𝑁𝑒𝑥𝑡|𝐶𝑢𝑟𝑟𝑒𝑛𝑡)−Pr (𝑁𝑒𝑥𝑡)
1−Pr (𝑁𝑒𝑥𝑡)

 (1)

This likelihood metric determines the conditional probability of a particular affec-
tive state (next), given the current affective state. The probability is then normalized
to account for the overall likelihood of the next state occurring. If the affective transi-
tion occurs as expected by chance, the numerator is 0 and so likelihood is as well.
Thus we can discover affective state transitions that occurred more (L > 0) or less (L <
0) frequently than expected by chance alone.

Before computing L scores we removed transitions that occurred from one state to
the same state. For example, a sequence of affective states such as confusion, frustra-
tion, frustration, boredom would be reduced to confusion, frustration, boredom. This
was done because our focus in this paper is on the transitions between different affec-
tive states, rather than on the persistence of each affective state [16, 18]. Furthermore,

4

although transition likelihoods between all 13 states (plus neutral) were computed, the
present paper focuses on transitions between states specified in the theoretical model
(boredom, confusion, flow/engagement, and frustration), which also happen to be the
most frequent affective states.

What transitions occur frequently between affective states? We found the tran-
sitions that occurred significantly more than chance (L = 0) by computing affect tran-
sition likelihoods for individual participants and then comparing each likelihood to
zero (chance) with a two-tailed one-sample t-test. Significant (p < .05) and marginally
significant (p < .10) transitions are shown in Figure 2 and are aligned with the theoret-
ical model on affect dynamics.

Three of the predicted tran-
sitions, Flow/Engagement
→ Confusion, Confusion →
Frustration, and Frustration
→ Confusion, were signifi-
cant and matched the theo-
retical model. Confusion →
Flow/Engagement was in
the expected direction and
approached significance (p
= .108), while Boredom →
Frustration was in the ex-
pected direction but not
significant. The Frustration
→ Boredom transition was
not in the expected direction
and was also not significant.
Hence, with the exception
of the Frustration ↔ Bore-
dom links, there was sup-
port for four out of the six

transitions espoused by the theoretical model. This suggests that the components of
the model related to the experience of successful (Flow/Engagement ↔ Confusion)
and unsuccessful (Confusion ↔ Frustration links) resolution of impasses were con-
firmed. Therefore, the present data provide partial support for the model.

The Boredom → Flow/Engagement transition, which occurred at marginally sig-
nificant levels (p = .091), was not predicted by the theoretical model. It is possible
that the nature of our computerized learning environment encouraged this transition
more than expected. This might be due to the fast-paced nature of the learning ses-
sion, which included 18 exercises and an in-depth programming task in a short 40-
minute session. Furthermore, participants had some control over the learning envi-
ronment in that they could use bottom-out hints to move to the next exercise instead
of being forced to wallow in their boredom. The previous study that tested this model
used a learning environment (AutoTutor) that did not provide any control over the
learning activity, which might explain the presence of Frustration → Boredom (dis-

Fig 2. Frequently observed affective state transitions. Edge
labels are mean likelihoods of affective state transitions.
Grey arrows represent transitions that were predicted by the
theoretical model but were not significant. The dashed
arrow represents a transition that was marginally significant
but not predicted. *p < .10, **p < .05

5

engaging from being stuck) and Boredom → Frustration (being frustrated due to
forced effort) links in the earlier data [16].

How are instructional scaffolds related to affect transitions? To answer this
question we looked at the differences between the scaffolding and fadeout phases of
the study, as previously described. We discarded the first 5 minutes of the scaffolding
phase to allow for a “warm-up” period during which participants were acclimating to
the learning environment. We also discarded the 25 to 30 minutes portion, which was
the debugging task in the fadeout phase. The debugging task was significantly differ-
ent from the problem-solving nature of the coding portions, and so we excluded it
from the current analysis to increase homogeneity. Differences between likelihoods of
the five significant or marginally significant transitions from Figure 2 were investi-
gated with paired samples t-test (see Table 1).

Table 1. Means and standard deviations (in parentheses) for common transitions in the
scaffolding phase (5-25 minutes) and the coding portion of the fadeout phase (30-40 minutes).

Transition Scaffolding Fadeout Coding N
Flow/Engagement → Confusion **.115 (.308) **.354 (.432) 20
Confusion → Flow/Engagement .101(.241) .029(.331) 27
Confusion → Frustration .105 (.276) .184 (.416) 27
Frustration → Confusion .047 (.258) .116 (.445) 21
Boredom → Flow/Engagement .096 (.166) .226 (.356) 14

*p < .10, **p < .05

The likelihood of participants transitioning from flow/engagement to confusion

was significantly higher in the fadeout phase compared to the scaffolding phase. This
may be attributed to the fact that participants have hints and explanations in the scaf-
folding phase, so in the event of a confusing impasse, a hint may be helpful in resolv-
ing the impasse, thereby allowing participants to return to a state of flow/engagement.
With no such hints, confused participants may become more frustrated in the fadeout
phase, as evidenced by a trend in this direction. This finding is as expected from the
theoretical model, which states that confusion can lead to frustration when goals are
blocked and the student has limited coping potential (e.g. being unable to progress on
an exercise in this case).

Although not significant, there also appears to be an increase in the Boredom →
Flow/Engagement affect transition in the fadeout phase. It is possible that too much
readily available assistance prevents students from re-engaging on their own.

Are affective transitions predictive of learning outcomes? To determine what
affective state transitions were linked to performance on the programming task, we
correlated the likelihood of affect transitions with the performance metrics described
in the Methods. In previous work we found correlations between performance and the
proportions of affective states experienced by students [15]. Hence, when examining
the correlations between affect transitions and performance, partial correlations were
used to control for the proportions of the affective states in the transitions.

6

Table 2 lists correlations between frequent transitions and performance. These in-
clude correlations between affect transitions in the scaffolding phase with perfor-
mance in the scaffolding phase (Scaffolding column) and transitions in the fadeout
phase with performance in the fadeout coding phase (Fadeout Coding 1). We also
correlated transitions in the scaffolding phase with performance in the fadeout coding
phase (Fadeout Coding 2). This allows us to examine if affect transitions experienced
during scaffolded learning were related to future performance when learning scaffolds
were removed. Due to the small sample size, in addition to discussing significant
correlations, we also consider non-significant correlations approaching 0.2 or larger to
be meaningful because these might be significant with a bigger sample. These correla-
tions are bolded in the table.

Table 2. Correlations between affect transitions and performance.

Transition Scaffolding Fadeout
Coding 1

Fadeout
Coding 2

Flow/Engagement → Confusion .046 -.094 -.098
Confusion → Flow/Engagement -.274 -.256 *-.365
Confusion → Frustration .114 **.499 **.424
Frustration → Confusion *-.368 .051 -.275
Boredom → Flow/Engagement -.034 .050 -.063

*p < .10, **p < .05

The correlations were illuminating in a number of respects. The Confusion →

Flow/Engagement transition correlated negatively with performance. This is contrary
to the theoretical model which would predict a positive correlation to the extent that
confused learners return to a state of flow/engagement by resolving troublesome im-
passes with effortful problem solving. It is possible that students who frequently expe-
rienced this transition were doing so by taking advantages of hints as opposed to re-
solving impasses on their own. This would explain the negative correlation between
Confusion → Flow/Engagement and performance.

To investigate this possibility we correlated hint usage in the scaffolding phase
with the Confusion → Flow/Engagement transition, controlling for the proportion of
confusion and flow/engagement. The number of hints used in the scaffolding phase
correlated positively, though not significantly, with the Confusion →
Flow/Engagement transition in the scaffolding phase (r = .297) and the fadeout cod-
ing phase (r = .282). Additionally, hint usage correlated negatively with score in the
scaffolding phase (r = -.202) and the fadeout coding phase (r = -.506). This indicates
that students using hints tended to experience the Confusion → Flow/Engagement
transition more (as expected) but this hindered rather than helped learning because
students were not investing the cognitive effort to resolve impasses on their own.

Similarly, the correlation between Confusion → Frustration and performance is in-
consistent with the theoretical model, which would predict a negative relationship
between these variables. This unexpected correlation could also be explained on the
basis of hint usage. Specifically, the number of hints used in the scaffolding phase

7

correlated negatively, though not significantly, with the Confusion → Frustration
transition in the scaffolding phase (r = -.258) and the fadeout coding phase (r = -
.171). This finding suggests that although hints can alleviate the Confusion → Frus-
tration transition, learning improved when students are able to resolve impasses on
their own, which is consistent with the theoretical model.

Finally, the correlation between Frustration → Confusion was in the expected di-
rection. The Frustration → Confusion transition occurs when a student experience
additional impasses while in the state of frustration. This transition is reflective of
hopeless confusion, which is expected to be negatively correlated with performance,
as revealed in the data.

4 General Discussion

Previous research has shown that some affective states are conducive to learning in
the context of computer programming education while others hinder learning.
Flow/engagement is correlated with higher performance, while confusion and bore-
dom are correlated with poorer performance [10, 15]. Transitions between affective
states are thus important because they provide insight into how students enter into an
affective state. Affect-sensitive ITSs for computer programming may be able to use
this information to better predict affect, intervening when appropriate to encourage
the flow/engagement state and minimize the incidence of boredom and frustration.

We found that the presence or absence of instructional scaffolds were related the
affect transitions experienced by students, especially the Flow/Engagement → Confu-
sion transition. Our findings show that this transition is related to the presence of
hints, a strategy which might be useful in future affect-sensitive ITS design for com-
puter programming students. Similarly, we found that instructional scaffolds were
related to the Boredom → Flow/Engagement transition, which is not part of the theo-
retical model. Future work on ITS design might also need to take into account this
effect and moderate the availability of scaffolds to promote this affect transition.

The affect transitions that we found partially follow the predictions of the theoreti-
cal model. Impasses commonly arise in computer programming, particularly for nov-
ices, when they encounter learning situations with which they are unfamiliar. New
programming language keywords, concepts, and error messages present students with
impasses that must be resolved before the student will be able to continue. Unresolved
impasses can lead to frustration and eventually boredom. The alignment between the
theoretical model and the present data demonstrates the model’s applicability and
predictive power in the context of learning computer programming.

That being said, not all of the affect transitions we found matched predictions of
the theoretical model. This includes lack of data to support the predicted Frustration
→ Boredom and Boredom → Frustration transitions and the presence of an unex-
pected Boredom → Flow/Engagement transition. Limitations with this study are like-
ly responsible for some of these mismatches. The sample size was small, so it is pos-
sible that increased participation in the study might confirm some of these expected
transitions. In particular, the Boredom → Frustration transition was in the predicted

8

direction but not significant in our current sample. Additionally, we exclusively fo-
cused on affect, but ignored the intermediate events that trigger particular affective
states (e.g., system feedback, hint requests, etc.). We plan to further explore our data
by incorporating these interaction events as possible triggers for the observed transi-
tions between affective states. This will allow us to more deeply understand why
some of the predicted transitions did not occur (e.g., Frustration → Boredom) and
some unexpected transitions did (e.g., Boredom → Flow/Engagement).

It is also possible that some aspects of the model might need refinement. In par-
ticular there appears to be an important relationship between Confusion → Frustration
transitions, Confusion → Flow/Engagement transitions, performance, and hint usage.
While hints may allow students to move past impasses and re-enter a state of
flow/engagement, they may lead to an illusion of impasse resolution, which is not
useful for learning. Conversely, resolving impasses without relying on external hints
might lead a confused learner to momentarily experience frustration, but ultimately
improve learning. Future work that increases sample size and specificity of the data
(i.e., simultaneously modeling dynamics of affect and interaction events) will allow
us to further explore the interaction of hints with the theoretical model, and is ex-
pected to yield a deeper understanding of affect dynamics during complex learning.

Acknowledgment. This research was supported by the National Science Foundation
(NSF) (ITR 0325428, HCC 0834847, DRL 1235958). Any opinions, findings and
conclusions, or recommendations expressed in this paper are those of the authors and
do not necessarily reflect the views of NSF.

References
1. Haungs, M., Clark, C., Clements, J., Janzen, D.: Improving first-year success and reten-

tion through interest-based CS0 courses. Proceedings of the 43rd ACM technical sympo-
sium on Computer Science Education. pp. 589–594. ACM, New York, NY, USA (2012).

2. Fossati, D., Di Eugenio, B., Brown, C.W., Ohlsson, S., Cosejo, D.G., Chen, L.: Support-
ing Computer Science Curriculum: Exploring and Learning Linked Lists with iList. IEEE
Transactions on Learning Technologies. 2, 107–120 (2009).

3. Anderson, J.R., Skwarecki, E.: The automated tutoring of introductory computer pro-
gramming. Communications of the ACM. 29, 842–849 (1986).

4. Brusilovsky, P., Sosnovsky, S., Yudelson, M.V., Lee, D.H., Zadorozhny, V., Zhou, X.:
Learning SQL programming with interactive tools: From integration to personalization.
ACM Transactions on Computing Education. 9, 19:1–19:15 (2010).

5. Cheung, R., Wan, C., Cheng, C.: An ontology-based framework for personalized adaptive
learning. Advances in Web-Based Learning–ICWL 2010. pp. 52–61. Springer, Berlin
Heidelberg (2010).

6. Hsiao, I.-H., Sosnovsky, S., Brusilovsky, P.: Guiding students to the right questions:
adaptive navigation support in an E-Learning system for Java programming. Journal of
Computer Assisted Learning. 26, 270–283 (2010).

7. Pekrun, R.: The impact of emotions on learning and achievement: Towards a theory of
cognitive/motivational mediators. Applied Psychology. 41, 359–376 (1992).

9

8. Grafsgaard, J.F., Fulton, R.M., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Multimodal analy-
sis of the implicit affective channel in computer-mediated textual communication. Pro-
ceedings of the 14th ACM international conference on Multimodal interaction. pp. 145–
152. ACM, New York, NY, USA (2012).

9. Lee, D.M.C., Rodrigo, M.M.T., Baker, R.S.J. d, Sugay, J.O., Coronel, A.: Exploring the
relationship between novice programmer confusion and achievement. In: D’Mello, S.,
Graesser, A., Schuller, B., and Martin, J.C. (eds.) Affective Computing and Intelligent In-
teraction. pp. 175–184. Springer, Berlin Heidelberg (2011).

10. Rodrigo, M.M.T., Baker, R.S.J. d, Jadud, M.C., Amarra, A.C.M., Dy, T., Espejo-Lahoz,
M.B.V., Lim, S.A.L., Pascua, S.A.M.S., Sugay, J.O., Tabanao, E.S.: Affective and behav-
ioral predictors of novice programmer achievement. SIGCSE Bulletin. 41, 156–160
(2009).

11. D’Mello, S., Graesser, A.: Feeling, thinking, and computing with affect-aware learning
technologies. In: Calvo, R.A., D’Mello, S., Gratch, J., and Kappas, A. (eds.) Handbook of
Affective Computing. Oxford University Press (in press).

12. D’Mello, S., Lehman, B., Sullins, J., Daigle, R., Combs, R., Vogt, K., Perkins, L.,
Graesser, A.: A time for emoting: When affect-sensitivity is and isn’t effective at promot-
ing deep learning. In: Aleven, V., Kay, J., and Mostow, J. (eds.) Intelligent Tutoring Sys-
tems. pp. 245–254. Springer, Berlin Heidelberg (2010).

13. Forbes-Riley, K., Litman, D.: Benefits and challenges of real-time uncertainty detection
and adaptation in a spoken dialogue computer tutor. Speech Communication. 53, 1115–
1136 (2011).

14. Khan, I.A., Hierons, R.M., Brinkman, W.P.: Mood independent programming. Proceed-
ings of the 14th European Conference on Cognitive Ergonomics: Invent! Explore! pp. 28–
31. ACM, New York, NY, USA (2007).

15. Bosch, N., D’Mello, S., Mills, C.: What Emotions Do Novices Experience During their
First Computer Programming Learning Session? Proceedings of the 16th International
Conference on Artificial Intelligence in Education (AIED 2013) (in press).

16. D’Mello, S., Graesser, A.: Dynamics of affective states during complex learning. Learn-
ing and Instruction. 22, 145–157 (2012).

17. D’Mello, S., Lehman, B., Pekrun, R., Graesser, A.: Confusion can be beneficial for learn-
ing. Learning and Instruction. (in press).

18. Inventado, P.S., Legaspi, R., Cabredo, R., Numao, M.: Student learning behavior in an
unsupervised learning environment. Proceedings of the 20th International Conference on
Computers in Education. pp. 730–737. National Institute of Education, Singapore (2012).

19. McQuiggan, S.W., Robison, J.L., Lester, J.C.: Affective transitions in narrative-centered
learning environments. In: Woolf, B.P., Aïmeur, E., Nkambou, R., and Lajoie, S. (eds.)
Intelligent Tutoring Systems. pp. 490–499. Springer, Berlin Heidelberg (2008).

20. Rosenberg, E.L., Ekman, P.: Coherence between expressive and experiential systems in
emotion. Cognition & Emotion. 8, 201–229 (1994).

21. D’Mello, S., Taylor, R.S., Graesser, A.: Monitoring affective trajectories during complex
learning. Proceedings of the 29th annual meeting of the cognitive science society. pp.
203–208. Cognitive Science Society, Austin, TX (2007).

10

Towards Deeper Understanding of
Syntactic Concepts in Programming

Sebastian Gross, Sven Strickroth, Niels Pinkwart, and Nguyen-Thinh Le

Clausthal University of Technology, Department of Informatics
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
{sebastian.gross,sven.strickroth}@tu-clausthal.de
{niels.pinkwart,nguyen-thinh.le}@tu-clausthal.de

Abstract. Syntactic mistakes and misconceptions in programming can
have a negative impact on students’ learning gains, and thus require par-
ticular attention in order to help students learn programming. In this pa-
per, we propose embedding a discourse on syntactic issues and student’s
misconceptions into a dialogue between a student and an intelligent tu-
tor. Based on compiler (error) messages, the approach aims to determine
the cause for the error a student made (carelessness, misconception, or
lack of knowledge) by requesting explanations for the violated syntactic
construct. Depending on that cause, the proposed system adapts dialogue
behaviours to student’s needs by asking her to reflect on her knowledge
in a self-explanation process, providing error-specific explanations, and
enabling her to fix the error herself. This approach is designed to encour-
age students to develop a deeper understanding of syntactic concepts in
programming.

Keywords: intelligent tutoring systems, programming, dialogue-based tutoring

1 Introduction

Programming is a useful skill and is related to several fields of study as econ-
omy, science, or information technology. Thus, teaching basics of programming
is part of many curricula in universities and higher education. Programming
is often taught bottom-up: First, syntactic aspects and low-level concepts are
presented to students (e. g. variable declarations, IF, WHILE constructs, . . . in
the object-oriented programming paradigm). Then, iteratively higher-level con-
cepts are taught (e. g. methods, recursion, usage of libraries, . . .). Learning a
programming language, however, cannot be approached theoretically only. It re-
quires a lot of practice for correct understanding of abstract concepts (technical
expertise) as well as logical and algorithmic thinking in order to map real-world
problems to program code. Studies [8, 17] and our own teaching experiences
have shown that studying programming is not an easy task and many students
already experience (serious) difficulties with the basics: writing syntactically cor-
rect programs which can be processed by a compiler.

Source code is the basis for all programs, since without it algorithms can-
not be executed and tested. Here, testing does not only mean testing done by

11

students themselves. Often tutorial and/or submission systems [7, 18] are used
by lecture advisors in order to optimize their workflow and to provide students
some further testing opportunities. These tests often focus on the algorithms,
check program outputs given a specific input and require runnable source code.

Creating correct source code requires good knowledge and strict observance
of the syntax and basic constructs of the programming language. Yet, students
often use an integrated development environment (IDE) from the very beginning.
Here, code templates and also possible solutions for syntactic errors are offered.
Based on our experience over several years of teaching a course on “Foundations
of programming” in which Java is introduced and used as a main programming
language, we suppose that these features (code templates provided by an IDE)
possibly hinder learning and deeper understanding: Novice programmers seem to
use these features and suggestions (which are actually addressed to people who
already internalized the main syntactic and semantic concepts of programming)
blindly. As a result, students are often not able to write programs on their own
(e. g. on paper) and do not understand the cause of errors.

In this paper, we propose a new tutoring approach which initiates a dialogue-
based discourse between a student and an intelligent tutor in case of a syntactic
error. The intelligent tutor aims at detecting a possible lack of knowledge or an
existing misconception as well as suggesting further readings and correcting the
misconception, respectively. The remainder of this paper is organized as follows:
First, in Section 2, we give an overview of the state of the art of intelligent
learning systems in programming. In Section 3, we then describe our approach
in more detail, illustrate an exemplary discourse, and characterize possible ap-
proaches for an implementation. Finally, we discuss our approach in Section 4,
draw a conclusion and point out future work in Section 5.

2 Intelligent Learning Systems in Programming

In recent years, Intelligent Tutoring Systems (ITSs) have found their way in-
creasingly into classrooms, university courses, military training and professional
education, and have been successfully applied to help humans learn in various
domains such as algebra [10], intercultural competence [16], or astronaut train-
ing [1]. Constraint-based and cognitive tutor systems are the most established
concepts to build ITSs, and have shown to have a positive impact on learning [14].
In the domain of programming, several approaches have been successfully applied
to intelligently support teaching of programming skills using artificial intelli-
gence (AI) techniques. In previous work [12], we reviewed AI-supported tutoring
approaches for programming: example-based, simulation-based, collaboration-
based, dialogue-based, program analysis-based, and feedback-based approaches.

Several approaches for building ITSs in the domain of programming are based
on information provided by compilers. The Expresso tool [6] supports students
in identifying and correcting Java programming errors by interpreting Java com-
piler error messages and providing feedback to students based on these messages.
JECA is a Java error correcting algorithm which can be used in Intelligent Tu-
toring Systems in order to help students find and correct mistakes [19]. The

12

corresponding system prompted learner whether or not the system shall auto-
matically correct found errors. Coull and colleagues [3] suggested error solutions
to learners based on compiler messages by parsing these messages and compar-
ing them to a database. These approaches aim to support learners in finding
and correcting syntactic errors without explicitly explaining these issues, and,
thus, did not ensure that a learner internalizes the underlying concept. Help-
MeOut [5], however, is a recommender system based on compiler messages and
runtime exceptions which formulated queries to a database containing error-
specific information in order to recommend explanations for students’ mistakes.
The underlying database could be extended by users’ input generated via peer
interactions. This approach did not allow a discourse in order to determine stu-
dent’s knowledge or to correct possible misconceptions in student’s application
of knowledge, but provides solutions to students without encouraging students’
learning. In our approach, we propose a dialogue-based discourse between a stu-
dent and a tutor which aims at identifying the cause of the syntactic error, and
at ensuring that the student gains a deeper understanding of the underlying
syntactic concept she violated.

3 Solution Proposal

Programmers need to master syntactic and semantic rules of a programming lan-
guage. Using integrated development environments such as Eclipse or Netbeans
supports experienced programmers in finding and correcting careless mistakes
and typos, and thus help them to efficiently focus on semantic issues. Novice pro-
grammers, however, who are still learning a programming language and, thus, are
probably not entirely familiar with the syntactic concepts might be overwhelmed
by messages provided by compilers. Interpreting error messages and correcting
mistakes based on these messages can be a frustrating part of programming for
those learners. IDEs, indeed, help them finding and correcting an error, but also
impede learner’s learning if learners follow IDEs’ suggestion without reflecting
on these hints and understanding why an error occurred.

How well programmers are able to find and correct syntactic mistakes strongly
depends on the quality of messages and hints provided by compilers or IDEs [2,
13, 15]. Following previous work in the field of intelligent supporting systems
for programming, we propose to provide guidance to novice programmers based
on compiler (error) messages in order to help them master syntactic issues of
programming languages. Instead of enriching compiler messages, we aim to de-
termine student’s knowledge about a specific violated syntactic construct. De-
pending on a student’s level of knowledge, we propose to adapt the system’s
learning support to student’s individual needs. For this, we distinguish three
causes for syntactic errors:

E1 Errors caused by carelessness,
E2 Errors caused by lack of knowledge,
E3 Errors caused by misconceptions.

In order to determine which one of the three causes applies to a specific er-
ror, we propose to initiate a discourse between the learner and an intelligent

13

tutor (shown in Figure 1). Information provided by a compiler can be used to
identify an erroneous part and the syntactic concept the student violated in
order to lead the discourse to corresponding syntactic aspects. Embedded in
dialogues and backed up by a knowledge database, the tutor first aims to de-
termine whether or not the student is able to explain the underlying concept of
the violated statement or syntactic expression. Our approach requires a knowl-
edge base of the most typical errors of students. For this purpose, we used data
collected in the submission system GATE [18]. We used GATE in our introduc-
tory Java teaching courses since 2009. This system supports the whole workflow
from task creation, file submission, (limited) automated feedback for students to
grading. We analyzed and categorized 435 compiler outputs of failed Java code
compilations of student solutions: The ten most common syntax errors according
to the compiler outputs (covering 70 % of all errors) are missing or superfluous
braces (56 cases), usage of missing classes (e. g. based on an incomplete upload;
45), mismatching class names (according to the file name; 37), usage of unde-
clared variables (35), problems with if-constructs (23), usage of incompatible
types (21), method definitions within other methods (primarily within the main
method; 19), usage of undeclared methods (18), missing return statements in
methods (14), and problems with SWITCH statements (12).

Just as experienced programmers also novice programmers make mistakes
which are caused by carelessness (E1, e. g. a typo). In this case students are
able to correctly and completely explain the concepts. The tutor then confirms
the student’s correct explanation, and students are able to fix the error without
any further help. Errors caused by lacks of knowledge or misconception in the
application of the knowledge, however, require special attention. This is the case
if the student is not able to correctly and/or completely explain the underlying
concept of a statement or syntactic expression which was violated. Then the
tutor is not able to recognize student’s explanation and distinguishes whether

Fig. 1: Dialogue-based identification of cause for syntactic error

14

a lack of knowledge or a misconception caused the error by requesting further
explanations from students. If a lack of knowledge is detected (E2), the tutor
then suggests how to correct the error or points to the part of a (video) lecture
explaining the violated concept. In the other case, if a misconception is detected
(E3), the tutor changes its role in the discourse in order to revise the student’s
wrong and/or incomplete explanation. In this error-specific dialogue, the tutor
then tries to explain the underlying concept the student violated. Therefore, the
tutor could then provide step-by-step explanations using the knowledge base. To
evaluate student understanding of single steps of explanations, the tutor could
ask the student to confirm whether or not she understood the explanation, to
ask her to complete/correct incomplete/erroneous examples covering the under-
lying syntactic concept, or to assess student’s knowledge in question and answer
manner.

In summary, we propose a dialogue-based intelligent tutor which initially
interprets compiler (error) messages in order to identify the syntactic concept
the student violated. Based on the compiler information, the tutor initiates a
discourse with the student where it determines the cause of the error (E1, E2
or E3). In a deeper examination of student’s knowledge, the tutor uses a knowl-
edge base in order to impart and deepen the concept which the syntactic error
corresponds to. The tutor uses a computational model that is capable of au-
tomatically evaluating student’s responses on tutor’s questions. The goal is to
correct misconceptions or to suggest further readings in order to fill lacks of
knowledge and enable students to fix their mistakes in their own this way. In
Section 3.2, we explain how such a model can be implemented.

3.1 Exemplary Dialogue-Based Discourse

In the above, we introduced typical syntactic errors that were made by students
who attended a course on “Foundations of programming”. The dataset con-
tained students’ exercise submissions of one of our introductory Java courses.
To illustrate our approach (described in Section 3), we discuss a dialogue-based
discourse exemplary for one of those typical errors (see Figure 2). A typical er-
ror that often occurred in students’ submissions was that the implementation
of a condition statement (IF construct) did not match the underlying syntactic
concept. In the first dialogue (shown in Figure 2b), the tutor asks the student
to explain the IF construct and, because it is part of an if-statement, what a
boolean expression is. Here, the student is able to explain both concepts, and
thus the mistake seems to have been caused by carelessness and the tutor con-
firms the student’s explanations. In the second dialogue (shown in Figure 2c),
the student gives an incomplete explanation on tutor’s request. The tutor, con-
sequently, asks the student to explain the condition in more detail which the
student is not able to do. At that point, the tutor switches from requesting to
providing explanations, and aims at deepening student’s knowledge. Finally, the
tutor aims at evaluating whether the student understood its explanations by
asking a multiple-choice-question. Depending on the student’s answer, the tu-
tor can then assess whether the error was caused by a misconception or lack of
knowledge. In the one case, the student is able to correctly respond to tutor’s

15

(b) Dialogue 1 (c) Dialogue 2

Fig. 2: Dialogue-based discourse between student and intelligent tutor

question which indicates a misconception that could be corrected during the
discourse. In the other case, the student is not able to correctly respond to the
tutor’s question which indicates lack of knowledge. Here, the tutor might suggest
the student to repeat appropriate lecture(s)/exercise(s) in order to acquire the
necessary knowledge.

3.2 Technical Implementation

In the dialogue-based approach proposed in this paper we need to distinguish
two types of student’s answers. The first one consists of explanations about a
concept upon request of the system, and the second one includes short answers
on error-specific examples and questions.

In order to understand a student’s explanation on a programming concept
we either provide her options to be chosen or allow her to express the explana-
tion in a free form. In the first case, the system can understand the student’s
explanation by associating each template with a classifier of the error type. For
example, in order to determine whether the student has made an error in the
IF condition statement by carelessness, by misconception or lack of knowledge,

16

we can ask the student to explain this concept and provide her with three pos-
sible answers: 1) The IF construct can be used to conditionally execute a part
of code depending on a boolean expression., 2) The IF construct can be used to
express factual implications, or hypothetical situations and their consequences.,
3) I have no idea. Obviously, the first answer is correct and the second answer
is a misconception because students might refer the IF construct of a program-
ming language (e. g., Java) to the IF used in conditional sentences in the English
language. The third option indicates that the student has lack of the condition
concept. This approach seems to be easy to implement, but requires a list of
typical misconceptions of students. If we allow the student to express an expla-
nation in a free form, the challenge is to understand possible multi-sentential
explanations. In order to deal with this problem Jordan and colleagues [9] sug-
gested to process explanations through two steps: 1) single sentence analysis,
which outputs a first-order predicate logic representation, and 2) then assessing
the correctness and completeness of these representations with respect to nodes
in correct and buggy chains of reasoning.

In order to understand short answers on error-specific examples and ques-
tions, we can apply the form-filling approach for initiating dialogues. That is, for
each question/example, correct answers can be anticipated and authored in the
dialogue system. This approach is commonly used in several tutoring systems,
e. g., the dialogue-based EER-Tutor [20], PROPL [11], AUTOTUTOR [4]. In
addition to the form-filling approach, the Latent Semantic Analysis technique
can also be deployed to check the correctness in the natural language student’s
answer by determining which concepts are present in a student’s utterance (e. g.,
AUTOTUTOR).

4 Discussion

Our approach relies on the compiler’s output. So, ambiguity of compiler mes-
sages is a crucial issue (also for students). The standard Java compiler works
by following a greedy policy which causes that errors are reported for the first
position in the source code where the compiler recognized a mismatch despite
the fact that the cause of the error might lie somewhere else. There are also dif-
ferent parsers that use other policies and are capable of providing more specific
feedback (e. g. the parser of the Eclipse IDE). Taking the code fragment “int i :
5;”, e.g., the standard Java compiler outputs that it expects a “;” instead of the
colon. The Eclipse compiler, however, outputs, that the colon is wrong and sug-
gests that the programmer might have wanted to use the equal character “=”.
This difference in the compilers becomes even more manifest for lines where an
opening brace is included. If there is an error in this line before the brace, the
whole line is ignored by the standard Java compiler and a superfluous closing
brace is reported at the end of the source code. Here, using a better parser (or
even a custom parser) could improve error recognition regarding the position of
the error and the syntactic principles violated by the programmer. Additional
and more detailed information can help to cover more syntactic issues and to ap-
ply a more sophisticated discourse between learners and a dialogue-based tutor.

17

Generally, it is sufficient for our approach that a compiler reports the correct
line and the affected basic structure of an error (e. g. If-statement), since our ap-
proach does not aim for directly solving the error, but supporting the students
to fix the mistake on their own. This, however, requires a good knowledge base
of the basic structures about a programming language.

5 Conclusion and Future Work

In this paper, we proposed a dialogue-based approach interpreting compiler (er-
ror) messages in order to determine syntactic errors students made, and thus to
adapt the behaviour of the intelligent tutor to the individual needs of students
depending on three causes of errors (carelessness, lack of knowledge, or miscon-
ception). Our proposed system initiates a dialogue asking for explanations of the
violated syntactic construct and determines which cause applies for the affected
violated construct. Then the proposed approach adapts dialogue behaviours to
student’s needs confirming correct knowledge or providing error-specific expla-
nations. We argued that this method works better than just presenting error
messages or suggestions for fixing an error, because it encourages students to
reflect on their knowledge in a self-explanation process and finally enables them
to fix the errors themselves.

In future, we plan to implement our approach and test it with students in
an introductory programming course. Initially, we will apply self-explanation in
human-tutored exercises in order to gather dialogues which can be used to build
a model for our approach.

References

[1] K. Belghith, R. Nkambou, F. Kabanza, and L. Hartman. An intelligent simulator
for telerobotics training. IEEE Transactions on Learning Technologies, 5(1):11–19,
2012.

[2] B. Boulay and I. Matthew. Fatal error in pass zero: How not to confuse novices.
In G. Veer, M. Tauber, T. Green, and P. Gorny, editors, Readings on Cognitive
Ergonomics Mind and Computers, volume 178 of Lecture Notes in Computer
Science, pages 132–141. Springer Berlin Heidelberg, 1984.

[3] N. Coull, I. Duncan, J. Archibald, and G. Lund. Helping Novice Programmers
Interpret Compiler Error Messages. In Proceedings of the 4th Annual LTSN-ICS
Conference, pages 26–28. National University of Ireland, Galway, Aug. 2003.

[4] A. Graesser, N. K. Person, and D. Harter. Teaching Tactics and Dialog in Auto-
Tutor. International Journal of Artificial Intelligence in Education, 12:257–279,
2001.

[5] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would other
programmers do: suggesting solutions to error messages. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages
1019–1028, New York, NY, USA, 2010. ACM.

[6] M. Hristova, A. Misra, M. Rutter, and R. Mercuri. Identifying and correcting java
programming errors for introductory computer science students. In Proceedings of
the 34th SIGCSE technical symposium on Computer science education, SIGCSE
’03, pages 153–156, New York, NY, USA, 2003. ACM.

18

[7] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. Review of recent systems
for automatic assessment of programming assignments. In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, Koli
Calling ’10, pages 86–93, New York, NY, USA, 2010. ACM.

[8] T. Jenkins. A participative approach to teaching programming. In Proceedings
of the 6th annual conference on the teaching of computing and the 3rd annual
conference on Integrating technology into computer science education: Changing
the delivery of computer science education, ITiCSE ’98, pages 125–129, New York,
NY, USA, 1998. ACM.

[9] P. W. Jordan, M. Makatchev, U. Pappuswamy, K. VanLehn, and P. L. Albacete.
A natural language tutorial dialogue system for physics. In G. Sutcliffe and
R. Goebel, editors, FLAIRS Conference, pages 521–526. AAAI Press, 2006.

[10] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent
tutoring goes to school in the big city. International Journal of AI in Education,
8:30–43, 1997.

[11] H. C. Lane and K. VanLehn. A dialogue-based tutoring system for beginning
programming. In V. Barr and Z. Markov, editors, FLAIRS Conference, pages
449–454. AAAI Press, 2004.

[12] N. T. Le, S. Strickroth, S. Gross, and N. Pinkwart. A review of AI-supported
tutoring approaches for learning programming. In Accepted for the International
Conference on Computer Science, Applied Mathematics and Applications 2013,
Warsaw, Poland. Springer Verlag, 2013.

[13] G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the effectiveness of
error messages designed for novice programmers. In Proceedings of the 42nd ACM
technical symposium on Computer science education, SIGCSE ’11, pages 499–504,
New York, NY, USA, 2011. ACM.

[14] A. Mitrovic, K. Koedinger, and B. Martin. A comparative analysis of cognitive tu-
toring and constraint-based modeling. In P. Brusilovsky, A. Corbett, and F. Rosis,
editors, User Modeling 2003, volume 2702 of Lecture Notes in Computer Science,
pages 313–322. Springer Berlin Heidelberg, 2003.

[15] M.-H. Nienaltowski, M. Pedroni, and B. Meyer. Compiler error messages: what
can help novices? In Proceedings of the 39th SIGCSE technical symposium on
Computer science education, SIGCSE ’08, pages 168–172, New York, NY, USA,
2008. ACM.

[16] A. Ogan, V. Aleven, and C. Jones. Advancing development of intercultural com-
petence through supporting predictions in narrative video. International Journal
of AI in Education, 19(3):267–288, Aug. 2009.

[17] A. Robins, J. Rountree, and N. Rountree. Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2):137–172, 2003.

[18] S. Strickroth, H. Olivier, and N. Pinkwart. Das GATE-System:
Qualitätssteigerung durch Selbsttests für Studenten bei der Onlineabgabe
von Übungsaufgaben? In DeLFI 2011: Die 9. e-Learning Fachtagung Informatik,
number P-188 in GI Lecture Notes in Informatics, pages 115 – 126. GI, 2011.

[19] E. R. Sykes and F. Franek. Presenting jeca: a java error correcting algorithm for
the java intelligent tutoring system. In Proceedings of the IASTED Conference on
Advances in Computer science, 2004.

[20] A. Weerasinghe, A. Mitrovic, and B. Martin. Towards individualized dialogue sup-
port for ill-defined domains. International Journal of AI in Education, 19(4):357–
379, Dec. 2009.

19

An Intelligent Tutoring System for Teaching FOL

Equivalence

Foteini Grivokostopoulou, Isidoros Perikos, Ioannis Hatzilygeroudis

University of Patras, Department of Computer Engineering &Informatics, 26500, Hellas

(Greece)

{grivokwst,perikos,ihatz @ceid.upatras.gr}

Abstract. In this paper, we present an intelligent tutoring system developed to

assist students in learning logic. The system helps students to learn how to con-

struct equivalent formulas in first order logic (FOL), a basic knowledge repre-

sentation language. Manipulating logic formulas is a cognitively complex and

error prone task for the students to deeply understand. The system assists stu-

dents to learn to manipulate and create logically equivalent formulas in a step-

based process. During the process the system provides guidance and feedback

of various types in an intelligent way based on user’s behavior. Evaluation of

the system has shown quite satisfactory results as far as its usability and learn-

ing capabilities are concerned.

Keywords: Intelligent Tutoring System, Teaching Logic, First Order Logic,

Logic Equivalence

1 Introduction

The advent of the Web has changed the way that educational material and learning

procedures are delivered to the students. It provides a new platform that connects

students with educational resources which is growing rapidly worldwide giving new

possibilities to students and tutors and offering better, cheaper and more efficient and

intensive learning processes. ITSs constitute a popular type of educational systems

and are becoming a fundamental mean of education delivery. Their main characteris-

tic is that they provide instructions and feedback tailored to the learners and perform

their tasks mainly based on Artificial Intelligence methods. The teacher’s role is also

changing and is moving from the face-to-face knowledge transmission agent to the

specialist who designs the course and guides and supervises the student’s learning

process [10]. ITSs have been used with great success in many challenging domains to

offer individualized learning to the students and have demonstrated remarkable suc-

cess in helping students learn challenging content and strategies [18].

Logic is considered to be an important domain for the students to learn, but also a

very hard domain to master. Many tutors acknowledge that AI and logic course con-

tains complex topics which are difficult for the students to grasp. Knowledge Repre-

20

sentation & Reasoning (KR&R) is a fundamental topic of Logic. A basic KR&R lan-

guage is First-Order Logic (FOL), the main representative of logic-based representa-

tion languages, which is part of almost any introductory AI course and textbook. So,

teaching FOL as a KR&R language is a vital aspect. Teaching and learning FOL as

KR&R vehicle includes many aspects. During an AI course the student’s learn to

translate Natural Language (NL) text into FOL, a process also called formalization. A

NL sentence is converted into a FOL formula, which conveys the sentence’s meaning

and semantics and can be used in several logic processes, such as inference and

equivalency creation. Equivalency is a fundamental topic in logic. It characterizes two

or more representations in a language that convey the same meaning and have the

same semantics. Manipulating FOL formulas is considered to be a hard, cognitive

complex and error prone process for the students to deeply understand and implement.

In this paper, we present an intelligent tutoring system developed to assist students in

learning logic and more specifically to help students learn how to construct equivalent

formulas in FOL. The system provides interactive guidance and various types of

feedback to the students.

The rest of the paper is structured as follows. Section 2 presents related work. Sec-

tion 3 presents the logic equivalences in FOL. Section 4 presents the system architec-

ture and analyzes its functionality. Section 5 presents the logic equivalent learning.

More specifically describes the learning scenarios, the student’s interaction and the

feedback provided by the system. Section 6 presents the evaluation studies conducted

and the results gathered in real classroom conditions. Finally, Section 7 concludes our

work and provides directions for future work.

2 Related work

There are various systems created for teaching for helping in teaching logic [8] [19].

However, most of them deal with how to construct formal proofs, mainly using natu-

ral deduction. Logic Tutor [1] is an intelligent tutoring system (ITS) for learning for-

mal proofs in propositional logic (PL) based on natural deduction. As an intelligent

system, it adapts to the needs of the students via keeping user models. In [4], an intel-

ligent tutoring system is developed for teaching how to construct propositional proofs

and visualize student proof approaches to help teachers to identify error prone areas of

the students. All the above systems, although deal with learning and/or teaching logic,

they are not concerned with how to use FOL as a KR&R language.

KRRT [2] is a web–based system the main goal of which is helping students to

learn FOL as a KR&R language. The student gives his/her FOL proposal sentence

and the system checks its syntax and whether is the correct one. NLtoFOL [7] is a

web-based system developed to assist students in learning to convert NL sentences

into FOL. The student can select a NL sentence and interactively convert it in a step

based approach into the corresponding FOL. In [6], we deal with teaching the FOL to

CF (Clause Form) conversion, via a web-based interactive system. It provides a step-

by-step guidance and help during that process. Organon [5] is a web-based tutor for

basic logic courses and helps the students during practice exercises. All the above

systems, although deal with learning (or teaching) logic, they do not deal with logic

21

equivalency and how to assist students to learn how to construct logically equivalent

formulas. As far as we are aware of, there is only one system that claims doing the

latter. It is called IDEAS [11] and deals with rewriting formulas from propositional

logic into disjunctive normal form. A student is called to transform a formula by ap-

plying one transformation rule at a time. The system provides feedback to the student.

Also, the system provides a tool [12] for proving equivalences between propositional

logic formulas. However, it is restricted to propositional logic and does not deal with

FOL.

3 Logical Equivalences in FOL

FOL is the most widely used logic-based knowledge representation formalism. Higher

order logics are difficult to handle, whereas lower order logics, such as those based on

propositional calculus, are expressively poor. FOL is a KR&R language used for rep-

resenting knowledge in a knowledge base, in the form of logical formulas, which can

be used for automatically making inferences. Logical formulas or sentences explicitly

represent properties of or relations among entities of the world of a domain. In logic,

two logical formulas p and q are logically equivalent if they have the same logical

content. Logical equivalence between p and q is sometimes expressed as p⟷q. Logi-

cal equivalence definition in FOL is the same as in propositional logic, with the addi-

tion of rules for formulas containing quantifiers. Table 1 presents rules of logical

equivalence between FOL formulas.

Table 1. Rules of logical Equivalence for FOL

Equivalence Name

pT⟷p , pF ⟷ p Identity Laws

pT ⟷T , pF ⟷F Domination Laws

pp⟷p , pp⟷p Idempotent Laws

(p) ⟷ p Double Negation Law

pq ⟷qp , pq ⟷qp Commutative Laws

(pq) r ⟷ p (qr) , (pq) r ⟷ p (qr) Associative Laws

(pq) ⟷(¬pq) Implication Elimination

¬(p q) ⟷ ¬p ¬q , ¬(p q) ⟷ ¬p ¬q De Morgan's Laws

x P(x) ⟷x P(x) , x P(x) ⟷x P(x) De Morgan's FOL

p (qr) ⟷ (p q) (pr)

p (qr) ⟷ (pq) (pr)

Distribution Laws

x (P(x) Q(x))⟷ x P(x) xQ(x)

x (P(x) Q(x))⟷ x P(x) xQ(x)

Distribution Laws FOL

4 System Architecture and Function

The architecture of our system is depicted in Fig.1. It consists of five units: Domain

Model (DM), Student Model (SM), Student Interface (SI), Interface Configuration

(IC) and Intelligent Data Unit (IDU).

22

http://en.wikipedia.org/wiki/Logic

Domain Model (DM) contains knowledge related to the subject to be taught as well

as the actual teaching material. It focuses on assisting students to learn how to create

FOL-equivalent formulas and so syntax of FOL and equivalence rules constrains are

stored in the domain model.

Student Model (SM) unit is used to record and store student related information.

Also contains the system’s beliefs regarding the student’s knowledge of the domain

and additional information about the user, such as personal information and character-

istics. SM enables the system to adapt its behavior and its pedagogical decisions to the

individual student who uses it [3]. Also it sketches the cognitive process that happens

in the student learning sessions.

Student interface (SI) is the interactive part of the system. Through SI, a student in-

itially subscribes to the system. During subscription, the required personal infor-

mation, such as name, age, gender, year of study and email are stored. After subscrip-

tion, the student can anytime access the system. SI is also responsible for configuring

the interface to adapt to the needs of the specific session.

Fig.1. System architecture and its components.

 Interface Configuration (IC) unit is responsible for configuring the student inter-

face during the learning sessions, based on the guidelines given by the intelligent data

unit. So, the student interface is dynamically re-configured to adapt to the needs of the

specific session.

 Intelligent Data Unit (IDU) interacts with IC and its main purpose is to provide

guidance and feedback to the students and help during application of the logical

equivalence rules. It is a rule-based system that based on the input data from user

interface decides on which reconfigurations should be made to the user interface or

which kind of interaction will be allowed or given to the user. It is also responsible for

tracing user’s mistakes and handling them in terms of appropriate feedback to the

student.

 IDU deals with a student’s actions for each equivalence exercise as follows:

Interface

Configuration

(IC)

Intelligent Data Unit (IDU)

Student

Feedback Error

Mechanism

Student Interface (SI)

Student Model

(SM)

Domain Model

(DM)

23

1. Let the student select an equivalence rule to apply to the FOL formula

2. Check if the selected current equivalence rule can be applied.

 If it can, allow the student to insert his/her answer to the current rule and

go to 2.

 Otherwise, inform the student that the selected rule is not applicable,

provide proper feedback and allow select a new answer.

3. Check the student's answer (formula) to the selected rule

 If it is correct, inform his/her and go to 1.

 Otherwise: (a) Determine the error(s) made by the student. (b) Provide

feedback based on the error(s) and the corresponding equivalence rule.

(c) Allow the student to give a new answer for the selected rule and go to

1.

5 User interaction

The student interface of the system is dynamically reconfigured during a conversion

process. After the student enters the system, he/she can select any of the existing FOL

formulas/exercises and then starts its conversion into an equivalent formula. This

process is made in a step-based approach where the student, at each step, has to select

and implement a logic equivalence rule (see above, Table 1). At each step the student

can request the system’s assistance and feedback (which is based on student’s actions

and knowledge state). Initially, the student has to select a proper equivalence rule to

implement. All the equivalence rules are presented at the working area of student’s

interface. The student can select a rule and apply it to the formula. If the rule cannot

be applied, the system provides proper feedback messages notifying with the reason

why it cannot be applied. In contrast, if the rule can be applied, a proper work area is

created and the student can manipulate the formula and transform it by applying the

selected rule. Then the student can submit the answer (FOL formula). After the stu-

dent gives an answer, the system informs him/her whether the answer is correct or

incorrect. If it is incorrect, the system performs an analysis of the student’s answer to

find and recognize the errors made by the student. After that the student can submit

the new formula derived by the rule application.

 As an example, consider the FOL formula “(∀x)~likes(x,snow) ∼skier(x)”.

Initially the student selects to apply the implication elimination of equivalency as

illustrated in Fig. 2. The system analyses the formula and recognizes that the selected

law can be applied. So, proper configurations are made on the interface and the stu-

dent can insert his/her answer, which is the equivalent formula derived from the ap-

plication of the rule. After the student submits his/her answer, the system analyzes it

and recognizes that the implication is not removed correctly and generates the proper

feedback message(s). The feedback messages are linked to the help button and the

student can look at them by clicking on it.

5.1 Feedback

The behavior of the system is modeled to consist of two (feedback) loops, the inner

and the outer loop respectively [16]. The main role of the inner loop is to provide

24

feedback to the student as a reaction to his/her actions during an exercise, whereas the

role of the outer loop is to select the next exercise corresponding to the student’s

knowledge state. The inner loop of the system is responsible for analyzing the stu-

dent’s answer and provides the proper feedback messages. The feedback provided, in

order to enhance its effectiveness, refers to different levels of verification and elabora-

tion. Verification concerns the confirmation whether a student’s process is correct or

not, while the elaboration can address the answer and related topics, discuss particular

error(s) and guide the student towards the correct answer [15].

Fig.2. Student Interface

The categories and the types of feedback developed are based on combinations of

the classifications of feedback presented in [13] and [16]. So, the main types of feed-

back offered to the students by the system are the following.

 Minimal feedback. The system informs the student if the answer is correct or

not.

 Error-specific feedback. When a student’s answer is incorrect the system pro-

vides the proper feedback based on the errors made, indicating what makes the

answer incorrect and the reason why it does it.

 Procedural feedback. The system can provide a student with hints on what has

to do to correct a wrong answer and also what to do next.

 Bottom-out hints. The system can decide to give the correct answer of a step to

the student. This can be done after a student’s request or after constantly failure

rates and circumstances.

 Knowledge on meta-cognition. The system analyzes a student’s interactions and

behavior and can provide meta-cognitive guiding and hints.

 The system implements an incremental assistance delivery. Initially, after a stu-

dent’s incorrect action, starts by delivering minimal feedback, just noticing that there

are errors and inconsistencies in the student’s action. Error-specific feedback is of-

fered after a student’s erroneous action. Research has shown that student’s motivation

25

for understanding and learning is enhanced when errors are made [9] and the delivery

of proper feedback can help the students get a deeper understanding and revise mis-

conceptions. While a student is striving to specify the correct action, the system scales

up its assistance till the delivery of the correct action/answer. Providing the correct

answer in logic exercises-procedures are consider an important part of the system’s

assistance. Indeed, student knowledge and performance can be improved significantly

after receiving knowledge of correct response feedback, indicating the correct answer

[17]. The system never gives unsolicited hints to the student. If the student’s answer is

incorrect, the proper feedback messages are available (linked) via the help button. So,

the student can get those messages on demand, by clicking on the help button. The

pedagogical assumption indicates that when the student has the control of the timing

of the help provided by the system, there is a greater likelihood that the help messages

are received at the right time and therefore be more effective for knowledge construc-

tion [14].

6 Evaluation

We conducted an evaluation study of the system during the AI course in the fall se-

mester of the academic year 2011-2012 at our Department. 100 undergraduate stu-

dents from those enrolled in the course participated in the evaluation study. The stu-

dents had already attended the lectures covering the relevant logic concepts. The

methodology selected to evaluate the system is a pre-test/post-test, experi-

mental/control group one, where the control group used a traditional teaching ap-

proach. The students were divided into two groups of 50 students each one, of bal-

anced gender, which were named group A and group B respectively. Group A was

selected to act as the experimental group and group B as the control group. Group A

(experimental) did some homework through the system, whereas Group B (control)

did the homework without using the system and then submit the answers to the tutor

and discuss them with him.

 Initially, all students took a pre-test on logical equivalence concept. The test in-

cluded 15 FOL formulas-exercises and the students were asked to provide equivalent

FOL formulas. After that, the students of group B were given access to the system and

were asked to study for a week aiming at one 20 minutes session per day. After that

intervention, the students of both groups took a final post-test including 15 FOL for-

mulas-exercises. The two tests consisted of exercises of similar difficulty level and

the score ranged from 0 to 100.

 In order to analyze students’ performance, an independent t-test was used on the

pre-test. The mean and standard deviations of the pre-test were 45.18 and 14.73 for

the experimental group, and 47.34 and 14.01 for the control group. As the p-value

(Significant level) was 0.567 > 0.05 and t = 0.46, it can be inferred that those two

groups did not significantly differ prior to the experiment. That is, the two groups of

students had statistically equivalent abilities before the experiment. In Table 2 and

Table 3 the descriptive statistics and the t-test results from assessment of students’

learning performance are presented. The results revealed that the mean value of the

26

pre-test of the experimental group is higher than the mean value of the pre-test of the

control group. The Levene’s test confirmed the equality of variances of the control

and experimental groups for pre-test (F = 0.330, p = 0.567) and post-test (F = 3.016,

p = 0.086). Also the t-test result (p=0.000 < .05) shows a significant difference be-

tween the two groups. Thus, it implies that the students in the experimental group got

a deeper understanding in manipulating FOL formulas and created correctly equiva-

lent formulas for more FOL formulas exercises than the control group.

Table 2. Descriptive Statistics of Pre-test and Post-test

 Group N Mean SD SE

Pre-Test Group A 50 45.18 14.73 2.08

Group B 50 47.34 14.01 1.98

Post-Test

Group A 50 51.74 18.17 2.57

Group B 50 71.56 15.43 2.18

Table 3. t-test results

Equality of

 variance

F-test

for variance

t-Test for mean

F Sig. t

df Sig.(2-

tailed)

MD

Pre-Test Equal 0.33 0.567 -0.751 98 0.454 -2.16

Unequal -0.751 97.756 0.454 -2.16

Post-Test

Equal 3.016 0.086 -5.879 98 0.000 -19.8

Unequal -5.879 95.49 0.000 -19.8

 In the second part of the evaluation study, the students of group B, who had used

the system, were asked to fill in a questionnaire. The questionnaire was made to pro-

vide both qualitative and quantitative data. It included questions for evaluating the

usability of the system, asking for the students' experience and their opinions about

the impact of system in learning and understanding logical equivalence. The ques-

tionnaire consisted of nine questions and the results are presented in Table 4. Ques-

tions Q1-Q6 were based on a Likert scale (1: not at all, 5: very much). Questions 7-8

were open type questions and concerned strong and weak points of the system or

problems faced and also improvements that can be made to the system. Finally, ques-

tion 9 was about spent time to cope with the system and had three possible answers:

less than 15 min, 15-30 min and more than 30 min. Their answers show that 72% of

the students needed less than fifteen minutes and only 12% of them needed more than

30 min.

Table 4.Questionnaire Results.

 ANSWERS (%)

Q QUESTIONS 1 2 3 4 5

1 How you rate your overall experience? 0 0 20 28 52

27

2 How much the system did assisted you to learn logical equivalence? 0 0 18 32 50

3 How helpful was the feedback provided? 0 4 12 36 48

4 Did you find the interface of the system helpful? 0 0 28 36 36

5 When stuck, did the system provide enough help so that you could

fix the problem(s)
0 2 14 34 50

6 Do you feel more confident in dealing with logical equivalence

transformations?
0 4 16 38 42

The students' answers to Q1-Q6 indicate that the majority of the them enjoyed inter-

acting with the system and 82% of them believe that the system helped them in learn-

ing FOL equivalences. Also, 84% of them found the feedback provided by the system

very useful and that assisted them in manipulating FOL formulas and creating equiva-

lent ones.

7 Conclusions and Future Work

Logic is acknowledged by tutors to be a hard domain for students to grasp and deeply

understand. It contains complex cognitive processes and students face many difficul-

ties to understand and correctly implement them. Manipulating FOL formulas and

transforming them into equivalent forms is a fundamental topic in logic, but also hard

and error prone for students.

 In this paper, we introduce an intelligent tutoring system developed to help stu-

dents in learning how to deal with FOL equivalent formulas. It provides the student an

interactive way to manipulate FOL formulas and transform them into equivalent

form(s) by applying equivalence rules (or chain of rules) or proper combinations of

them. The student, at each stage of the transformation, gets proper guidance and feed-

back by the system on his/her actions. Regarding the usefulness of the system, the

reactions of the students were very encouraging. An evaluation study was conducted

to test the system impact on student’s learning. The results revealed that the experi-

mental group outperformed the control group significantly on the post-test exercises.

According to the results, the students of the experimental group got a deeper under-

standing of the logical transformations and significantly enhanced their knowledge.

Moreover, the system helped the students to improve their logic conceptual under-

standing and also to increase their confidence in handling equivalence.

 However there are some points that the system could be improved. A direction for

future research would be the development of an automatic assessment mechanism to

assess the student's performance during the learning interaction with the system. This

could help the system better adapt to the student.

Acknowledgements

This work was supported by the Research Committee of the University of Patras,

Greece, Program “KARATHEODORIS”, project No C901.

28

References

1. Abraham, D., Crawford, L., Lesta, L., Merceron, A.,Yacef, K.: The Logic Tutor: A multi-

media presentation. Electronic Journal of Computer-Enhanced Learning, (2001)

2. Alonso, J.A., Aranda, G.A., Martin-Matceos, F.J.: KRRT: Knowledge Representation and

Reasoning Tutor. In: Moreno Diaz, R., Pichler, F., Quesada Arencibia, A. (eds.)

EUROCAST LNCS, vol. 4739, pp.400–407, Springer, Heidelberg (2007)

3. Brusilovsky, P.: Student model centered architecture for intelligent learning environment.

In Proc. of Fourth International Conference on User Modeling, Hyannis, MA, pp.31-36

(1994)

4. Croy, M., Barnes, T., Stamper, J.: Towards an Intelligent Tutoring System for propositional

proof construction. In: Brey, P., Briggle, A., Waelbers, K. (eds.) European Computing and

Philosophy Conference, pp.145–155,Amsterdam (2007)

5. Dostálová, L., Lang.J.: Organon - the web-tutor for basic logic courses Logic Journal of the

IGPL 15(4), pp.305-311, (2007)

6. Grivokostopoulou, F., Perikos I., Hatzilygeroudis I.: A Web-based Interactive System for

Learning FOL to CF conversion In Proc. of the IADIS International Conference e-Learning

2012, Lisbon, Portugal, pp.287-294, (2012)

7. Hatzilygeroudis, I., Perikos, I.: A web-Based Interactive System for Learning NL to FOL

Conversion. New Directions in Intelligent Interactive Multimedia Systems and Services-2

Studies in Computational Intelligence, vol. 226, pp.297-307 (2009)

8. Hendriks, M., Kaliszyk, C., van Raamsdonk, F., and Wiedijk, F.: Teaching logic using a

state-of-the-art proof assistant. Acta Didactica Napocensia, 3(2): 35-48, (2010)

9. Hirashima, T., Horiguchi, T., Kashihara, A., Toyoda, J.:Error-Based Simulation for Error-

Visualization and Its Management. J. of Artificial Intelligence in Education, vol.9, pp.17-31

(1998).

10. Huertas, A.: Teaching and Learning Logic in a Virtual Learning Environment. Logic Jour-

nal of the IGP 15(4), pp.321–331 (2007)

11. Lodder, J., Passier, H., Stuurman, S.:Using IDEAS in teaching logic, lessons learned. Com-

puter Science and Software Engineering, In Proc. of International Conference Computer

Science and Software Engineering, vol. 5, pp.553–556 (2008).

12. Lodder, J., Heeren, B.: A teaching tool for proving equivalences between logical formulae.

In Third International Congress on Tools for Teaching Logic, pp.66-80, (2011).

13. Narciss, S.: Feedback strategies for interactive learning tasks. In J. M. Spector, M. D. Mer-

rill, J. J. G. Van Merrienboer, M. P. Driscoll (Eds.), Handbook of research on educational

communications and technology 3rd ed., pp.125-143,(2008)

14. Renkl, A., Atkinson, R. K., Maier, U. H., Staley, R.:From example study to problem solv-

ing: Smooth transitions help learning. J. of Experimental Education,vol.70, pp.293–315,

(2002).

15. Shute, V.J. :Focus on formative feedback, Review of Educational Research, Vol. 78, No. 1,

pp.153–189 (2008).

16. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial Intelli-

gence in Education, 16,pp.227-265

17. Wang, S-L., Wu, P-Y.: The role of feedback and self-efficacy on Web-based learning: the

social cognitive perspective, Computers & Education vol.51 pp.1589-1598(2008).

18. Woolf, B. P. :Building intelligent interactive tutors: Student-centered strategies for revolu-

tionizing e-learning. Burlington MA: Morgan Kaufman Publishers (2009).

19. Sieg, W., Scheines, R.: Computer Environments for Proof Construction. Interactive Learn-

ing Environments 4(2), pp. 159–169 (1994).

29

Informing the Design of a Game-Based Learning

Environment for Computer Science: A Pilot Study on

Engagement and Collaborative Dialogue

Fernando J. Rodríguez, Natalie D. Kerby, Kristy Elizabeth Boyer

Department of Computer Science, North Carolina State University, Raleigh, NC 27695

{fjrodri3,ndkerby,keboyer}@ncsu.edu

Abstract. Game-based learning environments hold great promise for supporting

computer science learning. The ENGAGE project is building a game-based

learning environment for middle school computational thinking and computer

science principles, situated within mathematics and science curricula. This

paper reports on a pilot study of the ENGAGE curriculum and gameplay

elements, in which pairs of middle school students collaborated to solve game-

based computer science problems. Their collaborative behaviors and dialogue

were recorded with video cameras. The analysis reported here focuses on

nonverbal indicators of disengagement during the collaborative problem

solving, and explores the dialogue moves used by a more engaged learner to

repair a partner’s disengagement. Finally, we discuss the implications of these

findings for designing a game-based learning environment that supports

collaboration for computer science.

Keywords: Engagement, Collaboration, Dialogue, Game-Based Learning.

1 Introduction

Supporting engagement within computer science (CS) education is a central challenge

for designers of CS learning environments. More broadly, engagement is a subject of

increasing attention within the AI in Education community. A growing body of

empirical findings has revealed the importance of supporting learner engagement.

Particular forms of disengagement have been associated with decreased learning, both

overall and with respect to local learning outcomes within spoken dialogue tutoring

systems [1, 2]. Targeted interventions can positively impact engagement; for example,

metacognitive support may influence students to spend more time on subsequent

problems, and integrating student performance measures into a tutoring system allows

them to reflect on their overall performance [3]. A promising approach to support

engagement involves adding game elements to intelligent tutors or other learning

environments [4, 5] or creating game-based learning environments with engaging

narratives [6]; both approaches have been shown to increase student performance and

enjoyment in general. However, even with these effective systems, some disengaged

30

behaviors are negatively associated with learning, and the relationships between

engagement and learning are not fully understood.

Collaboration is another promising approach for supporting engagement and can be

combined with game-based learning environments [7]. Results have demonstrated the

importance of well-timed help for collaborators [8] and the promise of pedagogical

agents that support self-explanation [9]. This study considers collaboration in the

problem-solving domain of computer science, where a combination of hints and

collaboration support may be particularly helpful [10]. However, many questions

remain regarding the best sources and types of engagement support in this context.

Game-based learning environments for teaching computer science have started to

become popular in recent years. The CodeSpells game [11] aims to teach middle

school students how to program in the Java programming language. The ENGAGE

project aims to develop, implement, and evaluate a narrative-centered, game-based

learning environment that will be deployed in middle school for teaching computer

science principles. The game is designed to be played collaboratively by pairs of

students. Presently, the project is in its design and implementation phase, conducting

iterative refinement and piloting of curriculum and gameplay elements. During this

process, we aim to extract valuable lessons about how middle school students

collaborate to solve computer science problems and how this collaboration can be

supported within an intelligent game-based learning environment.

This paper reports on a pilot study of the ENGAGE curriculum and simulated

gameplay elements. In this study, pairs of students collaborated and their

collaborative behaviors and dialogue were recorded with video cameras. Nonverbal

indicators of disengagement were annotated manually across the videos. We report an

analysis of these disengagement behaviors by students’ collaborative role, and explore

the dialogue moves used by a more engaged learner to repair a partner’s

disengagement.

2 ENGAGE Game Based Learning Environment

The main goals of the ENGAGE project, which is currently in its design and

implementation phase, are to create a highly engaging educational tool for teaching

computer science to middle school students, contribute to research on the

effectiveness of game-based learning, and investigate its potential to broaden

participation of underrepresented groups in computer science. During the first year of

the project, the first draft of the curriculum to be used within the environment was

developed. The curriculum is based on the CS Principles course under development

by the College Board [12] with the goal of shifting focus from a specific

programming language (Java, in the case of the existing AP Computer Science

course) to the broader picture of computer science concepts. The CS Principles

curriculum emphasizes seven big ideas:

31

Table 1. CS Principles focused evidence statement examples

CS Principles

Number Evidence Statement

6b
Explanation of how number bases, including binary and decimal, are used

for reasoning about digital data

13a
Explanation of how computer programs are used to process information to

gain insight and knowledge

18b
Explanation of how an algorithm is represented in natural language,

pseudo-code, or a visual or textual programming language

24a Use of an iterative process to develop a correct program

30c
Explanation of how cryptography is essential to many models of

cybersecurity

1. Computer science is a creative process

2. Abstractions can reduce unimportant details and focus on relevant ones

3. Big data can be analyzed using various techniques in order to create a new

understanding or refine existing knowledge

4. Algorithms are a sequence of steps used to solve a problem and can be

applied to structurally similar problems

5. These algorithms can be automated using a programming language

6. The Internet has revolutionized communication and collaboration

7. Computer science has an impact on the entire world

Through an iterative process, we selected a subset of the CS Principles curriculum by

analyzing the evidence statements [13] for suitability within a game-based learning

environment and for appropriateness for the middle school audience. Additional

validation of this curriculum will be undertaken by middle school teachers during an

upcoming summer institute and through pilot testing. An example of learning

objectives to be implemented as game-based learning activities is shown in Table 1.

The setting of the game is an underwater research facility that has been taken over

by a rogue scientist. Students take on the role of a computer scientist sent to

investigate the situation, reconnect the station's network, and thwart the villain's plot

by solving various computer science puzzles in the form of programming tasks. There

are two main gameplay mechanics: players can move around in the 3D environment

in a similar manner to many 3D platforming games (Fig. 1a), and different devices

within the environment can be programmed using a visual programming interface.

Players can drag "blocks" that represent programming functions and stack them

together to create a program (Fig. 1b).
1
 By programming these devices in certain

ways, players can manipulate the environment and solve each in-game area's puzzle

and move on to the next task. The game sections are divided into four main levels:

1 This drag-and-drop programming language with blocks is closely modeled after and inspired

by Scratch [21], but for compatibility reasons, a customized programming environment is

being created for the ENGAGE game.

32

 Tutorial: Students are introduced to the game environment and shown how to use

the controls for both gameplay mechanics. They are also given an overview of

basic programming concepts (sequences of statements, loops, and conditionals), as

well as the concept of broadcasting (sending signals from one device to another).

 Digital World: The puzzles in this level involve binary numbers, and students must

convert these binary numbers into an understandable form (decimal, text, color

image, etc.) in order to solve them and progress. The conceptual objective of this

level is that computers communicate in binary and that the meaning behind a

binary sequence depends on its interpretation.

 Cybersecurity: Before the students can reconnect the station's network, they must

establish proper cybersecurity measures so that their communications are not

compromised by the villain. In this level, students learn about cryptography and

various encryption techniques in order to ensure a safe network connection.

 Big Data: The research station that students must restore had been studying

different aspects of the undersea environment, including the pollution of the water

and how it has affected the life forms that inhabit the area. Students must try to

reason about this data by performing basic analyses and creating visual models that

are embodied in the 3D environment, which will enable students to progress to the

final level.

a) Game environment b) Programming interface

Fig. 1. Engage screenshots

3 Pilot Study

The pilot study was conducted within a computer science elective course for middle

school students (ages 11 to 14) at a charter middle school. Students attended 4

sessions lasting between 90 and 120 minutes long, facilitated by members of the

ENGAGE project team. Each of the sessions resulted in a corpus of data, though only

one of these, which involves solving a binary puzzle within a visual programming

environment, is analyzed within this paper. This paper focuses on the final session of

the course, in which students worked in pairs to solve three game-based tasks using

Build Your Own Blocks, a drag-and-drop visual programming language [14]. This

activity simulates programming within ENGAGE, whose programming environment is

still under development. Student participants included 18 males and 2 females, though

33

the female pair was absent on the day the present corpus was collected. This gender

disparity is an intrinsic problem in many technology electives and is an important

consideration of the ENGAGE project, which will examine differential outcomes for

students from underrepresented groups using the game-based learning environment.

Fig. 2. Visual programming interface for final problem in pilot study

The exercises the students solved involved converting binary numbers into decimal

numbers and textual characters. The first problem asked the students to write a

program that would convert the given binary numbers into decimal numbers and

highlight the cells that contained even numbers. The next problem was identical to the

first except that the students had to highlight the prime numbers instead. The final and

most challenging problem asked students to convert the binary numbers into textual

characters, manually decipher a password, and input this password into their program

(Fig. 2). All subroutines corresponding to binary conversions, highlighting blocks,

number comparisons, and password entry were provided as blocks that students could

use within their own programs. This design choice was made to abstract some

complex implementation from students so they could focus on planning and

implementing the steps to solve their problem.

For the duration of the exercise, students collaborated in pairs and took turns

controlling the keyboard and mouse on a single computer [7]. In computer science

education, this paradigm is referred to as pair programming: the driver actively

creates the solution, while the navigator provides feedback [15] (Fig. 3). Research has

shown that pair programming can provide many benefits to college-level students

taking introductory programming courses, especially those with little to no prior

programming experience. A review by Preston [16] highlights some benefits: students

create higher-quality programs as a result of the communication of ideas between

partners; they can achieve a better understanding of programming by supporting each

other through the exercise; and although the activity is collaborative, individual test

scores and course performance are also improved.

Students were asked by a researcher to switch roles every six minutes. When a pair

would finish a task, they were asked to raise their hands and wait for a researcher to

verify their program solution. If it was correct, the researcher would verbally describe

the next exercise and set up the programming interface; if not, the researcher would

34

provide general feedback on the proposed solution. Students were also allowed to

raise their hands if they had any questions for the researcher regarding the

programming task. The allotted time to complete all three programming tasks was 40

minutes, with two pairs completing them sooner.

4 Video Corpus and Disengagement Annotation

During this pilot study, video was recorded for all nine pairs of students using a

tripod-mounted digital camera recording at 640x480 resolution and 30 frames per

second. The nine videos were divided into 5-minute segments to facilitate annotation

and analysis. Of the total 65 segments, 25 were randomly selected for annotation and

serve as the basis for the results presented here (a subset was necessary due to the

time requirement of manual annotation, in this case approximately 8 minutes per

minute of video). Each segment was manually annotated by a judge for student

disengagement by observing for one of three signs of disengagement. First, posture

was considered to indicate disengagement when gross postural shifts clearly

suggested that the student was attending to something other than the programming

task; this exaggerated disengaged posture was often accompanied by other indications

of disengagement such as off-task speech (Fig. 3b). Another indicator of

disengagement was averted gaze, which commonly accompanied the other two signs

but could occur independently. Finally, students would sometimes engage in off-task

dialogue with their partners, or even with other students in the classroom. It is

important to note that we do not equate off-task behavior with disengagement; there

were instances in which students continued to work on the learning task while holding

off-task conversations with their partners. Sabourin et al. [17] show that off-task

behavior can be a way for students to cope with negative emotions, such as confusion

or frustration. Likewise, student disengagement does not necessarily imply off-task

behavior. Disengagement in this context is defined primarily as focusing attention on

something other than the learning task; identifying cognitive and affective states

underlying the disengagement is left to future analyses.

To annotate the videos, each human judge would watch until disengagement was

observed by either of the two collaborators, paused the video, annotated the start time

of the disengagement event, then continued and annotated the end time, returning to

previous points of the video as needed. Judges thus marked episodes of

disengagement, as well as who appeared to facilitate re-engagement: did the student

shift her attention back to the programming task by herself?; did the student's partner

ask for her assistance?; or did an instructor need to arrive to provide feedback or

clarify any questions? In order to establish reliability of this annotation scheme, 12 of

the 65 video segments were randomly selected and assigned to two judges, and the

tagged segments were discretized into one-second intervals in which each student was

classified as either engaged or disengaged by each judge. The Kappa for

disengagement was 0.59 (87.25% agreement). In other words, approximately 87.25%

of the time, both judges applied the same engagement tag. Adjusting for chance (that

is, students were more likely to be engaged than disengaged at a given point) the

35

Kappa agreement statistic was 0.59, indicating fair agreement [18]. For the events on

which both judges agreed that disengagement had occurred, the tag for who facilitated

re-engagement resulted in 78.57% agreement, or a Kappa of 0.60, indicating moderate

agreement.

a) Engaged pair b) Disengaged pair

Fig. 3. Collaborative setup

5 Results

Overall, student drivers spent an average of 16.4% of their time disengaged (st.

dev.=16.6%), compared to a much higher 42.6% for navigators (st. dev.=24.1%). This

is not surprising, since drivers are more actively engaged in the programming activity.

Across both roles, out of the student re-engagement events, 76.8% were annotated as

self re-engagements, with the remaining events corresponding to an external source of

re-engagement (either partner or instructor). However, the collaborative role plays an

important part in self re-engagement: drivers had an 87.7% probability of self re-

engaging, while navigators had a lower 68.7% probability of self re-engaging. These

findings may indicate that repairing one’s own disengaged state is more challenging

for the collaborative partner who is not actively at the controls.

We examine instances in which annotators marked that the driver re-engaged a

disengaged navigator through dialogue. There are 22 such instances. Four are

questions addressed to the collaborative partner, such as, “OK, now where?” and “Do

we delete this?” These questions re-engaged the navigator in part because attending to

the speaker's questions is a social dialogue norm. Two utterances served as

exclamations, e.g., “What the heck?” In these cases, the driver was expressing

surprise with an event in the learning environment, which drew the disengaged

student’s attention back to the task. The remaining utterances were fragments, such

as, “Pick up current tile…,” though one utterance explicitly reminded the disengaged

student about short time remaining, “So we only have a couple of minutes.”

To examine these re-engagement events in context, two excerpts are considered

(Table 2). In Excerpt A, the navigator gets stuck and raises his hand to ask for help

when he notices the instructor is nearby, briefly becoming disengaged while his

36

partner continues to work on the exercise. The driver then turns to his partner and

asks for feedback, causing the navigator to re-engage into the learning activity. In

Excerpt B, the students had just received feedback on from the instructor when the

navigator engages in off-topic dialogue with another team. Meanwhile, the driver

makes a plan and then calls for the navigator’s attention, re-engaging him.

Table 2. Dialogue excerpts featuring navigator disengagement

Timestamp Role Dialogue Excerpt A

19:25

19:34

Disengaged

19:38

Re-engaged
19:40

Navigator:

Navigator:

Driver:

Navigator:

 OK, if prime, number is prime. Dang!

[Navigator notices instructor nearby, raises hand]
Uh...

[Navigator looks away from screen, leans back on seat]

OK, now where?

[Navigator points at program block]
Put it there.

 Dialogue Excerpt B

26:01
26:08

Disengaged
26:14

Re-engaged
26:16

Navigator:

Driver:

Driver:

Navigator:

[Note: students are discussing ‘@’ symbols]

OK, @'s. Do you want more @'s... (inaudible)

One two three four five

[Navigator looks away to talk to another student]

 I have an idea. You (taps navigator's shoulder)

 Me?

6 Discussion

These excerpts suggest that within a collaborative game-based learning environment

for computer science, providing both students with a sense of control may be

particularly important. Because it may be more difficult to stay engaged on a task if

one is not actively participating in it, particularly for younger audiences, the issue of

mutual participation is paramount within the learning environment. The narrative

game-based learning framework may prove particularly suitable for addressing this

challenge: drivers and navigators can be provided with separate responsibilities and

even with complementary information so that the participation of both students is

required to complete the game-based tasks. Examples include designing the

algorithmic solution to the problem or performing some calculations relevant to the

main task; Williams and Kessler [19] state that 90% of students surveyed about pair

programming listed these as the tasks that the navigator typically assists with. These

may, in turn, help the navigator experience a heightened sense of control, and thereby,

engagement.

This pilot study demonstrated that because of strong social norms associated with

human dialogue, strategic moves by a partner can serve to re-engage a student.

Typically, drivers will ask their partners for feedback if they are unsure of their

solution or if they are inexperienced programmers. In these cases, an active

conversation between both students occurs, and both students are engaged. An

intelligent game-based learning environment that senses disengagement may be able

37

to scaffold this type of dialogue in order to mitigate disengagement on the part of

either student.

7 Conclusion and Future Work

Game-based learning environments hold great promise for supporting computer

science education. The ENGAGE project is developing a game-based learning

environment for middle school computer science, and we have presented results from

an early pilot study for the curriculum and some simulated elements of gameplay in

which students worked collaboratively in pairs to solve computer science problems.

The results suggest that supporting engagement may be particularly important within

a collaborative situation for the student who is not at the controls. Providing both

students with an active role during gameplay, and scaffolding dialogue to re-engage a

student who has become disengaged, are highly promising directions for intelligent

game-based learning environments. Both of these interventions would be well

supported within a narrative-centered, game-based learning environment framework.

There are several important directions for future work regarding engagement

within game-based learning environments for computer science. First, the current

study was very limited in sample size and diversity of participants, so expanding the

scope of students considered is a key consideration. It is also important to examine the

duration of engagement once re-engagement has occurred and the effectiveness of

interventions with respect to longer-term engagement. Additionally, in contrast to the

fully manual video annotation presented here, it would be beneficial to integrate

automated methods of measuring disengagement, such as the ones presented by

Arroyo and colleagues [20]. Finally, addressing issues of diversity and groupwise

differences of re-engagement strategies is an essential direction in order to develop

game-based learning environments that support engagement and effective learning for

all students.

Acknowledgements. This paper relies on the contributions of the entire ENGAGE

research team, including James Lester, Bradford Mott, Eric Wiebe, Rebecca Hardy,

Wookhee Min, Kirby Culbertson, and Marc Russo. The authors wish to thank Joseph

Grafsgaard and Alexandria Vail for their helpful contributions. This work is

supported in part by NSF through grants CNS-1138497 and CNS-1042468. Any

opinions, findings, conclusions, or recommendations expressed in this report are those

of the participants and do not necessarily represent the official views, opinions, or

policy of the National Science Foundation.

References

1. Forbes-Riley, K., Litman, D.: When Does Disengagement Correlate with Learning in

Spoken Dialog Computer Tutoring? Proceedings of AIED. pp. 81–89 (2011).

2. Cocea, M., Hershkovitz, A., Baker, R.S.J.: The Impact of Off-Task and Gaming Behaviors

on Learning: Immediate or Aggregate? Proceedings of AIED. pp. 507–514 (2009).

38

3. Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., Barto, A.,

Mahadevan, S., Woolf, B.P.: Repairing Disengagement With Non-Invasive Interventions.

Proceedings of AIED. pp. 195–202 (2007).

4. Jackson, G.T., Dempsey, K.B., McNamara, D.S.: Short and Long Term Benefits of

Enjoyment and Learning within a Serious Game. Proceedings of AIED. pp. 139–146

(2011).

5. Rai, D., Beck, J.E.: Math Learning Environment with Game-Like Elements: An

Incremental Approach for Enhancing Student Engagement and Learning Effectiveness.

Proceedings of ITS. pp. 90–100 (2012).

6. Rowe, J., Shores, L., Mott, B., Lester, J.C.: Integrating Learning, Problem Solving, and

Engagement in Narrative-Centered Learning Environments. IJAIED. 21, 115–133 (2011).

7. Meluso, A., Zheng, M., Spires, H.A., Lester, J.C.: Enhancing 5th Graders’ Science Content

Knowledge and Self-Efficacy through Game-Based Learning. Computers & Education

Journal. 59, 497–504 (2012).

8. Chaudhuri, S., Kumar, R., Howley, I., Rosé, C.P.: Engaging Collaborative Learners with

Helping Agents. Proceedings of AIED. pp. 365–272 (2009).

9. Hayashi, Y.: On Pedagogical Effects of Learner-Support Agents. Proceedings of ITS. pp.

22–32 (2012).

10. Holland, J., Baghaei, N., Mathews, M., Mitrovic, A.: The Effects of Domain and

Collaboration Feedback on Learning in a Collaborative Intelligent Tutoring System.

Proceedings of AIED. pp. 469–471 (2011).

11. Esper, S., Foster, S.R., Griswold, W.G.: On the Nature of Fires and How to Spark Them

When You’re Not There. Proceedings of the SIGCSE Conference. pp. 305–310. ACM

Press, New York, New York, USA (2013).

12. Stephenson, C., Wilson, C.: Reforming K-12 Computer Science Education… What Will

Your Story Be? ACM Inroads. 3, 43–46 (2012).

13. The College Board: AP CS Principles: Learning Objectives and Evidence Statements,

(2010).

14. Harvey, B., Mönig, J.: Bringing “No Ceiling” to Scratch: Can One Language Serve Kids

and Computer Scientists? Constructionism. pp. 1–10 (2010).

15. Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Miller, C., Balik, S., Yang, K.:

Improving the CS1 Experience with Pair Programming. Proceedings of the SIGCSE

Conference. pp. 359–362 (2003).

16. Preston, D.: Pair Programming as a Model of Collaborative Learning: A Review of the

Research. Journal of Computing Sciences in Colleges. 20, 39–45 (2005).

17. Sabourin, J., Rowe, J.P., Mott, B.W., Lester, J.C.: When Off-Task is On-Task: The

Affective Role of Off-Task Behavior in Narrative-Centered Learning Environments.

Proceedings of AIED. pp. 523–536 (2011).

18. Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categorical Data.

Biometrics. 33, 159–174 (1977).

19. Williams, L.A., Kessler, R.R.: All I Really Need to Know about Pair Programming I

Learned in Kindergarten. Communications of the ACM. 5, 108–114 (1999).

20. Arroyo, I., Cooper, D.G., Burleson, W., Woolf, B.P., Muldner, K., Christopherson, R.:

Emotion Sensors Go to School. Proceedings of AIED. pp. 17–24 (2009).

21. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch: Programming for

All. Communications of the ACM. 52, 60–67 (2009).

39

When to Intervene: Toward a Markov Decision Process
Dialogue Policy for Computer Science Tutoring

Christopher M. Mitchell, Kristy Elizabeth Boyer, and James C. Lester

Department of Computer Science, North Carolina State University,
Raleigh, North Carolina, USA

{cmmitch2, keboyer, lester}@ncsu.edu

Abstract. Designing dialogue systems that engage in rich tutorial dialogue has
long been a goal of the intelligent tutoring systems community. A key challenge
for these systems is determining when to intervene during student problem
solving. Although intervention strategies have historically been hand-authored,
utilizing machine learning to automatically acquire corpus-based intervention
policies that maximize student learning holds great promise. To this end, this
paper presents a Markov Decision Process (MDP) framework to learn when to
intervene, capturing the most effective tutor turn-taking behaviors in a task-
oriented learning environment with textual dialogue. This framework is
developed as a part of the JavaTutor tutorial dialogue project and will contribute
to data-driven development of a tutorial dialogue system for introductory
computer science education.

Keywords: Tutorial Dialogue, Markov Decision Processes, Reinforcement
Learning

1 Introduction

The effectiveness of tutorial dialogue has been widely established [1, 2]. Today’s
tutorial dialogue systems have been successful in producing learning gains as they
support problem solving [3–5], encourage collaboration [6, 7], and adapt to student
responses [8]. These systems have also been shown to be successful in implementing
some affective adaptations of human tutors [5, 9]. Recent research into tutorial
dialogue systems with unrestricted turn-taking has shown promise for simulating the
natural tutorial dialogue interactions of a human tutor [7]. Recognizing and simulating
the natural conversational turn-taking behavior of humans continues to be an area of
active research [10–12], and there has recently been renewed interest in developing
dialogue systems that harness unrestricted turn-taking paradigms [7, 13, 14].

The JavaTutor tutorial dialogue project aims to build a tutorial dialogue system
with unrestricted turn-taking and rich natural language to support introductory
computer science students. The overarching paradigm of this project is to
automatically derive tutoring strategies using machine learning techniques applied to
a corpus collected from an observational study of human-human tutoring. In

40

particular, the project focuses on how to devise tutorial strategies that deliver both
cognitive and affective scaffolding in the most effective way. The project to date has
seen the collection of a large corpus of tutorial dialogue featuring six repeated
interactions with tutor-student pairs, accompanied by data on learning and attitude for
each session as well as across the study [15–17]. This paper describes an important
first step toward deriving tutorial dialogue policies automatically from the collected
corpus in a way that does not simply mimic the behavior of human tutors, but seeks to
identify the most effective tutorial strategies and implement those within the system’s
dialogue policy.

In recent years, reinforcement learning (RL) has proven useful for creating tutorial
dialogue system policies in structured problem-solving interactions, such as what type
of question to ask a student [18] and whether to elicit or tell the next step in the
solution [19]. In order to harness the power of RL-based approaches within a tutorial
dialogue system for computer science education, two important research problems
must be addressed. First, a representation must be formulated in which student
computer programming actions, which can occur continuously or in small bursts, can
be segmented at an appropriate granularity and provided to the model. Second,
because student dialogue moves, tutor dialogue moves, and student programming
actions can occur in an interleaved manner with some overlapping each other, features
to define the Markov Decision Process state space must be identified that preserve the
rich, unrestricted turn-taking and mixed-initiative interaction to the greatest extent
possible. In a first effort to address these challenges, this paper presents a novel
application of RL-based approaches to the JavaTutor corpus of textual tutorial
dialogue. In particular, the focus here is automatically learning when to intervene
from this fixed corpus of human-human task-oriented tutorial dialogue with
unrestricted turn-taking. The presented approach and policy results can inform data-
driven development of tutorial systems for computer science education.

2 Human-Human Tutorial Dialogue Corpus

To date, the JavaTutor project has seen the collection of an extensive corpus of
human-human tutoring. Between August 2011 and March 2012, 67 students interacted
with experienced tutors through the Java Online Tutoring Environment (Figure 1).
Students were drawn from a first-year engineering course on a voluntary basis. They
earned partial course credit for their participation. Students who reported substantial
programming experience in a pre-survey were excluded from the experienced-tutoring
condition (and were instead placed in a peer-tutoring collaborative condition that is
beyond the scope of this paper), since the target population of the JavaTutor tutorial
dialogue system is students with no programming experience. Each student completed
six tutoring sessions over a period of four weeks, and worked with the same tutor for
all interactions. Each tutoring session was limited to forty minutes.

Seven tutors participated in the study. Their experience level ranged from multiple
years’ experience in one-on-one tutoring to one semester’s experience as a teaching
assistant or small group tutor. Gender distribution of the tutors was three female and

41

four male. Tutors were provided with printed learning objectives for each session and
were reminded that they should seek to support the students’ learning as well as
motivational and emotional state. Also, because each subsequent tutoring session built
on the completed computer program from the preceding session, tutors were
encouraged to ensure that students completed the required components of the
programming task within the allotted forty-minute time frame.

The overarching computer science problem-solving task was for students to create
a text-based adventure game in which a player can explore scenes based on menu
choices. In order to implement the adventure game, students learned a variety of
programming concepts and constructs. This paper focuses on the first of the six
tutoring sessions. The learning objectives covered in this first session included
compiling and running code, writing comments, variable declaration, and system I/O.
For each learning objective, there was a conceptual component and an applied
component. For example, for the learning objective related to compiling code, the
conceptual learning objective was for students to explain that compilation translates
human-readable Java programs into machine-readable forms. The applied learning
objective was for students to demonstrate that they can compile a program by pressing
the “compile” button within the interface.

The Java Online Learning Environment, shown in Figure 1, supports textual
dialogue between the human tutor and student. It also provides tutors with a real-time
synchronized view of the student’s workspace. The interface allows for logging
events to a database with millisecond precision, making it straightforward to
reconstruct the events of a session from these logs. There are two information
channels between a tutor and a student. The first of these, the messaging pane,
supports unrestricted textual dialogue between a tutor and a student, similar to
common instant messaging applications. There are no restrictions placed on turn-
taking, allowing either person to compose a message at any time. In addition, both
students and tutors are notified when their partner is composing a message. The
second information channel is the student’s workspace. A tutor can see progress on
the Java program written by the student in real-time, but the tutor is not able to edit
the program directly. The Java programming environment is scaffolded for novices: it
hides class declarations, method declarations, and import statements from the student,
lowering the amount of complex syntax visible. Students effectively compose their
programs within a main method “sandbox”.

In order to measure the effectiveness of each session, students completed a pre-test
at the beginning of each session and a post-test at the end of each session evaluating
their knowledge of the material to be taught in that lesson. From these, we computed
normalized learning gain using the following equation:

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤
−

>
−

−

=
pretestposttest

pretest
pretestposttest

pretestposttest
pretest
pretestposttest

inLearningGanormalized
,

,
1

(1)

42

Fig. 1. A student’s view of the JavaTutor human tutoring interface

This equation, adapted from Marx and Cummings [20] allows for the possibility of
negative learning gain during a session, a phenomenon that occurred three times in the
corpus. These normalized learning gain values can range from -1 to 1. In the present
study normalized learning gains ranged from -0.29 to 1 (mean = 0.42; median = 0.45;
st. dev. = 0.32). Students scored significantly higher on the post-test than the pre-test
(p < .001).

3 Building the Markov Decision Process

The goal of the analysis presented here is to derive an effective tutorial intervention
policy—when to intervene—from a fixed corpus of student-tutor interactions. From
the tutors’ perspective, the decision to intervene was made based on the state of the
interaction as observed through the two information channels in the interface: the
textual dialogue pane and the synchronized view of the student’s workspace. In order
to use a MDP framework to derive an effective intervention policy, we describe a
representation of the interaction state as a collection of features from these
information channels.

A Markov Decision Process is a model of a system in which a policy can be
learned to maximize reward [21]. It consists of a set of states S, a set of actions A
representing possible actions by an agent, a set of transition probabilities indicating

43

how likely it is for the model to transition to each state sʹ ϵ S from each state s ϵ S
when the agent performs each action a ϵ A in state s, and a reward function R that
maps real values onto transitions and/or states, thus signifying their utility.

The goal of this analysis is to model tutor interventions during the task-completion
process, so the possible actions for a tutor were to intervene (by composing and
sending a message) or not to intervene. Hence, the set of actions is defined as A =
{TutorMove, NoMove}. We chose three features to represent the state of the dialogue,
with each feature taking on one of three possible values. These features, described in
Table 1, combine as a triple to form the states of the MDP as (Current Student Action,
Task Trajectory, Last Action). These three features were chosen because they
succinctly represent the current state of the dialogue in terms of turn-taking
information in the Current Action and Last Action features, while the recent behavior
of the student is captured in the Task Trajectory and Current Action features. Thus,
these features supply an agent with sufficient information to learn a basic intervention
policy while relying only on automatically annotated features. By selecting a small
state space and action space, we avoid data sparsity issues [22], thereby decreasing
the likelihood of states being insufficiently explored in our corpus, and increasing the
likelihood of producing a meaningful intervention policy.

Table 1. The features that define the states of the Markov Decision Process

Current Student Action Task Trajectory Last Action
• Task: Working on the

task
• StudentDial: Writing a

message to the tutor
• NoAction: No current

student action

• Closer: Moving closer to the
final correct solution

• Farther: Moving away from
correct solution

• NoChange: Same distance
from correct solution

• TutorDial: Tutor
message

• StudentDial: Student
message

• Task: Student worked on
the task

In addition, the model includes 3 more states: an Initial state, in which the model
always begins, and two final states: one with reward +100 for students achieving
higher-than-median normalized learning gain and one with reward -100 for the
remaining students, following the conventions established in prior research into
reinforcement learning for tutorial dialogue [18, 19].

Using these formalizations, one state was assigned to each of the log entries
collected during the sessions and transition probabilities were computed between
them when a tutor made an intervention (TutorMove) and when a tutor did not make
an intervention (NoMove) based on the transition frequencies observed in the data.
Any states that occurred less than once per session on average were combined into a
single LowFrequency state, following the convention of prior work [23]. There were
four states fitting this description: (Task, Farther, StudentDial), (StudentDial,
Farther, StudentDial), (StudentDial, Farther, Task), and (StudentDial, Farther,
TutorDial). Thus, the final MDP model contained 25 states requiring a tutorial
intervention decision (23 states composed of feature combinations, the LowFrequency
state, and the Initial state), and two final states.

44

The Current Student Action and Last Action features were relatively
straightforward to assign to log entries by simply observing what a student was
currently doing at that point in the session and observing what action had occurred
most recently. The Task Trajectory feature was computed by discretizing the students’
work on the task into chunks, which presents a substantial research question and
design decision for supporting computer science learning. Historically, intelligent
tutoring systems for computer science have utilized granularity at one extreme or the
other. The smallest possible granularity is every keystroke, perhaps the earliest
example of this being the Lisp tutor of Anderson and colleagues [24]. The largest
granularity could arguably be to evaluate only when the student deems the artifact
complete enough to manually submit for evaluation, which was the approach taken by
another very early computer science tutor, Proust [25]. For the JavaTutor system,
evaluating the student program more often than at the completion of tasks is essential
to support dialogue, but an every-keystroke evaluation is too frequent due in part to
algorithm runtime limitations. We define our task events as beginning when a student
begins typing in the task pane and ending when a student has not typed in the task
pane for at least 1.5 seconds. This threshold of 1.5 seconds was chosen empirically
before model building to strike a balance between shorter thresholds, which resulted
in frequent switching between “working on task” and “not working on task” states,
and longer thresholds, which resulted in never leaving the “working on task” state.

After each task event (discretized as described above), a student’s program was
separated into tokens as defined by the Java compiler, and a token-level minimum edit
distance was computed from that student’s final solution for the lesson, tokenized in
the same manner. Variable names, comments, and the contents of string literals were
ignored in this edit distance calculation. The change in the edit distance from one
chunk to the next determined the value of the Task Trajectory feature. Because the
tutors were experienced in Java programming and had knowledge of the lesson
structure, it is reasonable to assume that they were able to determine whether the
student was moving farther or closer to the final solution. In this way, the edit
distance algorithm provides a rough, automatically computable estimate of the tutors’
assessment of student progress.

4 Policy Learning

The goal of this analysis is to learn a tutorial intervention policy—when to
intervene—that reflects the most effective strategies within the corpus. In the MDP
framework described above, this involves maximizing the learning gain reward. In
order to learn this tutorial intervention policy, we used a policy iteration algorithm
[21] on the MDP. For each iteration, this algorithm computes the expected reward in
each state s ϵ S when taking each action a ϵ A, based on the computed transition
probabilities to other states and the expected rewards of those states from the previous
iteration. Following the practice of prior work [13, 17], a discount factor of 0.9 was
used to penalize delayed rewards (those requiring several state transitions to achieve)
in favor of immediate rewards (those requiring few state transitions to achieve). The

45

policy iteration continues until convergence is reached; that is, until the change in
expected reward for each state is less than some epsilon value between iterations. We
used an epsilon of 10-7, requiring 125 iterations to converge. The resulting policy is
shown in Table 2.

Table 2. The learned tutorial intervention policy

State
(Current Action,
Task Trajectory,

Last Action)

Policy

 State
(Current Action,
Task Trajectory,

Last Action)

Policy

(Task, Closer, Task) TutorMove (StudentDial, NoChange, TutorDial) NoMove

(Task, Closer, StudentDial) TutorMove (NoAction, Closer, Task) TutorMove

(Task, Closer, TutorDial) TutorMove (NoAction, Closer, StudentDial) TutorMove

(Task, Farther, Task) TutorMove (NoAction, Closer, TutorDial) NoMove

(Task, Farther, TutorDial) TutorMove (NoAction, Farther, Task) NoMove

(Task, NoChange, Task) TutorMove (NoAction, Farther, StudentDial) TutorMove

(Task, NoChange, StudentDial) NoMove (NoAction, Farther, TutorDial) NoMove

(Task, NoChange, TutorDial) TutorMove (NoAction, NoChange, Task) TutorMove

(StudentDial, Closer, Task) TutorMove (NoAction, NoChange, StudentDial) NoMove

(StudentDial, Closer, StudentDial) TutorMove (NoAction, NoChange, TutorDial) NoMove

(StudentDial, Closer, TutorDial) TutorMove Initial TutorMove

(StudentDial, NoChange, Task) NoMove LowFrequency TutorMove

(StudentDial, NoChange, StudentDial) NoMove

Some noteworthy patterns emerge in the intervention policy learned from the corpus.
For example, in seven of the eight states where the student is actively engaged in task
actions (Task, *, *), the policy recommends that the tutor make a dialogue move. An
excerpt from the corpus illustrating this strategy in a high learning gain session is
shown in Figure 2, on lines 2-4. An excerpt from a low learning gain session showing
tutor non-intervention during task progress is shown in Figure 3. In addition, among
the states in which no action is currently being taken by the student and the last action
was a tutor message, i.e., matching the pattern (NoAction, *, TutorDial), we find that
the policy recommends that a tutor not make another consecutive dialogue move,
regardless of how well the student is progressing on the task. However, Figure 2
shows that high learning gains are possible without strictly following this particular
recommendation. Additional discussion on these recommendations can be found in
[26].

5 Conclusion and Future Work

Current tutorial dialogue systems are highly effective, and matching the effectiveness
of the most effective tutors is a driving force of tutorial dialogue research. This paper

46

presents a step toward rich, adaptive dialogue for supporting computer science
learning by introducing a representation of task-oriented dialogue with unrestricted
turn-taking in a reinforcement learning framework and presenting initial results of an
automatically learned policy for when to intervene. The presented approach will
inform the development of the JavaTutor tutorial dialogue system, whose initial
policies will be learned based on the fixed human-human corpus described here.

 Event Tutor action and state transition
1. Student is declaring a String variable named

“aStringVariable”.
NoMove

(Task, NoChange, Task)

2. Tutor starts typing a message TutorMove

(NoAction, Closer, TutorDial)

3. 1.5 seconds elapse, task action is complete.
4. Tutor message: That works, but let’s give the variable

a more descriptive name
5. Tutor starts typing a message TutorMove

(NoAction, Closer, TutorDial)

6. Student starts typing a message
7. Student message: ok
8. Tutor message: Usually, the variable’s name tells us

what data it has stored

Fig. 2. An excerpt from a high learning gain session.

 Event Tutor action and state transition
1. Student has just attempted to implement the

programming code needed to complete the task, with
no tutor intervention.

NoMove

(NoAction, Closer, Task)
2. Student starts typing a message NoMove

(StudentDial, Closer, Task)

3. Student message: not sure if this is right… NoMove

(NoAction, Closer, StudentDial)

Fig. 3. An excerpt from a low learning gain session.

Further exploring of the state space via simulation and utilizing a more expressive
representation of state are highly promising directions for future work. Other
directions for future work include undertaking a more fine-grained analysis of the
timing of interventions, which could inform the development of more natural
interactions, as well as allowing for more nuanced intervention strategies.
Additionally, these models should be enhanced with a more expressive representation
of both dialogue and task. It is hoped that these lines of investigation will yield highly
effective machine-learned policies for tutorial dialogue systems and that tutorial
dialogue systems for computer science will make this subject more accessible to
students of all grade levels.

47

Acknowledgements

The JavaTutor project team includes Eric Wiebe, Bradford Mott, Eun Young Ha,
Joseph Grafsgaard, Alok Baikadi, Megan Hardy, Mary Luong, Miles Smaxwell,
Natalie Kerby, Robert Fulton, Caitlin Foster, Joseph Wiggins, and Denae Ford. This
work is supported in part by the National Science Foundation through Grants DRL-
1007962 and CNS-1042468. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the participants, and do not
necessarily represent the official views, opinions, or policy of the National Science
Foundation.

References

1. Bloom, B.: The 2 sigma problem: the search for methods of group instruction as
effective as one-to-one tutoring. Educational Researcher. 13, 4–16 (1984).

2. VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P., Olney, A., Rosé, C.P.:
When are tutorial dialogues more effective than reading? Cognitive Science. 31,
3–62 (2007).

3. Evens, M.W., Michael, J.: One-on-One Tutoring by Humans and Computers.
Lawrence Erlbaum Associates, Mahwah, New Jersey (2005).

4. Heffernan, N.T., Koedinger, K.: The design and formative analysis of a dialog-
based tutor. Workshop on Tutorial Dialogue Systems. pp. 23–34 (2001).

5. Forbes-Riley, K., Litman, D.: Adapting to student uncertainty improves tutoring
dialogues. Proceedings of the International Conference on Artificial Intelligence
in Education. pp. 33–40 (2009).

6. Kersey, C., Di Eugenio, B., Jordan, P., Katz, S.: KSC-PaL: A peer learning agent
that encourages students to take the initiative. Proceedings of the Fourth
Workshop on Innovative Use of NLP for Building Educational Applications. pp.
55–63 (2009).

7. Kumar, R., Rosé, C.P.: Architecture for Building Conversational Agents that
Support Collaborative Learning. IEEE Transactions on Learning. 4, 21–34
(2011).

8. Jackson, G.T., Person, N.K., Graesser, A.C.: Adaptive Tutorial Dialogue in
AutoTutor. ITS 2004 Workshop Proceedings on Dialog-based Intelligent
Tutoring Systems. pp. 9–13 (2004).

9. D’Mello, S., Graesser, A.: AutoTutor and affective autotutor: Learning by talking
with cognitively and emotionally intelligent computers that talk back. ACM
Transactions on Interactive Intelligent Systems. 2, (2012).

10. Jonsdottir, G.R., Thorisson, K.R., Nivel, E.: Learning Smooth, Human-Like
Turntaking in Realtime Dialogue. Proceedings of the 8th International
Conference on Intelligent Virtual Agents. pp. 162–175 (2008).

11. Ward, N.G., Fuentes, O., Vega, A.: Dialog Prediction for a General Model of
Turn-Taking. Proceedings of the International Conference on Spoken Language
Processing (2010).

48

12. Raux, A., Eskenazi, M.: Optimizing the turn-taking behavior of task-oriented
spoken dialog systems. ACM Transactions on Speech and Language Processing.
9, 1–23 (2012).

13. Bohus, D., Horvitz, E.: Multiparty Turn Taking in Situated Dialog: Study,
Lessons, and Directions. Proceedings of the 12th Annual Meeting of the Special
Interest Group in Discourse and Dialogue. pp. 98–109 (2011).

14. Morbini, F., Forbell, E., DeVault, D., Sagae, K., Traum, D.R., Rizzo, A.A.: A
Mixed-Initiative Conversational Dialogue System for Healthcare. Proceedings of
the 13th Annual Meeting of the Special Interest Group in Discourse and
Dialogue. pp. 137–139 (2012).

15. Mitchell, C.M., Boyer, K.E., Lester, J.C.: From strangers to partners: examining
convergence within a longitudinal study of task-oriented dialogue. Proceedings of
the 13th Annual SIGDIAL Meeting on Discourse and Dialogue. pp. 94–98
(2012).

16. Ha, E.Y., Grafsgaard, J.F., Mitchell, C.M., Boyer, K.E., Lester, J.C.: Combining
verbal and nonverbal features to overcome the “information gap” in task-oriented
dialogue. Proceedings of the 13th Annual SIGDIAL Meeting on Discourse and
Dialogue. pp. 246–256 (2012).

17. Grafsgaard, J.F., Fulton, R., Boyer, K.E., Wiebe, E., Lester, J.C.: Multimodal
analysis of the implicit affective channel in computer-mediated textual
communication. to appear in Proceedings of the 14th ACM international
conference on Multimodal Interaction (2012).

18. Tetreault, J.R., Litman, D.J.: A Reinforcement Learning approach to evaluating
state representations in spoken dialogue systems. Speech Communication. 50,
683–696 (2008).

19. Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter:
applying reinforcement learning to induce pedagogical tutorial tactics.
Proceedings of the International Conference on Intelligent Tutoring Systems. pp.
224–234. (2010).

20. Marx, J.D., Cummings, K.: Normalized change. American Journal of Physics. 75,
87–91 (2007).

21. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge, MA
(1998).

22. Singh, S., Litman, D., Kearns, M., Walker, M.: Optimizing Dialogue
Management with Reinforcement Learning: Experiments with the NJFun System.
Journal of Artificial Intelligence Research. 16, 105–133 (2002).

23. Tetreault, J.R., Litman, D.J.: Using Reinforcement Learning to Build a Better
Model of Dialogue State. Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguistics. pp. 289–296 (2006).

24. Anderson, J.R., Boyle, C.F., Corbett, A.T., Lewis, M.W.: Cognitive modeling and
intelligent tutoring. Artificial Intelligence. 42, 7–49 (1990).

25. Johnson, W.L., Soloway, E.: PROUST: Knowledge-based program
understanding. ICSE ’84: Proceedings of the 7th international conference on
Software engineering. pp. 369–380 (1984).

26. Mitchell, C.M., Boyer, K.E., Lester, J.C.: A Markov Decision Process Model of
Tutorial Intervention in Task-Oriented Dialogue. To appear in Proceedings of the
16th International Conference on Artificial Intelligence in Education (2013).

49

Automatic Generation of Programming
Feedback: A Data-Driven Approach

Kelly Rivers and Kenneth R. Koedinger

Carnegie Mellon University

Abstract. Automatically generated feedback could improve the learn-
ing gains of novice programmers, especially for students who are in large
classes where instructor time is limited. We propose a data-driven ap-
proach for automatic feedback generation which utilizes the program so-
lution space to predict where a student is located within the set of many
possible learning progressions and what their next steps should be. This
paper describes the work we have done in implementing this approach
and the challenges which arise when supporting ill-defined domains.

Keywords: automatic feedback generation; solution space; computer science
education; intelligent tutoring systems

1 Introduction

In the field of learning science, feedback is known to be important in the process
of helping students learn. In some cases, it is enough to tell a student whether
they are right or wrong; in others, it is better to give more details on why a
solution is incorrect, to guide the student towards fixing it. The latter approach
may be especially effective for problems where the solution is complex, as it can
be used to target specific problematic portions of the student’s solution instead
of throwing the entire attempt out. However, it is also more difficult and time-
consuming to provide.

In computer science education, we have been able to give students a basic
level of feedback on their programming assignments for a long time. At the most
basic level, students can see whether their syntax is correct based on feedback
from the compiler. Many teachers also provide automated assessment with their
assignments, which gives the student more semantic information on whether
or not their attempt successfully solved the problem. However, this feedback is
limited; compiler messages are notoriously unhelpful, and automated assessment
is usually grounded in test cases, which provide a black and white view of whether
the student has succeeded. The burden falls on the instructors and teaching
assistants (TAs) to explain to students why their program is failing, both in
office hours and in grading. Unfortunately, instructor and TA time is limited,
and it becomes nearly impossible to provide useful feedback when course sizes
become larger and massive open online courses grow more common.

50

Given this situation, a helpful approach would be to develop a method for
automatically generating more content-based and targeted feedback. An auto-
matic approach could scale easily to large class sizes, and would hopefully be
able to handle a large portion of the situations in which students get stuck. This
would greatly reduce instructor grading time, letting them focus on the students
who struggle the most. Such an approach is easier to hypothesize than it is to
create, since student solutions are incredibly varied in both style and algorithmic
approach and programming problems can become quite complex. An automatic
feedback generation system would require knowledge of how far the student had
progressed in solving the problem, what precisely was wrong with their current
solution, and what constraints were required in the final, correct solutions.

In this paper, we propose a method for creating this automatic feedback by
utilizing the information made available by large corpuses of previous student
work. This data can tell us what the most common correct solutions are, which
misconceptions normally occur, and which paths students most often take when
fixing their bugs. As the approach is data-driven, it requires very little problem-
specific input from the teacher, which makes it easily scalable and adaptable.
We have made significant progress in implementing this approach and plan to
soon begin testing it with real students in the field.

2 Solution Space Representation

Our method relies upon the use of solution spaces. A solution space is a graph
representation of all the possible paths a student could take in order to get
from the problem statement to a correct answer, where the nodes are candidate
solutions and the edges are the actions used to move from one solution state
to another. Solution spaces can be built up from student data by extracting
students’ learning progressions from their work and inserting them into the graph
as a directed chain. Identical solutions can be combined, which will represent
places where a student has multiple choices for the next step to take, each of
which has a different likelihood of getting them to the next answer.

A solution space can technically become infinitely large (especially when one
considers paths which do not lead to a correct solution), but in practice there are
common paths which we expect the student to take. These include the learning
progression that the problem creator originally intended, other progressions that
instructors and teaching assistants favor, and paths that include any common
misconceptions which instructors may have recognized in previous classes. If
we can recognize when a student is on a common path (or recognize when the
student has left the pack entirely) we can give them more targeted feedback on
their work.

While considering the students’ learning progressions, we need to decide at
what level of granularity they should be created. We might consider very small
deltas (character or token changes), or very large ones (save/compile points or
submissions), depending on our needs. In our work we use larger deltas in order
to examine the points at which students deliberately move from one state to the

51

next; every time a student saves, they are pausing in their stream of work and
often checking to see what changes occur in their program’s output. Of course,
this approach cannot fully represent all of the work that a student does; we
cannot see the writing they are doing offline or hear them talking out ideas with
their TAs. These interactions will need to be inferred from the changes in the
programs that the student writes if we decide to account for them.

It is simple to create a basic solution space, but making the space usable is
a much more difficult task. Students use different variable names, indentations,
and styles, and there are multitudes of ways for them to solve the same problem
with the same general approach. In fact, we do not want to see two different
students submitting exactly the same code– if they do, we might suspect them
of cheating! But the solution space is of no use to us if we cannot locate new
students inside of it. Therefore, we need to reduce the size of the solution space
by combining all semantically equivalent program states into single nodes.

Many techniques have been developed already for reducing the size of the so-
lution spaces of ill-defined problems. Some represent the solution states with sets
of constraints [5], some use graph representations to strip away excess material
[4], and others use transformations to simplify solution states [9, 8]. We subscribe
to the third approach by transforming student programs into canonical forms
with a set of normalizing program transformations. These transformations sim-
plify, anonymize, and order the program’s syntax without changing its semantics,
mapping each individual program to a normalized version. All transformations
are run over abstract syntax trees (ASTs), which are parse trees for programs
that remove extraneous whitespace and comments. If two different programs map
to the same canonical form, we know that they must be semantically equivalent,
so this approach can safely be used to reduce the size of the solution space.

Example Let us consider a very simple programming problem from one of the
first assignments of an introductory programming class. The program takes as
input an integer between 0 and 51, where each integer maps to a playing card,
and asks the student to return a string representation of that card. The four of
diamonds would map to 15, as clubs come before diamonds; therefore, given an
input of 15, the student would return ”4D”. This problem tests students’ ability
to use mod and div operators, as well as string indexing. One student’s incorrect
solution to this problem is shown in Figure 1.

def intToPlayingCard(value):

faceValue = value%13

#use remainder as an index to get the face

face = "23456789YJQKA"[faceValue]

suitValue = (value-faceValue)%4

suit = "CDHS"[suitValue]

return face+suit

Fig. 1. A student’s attempt to solve the playing card problem.

52

To normalize this student’s program, we first extract the abstract syntax tree
from the student’s code, as is partially shown in Figure 2. All of the student’s
variables are immediately anonymized; in this case, ’value’ will become ’v0’,
’faceValue’ will be ’v1’, etc. We then run all of our normalizing transformations
over the program, to see which ones will have an effect; in this case, the only
transformation used is copy propagation. This transformation reduces the list of
five statements in the program’s body to a single return statement by copying
the value assigned to each variable into the place where the variable is used later
on. Part of the resulting canonical form is displayed in Figure 2. The new tree
is much smaller, but the program will have the same effect.

Fig. 2. Subparts of the student’s ASTs, before (left) and after (right) normalization.

We have already implemented this method of solution space reduction and
tested it with a dataset of final submissions from a collection of introductory
programming problems. The method is quite effective, with the solution space
size being reduced by slightly over 50% for the average problem [7]. However, we
still find a long tail of singleton canonical forms existing in each problem’s solu-
tion space, usually due to students who found strange, unexpected approaches
or made unconventional mistakes. This long tail of unusual solutions adds an-
other layer of complexity to the problem, as it decreases the likelihood that a
new student solution will appear in the old solution space.

Our work so far has concentrated only on final student submissions, not on
the paths students take while solving their problems. This could be seen as
problematic, as we are not considering the different iterations a student might
go through while working. However, our very early analysis of student learning
progressions from a small dataset has indicated that students are not inclined to
use incremental approaches. The students we observed wrote entire programs in
single sittings, then debugged until they could get their code to perform correctly.

53

This suggests that our work using final program states may be close enough to
the real, path-based solution space to successfully emulate it.

We note that the solution space is easiest to traverse and create when used
on simple problems; as the required programs become longer, the number of
individual states in the space drastically increases. We believe it may be pos-
sible to address this situation by breaking up larger problems into hierarchies
of subproblems, each of which may map to a specific chunk of code. Then each
subproblem can have its own solution space that may be examined separately
from the other subproblems, and feedback can be assigned for each subproblem
separately.

3 Feedback Generation

Once the solution space has been created, we need to consider how to generate
feedback with it. The approach we have adopted is based on the Hint Factory
[1], a logic tutor which uses prior data to give stuck students feedback on how
to proceed. In the Hint Factory, each node of the solution space was the current
state of the student’s proof, and each edge was the next theorem to apply that
would help the student move closer to the complete proof. The program used
a Markov Decision Process to decide which next state to direct the student
towards, optimizing for the fastest path to the solution.

Our approach borrows heavily from the Hint Factory, but also expands it.
This is due to the ill-defined nature of solving programming problems, which
specifies that different solutions can solve the same problem; this complicates
several of the steps used in the original logic tutor. In this section we high-
light three challenges that need to be addressed in applying the Hint Factory
methodology to the domain of programming, and describe how to overcome each
of them.

Other attempts have been made at automatic generation of feedback, both
in the domain of programming and in more domain-general contexts. Some feed-
back methods rely on domain knowledge to create messages; Paquette et al.’s
work on supporting domain-general feedback is an example of this [6]. Other
methods rely instead on representative solutions, comparing the student’s so-
lution to the expected version. Examples here include Gerdes et al.’s related
work on creating functional tutoring systems (which use instructor-submitted
representative solutions) [2] and Gross et al.’s studies on using clustering to pro-
vide feedback (which, like our work, use correct student solutions) [3]. Though
our work certainly draws on many of the elements used in these approaches, we
explore the problem from a different angle in attempting to find entire paths
to the closest solution (which might involve multiple steps), rather than jump-
ing straight from the student’s current state to the final solution. Whether this
proves beneficial will remain to be seen in future studies.

54

3.1 Ordering of Program States

Our first challenge relates to the process of actually mapping out the suggested
learning progressions for the student. Even after reducing the size of the solution
space, there are still a large number of distinct solutions which are close yet not
connected by previously-found learning paths. These close states can be helpful,
as they provide more opportunities for students to switch between different paths
while trying to reach the solution. Therefore, we need to connect each state to
those closest to it, then determine which neighboring state will set the student
on the best path to get to a final solution.

One obvious method for determining whether two states are close to each
other would involve using tree edit distance, to determine how many changes
needed to be made. However, this metric does not seem to work particularly well
in practice; the weight of an edit is difficult to define, which makes comparing
edits non-trivial. Instead, we propose the use of string edit distance (in this
case, Levenshtein distance) to determine whether two programs are close to each
other. To normalize the distances between states, we calculate the percentage
similarity with (l − distance)/l (where l is the length of the longer program);
this ensures that shorter programs do not have an advantage over longer ones
and results from different problems can easily be compared to each other. Once
the distances between all programs have been calculated, a cut-off point can be
determined that will separate close state pairs from far state pairs. Our early
experimentation with this method shows that it is efficient on simple programs
and produces pairs of close states for which we can generate artificial actions.

Once the solution space has been completely generated and connected, we
need to consider how to find the best path from state A to state B. The algorithm
for finding this will be naturally recursive in nature– the best path from A to
B will be the best element of the set of paths S, where S is composed of paths
from each neighbor of A to B. Paths which require fewer intermediate steps will
be preferred, as they require the student to make less changes, but we also need
to consider the distances between the program states. We can again use string
edit distance to find these distances, or we can use the tree edits to look at
the total number of individual changes required. Finally, we can use test cases
to assign correctness parameters to each program state (as there are certainly
some programs which are more incorrect than others); paths which gradually
increase the number of test cases that a student passes may be considered more
beneficial than paths which jump back and forth, as the latter paths may lead
to discouragement and frustration in students.

Example In the previous section, we had found the canonical form for the
student’s solution; that form was labeled #22 in the set of all forms. As we were
using a dataset of final submissions, we had no learning progressions to work
with, we computed the normalized Levenshtein distance between each pair of
states and connected those which had a percentage similarity of 90% or higher,
thus creating a progression graph.

55

In Figure 3, we see that state #22 was connected to three possible next
states: #4, #34, and #37. We know that #34 is incorrect, so it does not seem
like a good choice; on the other hand, #4 and #37 are equally close to #22 and
are both correct. State #37 had been reached by thirty students, while state #4
had only been reached by four; since #37 is more commonly used, it is probably
the better target solution for the student.

Fig. 3. The program state graph surrounding state #22. Red nodes are incorrect, green
correct; a darker node indicates that more students used that approach.

3.2 Generating content deltas between states

Next, we face the challenge of determining how to extract the content of the
feedback message from the solution space. The feedback that we give the student
comes from the edge between the current and target states, where that edge
represents the actions required to get from one state to the other. In well-defined
domains, these actions are often simple and concrete, but they become more
complex when the problems are less strictly specified.

Before, we used string distance to determine how similar two programs were,
in order to find distances quickly and easily. Now that we need to know what
the differences actually are, we use tree edits to find the additions, deletions,
and changes required to turn one tree into another. It is moderately easy to
compute these when comparing ordinary trees, but ASTs add an extra layer of
complexity as there are certain nodes that hold lists of children (for example,
the bodies of loops and conditionals), where one list can hold more nodes than
another. To compare these nodes, we find the maximal ordered subset of children
which appear in both lists; the leftover nodes can be considered changes.

After we have computed these edits, we can use them to generate feedback
for the student in the traditional way. Cognitive tutors usually provide three
levels of hints; we can use the same approach here, first providing the location of
an error, then the token which is erroneous, and finally what the token needs to
be changed to in order to fix the error. In cases where more than one edit needs
to be made the edits can be provided to the student one at a time, so that the
student has a chance to discover some of the problems on their own.

It may be possible to map certain edit patterns to higher-level feedback
messages, giving students more conceptual feedback. Certain misconceptions and
mistakes commonly appear in novice programs; accidental use of integer division
and early returns inside of loops are two examples. If we can code the patterns
that these errors commonly take (in these cases, division involving two integer
values and return statements occurring in the last line of a loop’s body), we can

56

provide higher-level static feedback messages that can be provided to students
instead of telling them which values to change. This may help them recognize
such common errors on their own in future tasks.

Example To generate the feedback message in our continuing example, we find
the tree edits required to get from state #22 to state #37. These come in two
parts: one a simple change, the other a more complex edit. Both are displayed
in Figure 4. The first change is due to a typo in the string of card face values
that the student is indexing (Y instead of T for ten); as the error occurs in a leaf
node (a constant value), pointing it out and recommending a change is trivial.
Such a feedback message might look like this: In the return statement, the string
”23456789YJQKA” should be ”23456789TJQKA”.

Fig. 4. The change found between the two programs, represented in text and tree
format (with * representing a further subexpression).

The second error is due to a misconception about how to find the index of
the correct suit value. In the problem statement, the integer card values mapped
cards first by face value and then by suit; all integers from 0 to 12 would be
clubs, 13 to 23 would be diamonds, etc. This is a step function, so the student
should have used integer division to get the correct value. In a terrible twist of
fate, this part of the student’s code will actually work properly; v0 − (v0%13)
returns the multiple of 13 portion of v0, and the first four multiples of 13 (0,
13, 26, and 39) each return the correct index value when modded by 4 (0, 1, 2,
and 3). Still, it seems clear that the student is suffering from a missing piece of
knowledge, as it would be much simpler to use the div operator.

In the AST, the two solutions match until they reach the value used by the
string index node. At that point, one solution will use mod while the other uses
div, and one uses a right operand of 4 while the other uses a right operand of
13. It’s worth noting, however, that both use the same subexpression in the left
operand; therefore, in creating feedback for the student, we can leave that part
out. Here, the feedback message might be this: In the right side of the addition in
the return statement, use div instead of mod. The further feedback on changing
4 to 13 could be provided if the student needed help again later.

57

3.3 Reversing deltas to regain content

Finally, we need to take the content of the feedback message which we created
in the previous part and map it back to the student’s original solution. If the
student’s solution was equivalent to the program state, this would be easy–
however, because we had to normalize the student programs, we will need to
map the program state back up to the individual student solution in order to
create their personal feedback message.

In some situations, this will be easy. For example, it’s possible that a student
solution only had whitespace cleaned up and variable names anonymized; if this
was the case, the location of the code would remain the same, and variable
names could be changed in the feedback message easily. In many other cases,
the only transformations applied would be ordering and propagation functions;
for these, we can keep track of where each expression occurred in the original
program, then map the code segments we care about back to their positions
in the original code. Our running example falls into this ”easy” category; even
though the student’s program looks very different from the canonical version,
we only need to unroll the copy propagation to get the original positions back.

Other programs will present more difficulties. For example, any student pro-
gram which has been reduced in size (perhaps through constant folding, or con-
ditional simplification) might have a feedback expression which needs to be bro-
ken into individual pieces. One solution for this problem would be to record
each transformation that is performed on a program, then backtrack through
them when mapping feedback. Each transformation function can be paired with
a corresponding ”undo” function that will take the normalized program and a
description of what was changed, then generate the original program.

Example All of the program transformations applied to the original student
program in order to produce state #22 were copy propagations; each variable
was copied down into each of its references and deleted, resulting in a single
return statement. To undo the transformations, the expressions we want to give
feedback on (’23456789YJQKA’ and (v0− (v0%13))%4) must be mapped to the
variables that replace them– face and suit (where suit is later mapped again
to suitValue). We can then examine the variable assignment lines to find the
original location in which the expression was used (see Figure 5), which maps
the expressions to lines 2 and 4. The first expression’s content is not modified,
but the second changes into (value− faceV alue)%4. This change lies outside of
the feedback that we are targeting, so it does not affect the message.

After the new locations have been found, the feedback messages are corre-
spondingly updated by changing the location that the message refers to. In this
case, the first feedback message would change to: In the second line, the string
’23456789YJQKA’ should be ’23456789TJQKA’. The second would become: In
the fourth line, use div instead of mod.

58

Fig. 5. A comparison of the canonical (left) and original (right) programs. The code
snippets we need to give feedback on are highlighted.

4 Conclusion

The approach we have described utilizes the concept of solution spaces to deter-
mine where a new student is in their problem-solving process, then determines
what feedback to provide by traversing the space to find the nearest correct so-
lution. Representing the solution space has been implemented and tested, but
generating feedback is still in progress; future work will determine how often it
is possible to provide a student with truly useful and usable feedback.

Acknowledgements. This work was supported in part by Graduate Training
Grant awarded to Carnegie Mellon University by the Department of Education
(# R305B090023).

References

1. Barnes, Tiffany, and John Stamper. ”Toward automatic hint generation for logic
proof tutoring using historical student data.” Intelligent Tutoring Systems. Springer
Berlin Heidelberg, 2008.

2. Gerdes, Alex, Johan Jeuring, and Bastiaan Heeren. ”An interactive functional pro-
gramming tutor.” Proceedings of the 17th ACM annual conference on Innovation
and technology in computer science education. ACM, 2012.

3. Gross, Sebastian, et al. ”Cluster based feedback provision strategies in intelligent
tutoring systems.” Intelligent Tutoring Systems. Springer Berlin Heidelberg, 2012.

4. Jin, Wei, et al. ”Program representation for automatic hint generation for a data-
driven novice programming tutor.” Intelligent Tutoring Systems. Springer Berlin
Heidelberg, 2012.

5. Le, Nguyen-Thinh, and Wolfgang Menzel. ”Using constraint-based modelling to
describe the solution space of ill-defined problems in logic programming.” Advances
in Web Based LearningICWL 2007. Springer Berlin Heidelberg, 2008. 367-379.

6. Paquette, Luc, et al. ”Automating next-step hints generation using ASTUS.” Intel-
ligent Tutoring Systems. Springer Berlin Heidelberg, 2012.

7. Rivers, Kelly, and Kenneth R. Koedinger. ”A canonicalizing model for building pro-
gramming tutors.” Intelligent Tutoring Systems. Springer Berlin Heidelberg, 2012.

8. Weragama, Dinesha, and Jim Reye. ”Design of a knowledge base to teach program-
ming.” Intelligent Tutoring Systems. Springer Berlin Heidelberg, 2012.

9. Xu, Songwen, and Yam San Chee. ”Transformation-based diagnosis of student pro-
grams for programming tutoring systems.” Software Engineering, IEEE Transac-
tions on 29.4 (2003): 360-384.

59

JavaParser: A Fine-Grain Concept Indexing Tool
for Java Problems

Roya Hosseini, Peter Brusilovsky

University of Pittsburgh, Pittsburgh, USA
{roh38,peterb}@pitt.edu

Abstract. Multi-concept nature of problems in the domain of programming
languages requires fine-grained indexing which is critical for sequencing pur-
poses. In this paper, we propose an approach for extracting this set of concepts
in a reliable automated way using JavaParser tool. To demonstrate the im-
portance of fine-grained sequencing, we provide an example showing how this
information can be used for problem sequencing during exam preparation.

Keywords: indexing, sequencing, parser, java programming

1 Introduction

One of the oldest functions performed by adaptive educational systems is guiding
students to most appropriate educational problems at any time of their learning pro-
cess. In classic ICAI and ITS system this function was known as task sequencing [1;
6]. In modern hypermedia-based systems it is more often referred as navigation sup-
port. The intelligent decision mechanism behind these approaches is typically based
on a domain model that decomposes the domain into a set of knowledge units. This
domain model serves as a basis of student overlay model and as a dictionary to index
educational problems or tasks. Considering the learning goal and the current state of
student knowledge reflected by the student model, various sequencing approaches are
able to determine which task is currently the most appropriate.

An important aspect of this decision process is the granularity of the domain model
and the related granularity of task indexing. In general, the finer are the elements of
the domain model and the more precise is task indexing, the better precision could be
potentially offered by the sequencing algorithm in determining the best task to solve.
However, fine-grained domain models that dissect a domain into many dozens to
many hundreds of knowledge units are much harder to develop and to use for index-
ing. As a result, many adaptive educational systems use relatively coarse-grained
models where a knowledge unit corresponds to a considerably-sized topic of learning
material, sometimes even a whole lecture.. With these coarse-grain models, each task
is usually indexed with just 1-3 topics. In particular, this approach is used by the ma-
jority of adaptive systems in the area of programming [2; 4; 5; 7].

Our past experience with adaptive hypermedia systems for programming [2; 4]
demonstrated that adaptive navigation support based on coarse grain problem index-
ing is surprisingly effective way to guide students over their coursework, yet it
doesn’t work well in special cases such as remediation or exam preparation. In these

60

mailto:roh38%7d@pitt.edu

special situations students might have a reasonable overall content understanding (i.e.,
coarse-grain student model registers good knowledge), while still possessing some
knowledge gaps and misconceptions that could be only registered using a finer-grain
student model.. In this situation only a fine-grain indexing and sequencing is able to
suggest learning tasks that can address these gaps and misconceptions.

 To demonstrate the importance of fine-grained indexing, we can look at an exam-
ple of a system called Knowledge Maximizer [3] that uses fine-grain concept-level
problem indexing to identify gaps in user knowledge for exam preparation. This sys-
tem assumes a student already did considerable amount of work and the goal is to
help her define gaps in knowledge and try to fix that holes as soon as possible. Fig. 1
represents the Knowledge Maximizer interface. The question with the highest rank is
shown first. User can navigate the ranked list of questions using navigation buttons at
the top. Right side of the panel shows the list of fine-grained concepts covered by the
question. The color next to each concept visualizes the student’s current knowledge
level (from red to green). Evaluation results confirm that using fine-grained indexing
in Knowledge Maximizer has positive effect on students’ performance and also short-
en the time for exam preparation.

Fig. 1. The Knowledge Maximizer interface.

The problem with finer-grain indexing, such as used by the Knowledge Maximizer
is the high cost of indexing. While fine-grain domain model has to be developed just
once, the indexing process has to be repeated for any new question. Given that most
complex questions used by the system include over 90 concepts each, the high cost of
indexing effectively prevents an expansion of the body of problems. To resolve this
problem, we developed an automatic approach for fine-grained indexing for pro-
gramming problems in Java based on program parsing. This approach is presented in
the following section.

Navigation Buttons

 Knowledge Level Question Concept

 Question Area

61

2 Java Parser

Java parser is a tool that we developed to index Java programs with concepts of Java
ontology developed by our group (http://www.sis.pitt.edu/~paws/ont/java.owl). This
tool provides the user with semi-automated indexing support during developing new
learning materials for the Java Programming Language course. This parser is devel-
oped using the Eclipse Abstract Syntax Tree framework. This framework generates an
Abstract Syntax Tree (AST) that entirely represents the program source. AST consists
of several nodes each containing some information known as structural properties.
For example, Fig. 2 shows structural properties for the following method declaration:
public void start(BundleContext context) throws Exception {
 super.start(context);
}

Fig. 2. Structural properties of a method declaration

Table 1. Sample of JavaParser output

Source Output
public void
start(BundleContext context)
throws Exception {
 super.start(context);
}

Super Method Invocation,
Public Method Declaration,
Exception,
Formal Method Parameter,
Single Variable Declaration,
Void

After building the tree using Eclipse AST API, the parser performs a semantic ana-

lyzed using the information in each node. This information is used to identify fine-
grained indexes for the source program. Table 1 shows the output concepts of
JavaParser for the code fragment mentioned above. Note that the goal of the parser is

62

http://www.sis.pitt.edu/~paws/ont/java.owl

to detect the lowest level ontology concepts behind the code since the upper level
concepts can be deduced using ontology link propagation. For example, as you see in
Table 1, parser detects “void” and “main” ignoring upper-level concept of “modifier”.

We compared the accuracy of JavaParser with manual indexing for 103 Java prob-
lems and found out that our parser was able to index 93% of the manually indexed
concepts. Therefore, automatic parser can replace time-consuming process of manual
indexing with a high precision and open the way to community-driven problem au-
thoring and targeted expansion of the body of problems.

3 Conclusion

Having fine-grained indexing for programming problems is necessary for better se-
quencing of learning materials for students; however, the cost of manual fine-grained
indexing is prohibitively high. In this paper, we presented a fine grained indexing
approach and tool for automatic indexing of Java problems. We also showed an appli-
cation of fine-grained problem indexing during exam preparation where small size of
knowledge units is critical for finding sequence of problems that fills the gaps in stu-
dent knowledge. Results show that proposed automatic indexing tool can offer the
quality of indexing that is comparable with manual indexing by expert for a fraction
of its cost.

References

1. Brusilovsky, P.: A framework for intelligent knowledge sequencing and task
sequencing. In: Proc. of Second International Conference on Intelligent Tutoring
Systems, ITS'92. Springer-Verlag (1992) 499-506

2. Brusilovsky, P., Sosnovsky, S., Yudelson, M.: Addictive links: The motivational
value of adaptive link annotation. New Review of Hypermedia and Multimedia
15, 1 (2009) 97-118

3. Hosseini, R., Brusilovsky, P., Guerra, J.: Knowledge Maximizer: Concept-based
Adaptive Problem Sequencing for Exam Preparation. In: Proc. of the 16th
International Conference on Artificial Intelligence in Education. (2013) In Press

4. Hsiao, I.-H., Sosnovsky, S., Brusilovsky, P.: Guiding students to the right
questions: adaptive navigation support in an E-Learning system for Java
programming. Journal of Computer Assisted Learning 26, 4 (2010) 270-283

5. Kavcic, A.: Fuzzy User Modeling for Adaptation in Educational Hypermedia.
IEEE Transactions on Systems, Man, and Cybernetics 34, 4 (2004) 439-449

6. McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task
sequencing in an intelligent tutor for basic algebra. Instructional Science 17, 4
(1988) 281-307

7. Vesin, B., Ivanović, M., Klašnja-Milićević A., Budimac, Z.: Protus 2.0:
Ontology-based semantic recommendation in programming tutoring system.
Expert Systems with Applications 39, 15 (2012) 12229-12246

63

	AIED2013-P1-4
	AIEDCS-Proceedings-AcceptedPapers
	aiedcs2013_submission_2b
	1 Introduction
	2 Methods
	3 Results and Discussion
	4 General Discussion
	Acknowledgment. This research was supported by the National Science Foundation (NSF) (ITR 0325428, HCC 0834847, DRL 1235958). Any opinions, findings and conclusions, or recommendations expressed in this paper are those of the authors and do not necess...
	References

	aiedcs2013_submission_3
	aiedcs2013_submission_4c
	aiedcs2013_submission_5
	aiedcs2013_submission_6
	aiedcs2013_submission_7
	aiedcs2013_submission_8b
	1 Introduction
	2 Java Parser
	3 Conclusion
	References

