
ANALYSIS OF LEARNING CURVES FOR WEIGHTED

CONSTRAINT-BASED TUTORING SYSTEMS

Nguyen-Thinh Le and Niels Pinkwart
Clausthal University of Technology, Department of Informatics

{nguyen-thinh.le, niels.pinkwart}@tu-clausthal.de

ABSTRACT

Weighted constraints have been proven a useful means to enhance the quality of error diagnosis, e.g., in the domain of

natural language parsing. In this paper, we propose an heuristic approach using constraint weights to analyze learning

curves for weighted constraint-based tutoring systems as an addition (or alternative) to the commonly used analysis of

pre-/post-test comparisons. Using a tutoring system for logic programming on the basis of weighted constraints as an

example case, we report on the effectiveness of the system with respect to helping students solve logic programming

problems. The study showed that the group learning curves developed positively as students were solving five exercises.

KEYWORDS

Evaluation, learning curves, intelligent tutoring systems, weighted constraints.

1. INTRODUCTION

Researchers have applied different methods to evaluate the effectiveness of tutoring systems. Most

prominently, comparisons between pre-test and post-test knowledge (often in combination with the

comparison of an ITS to other learning tools) have been used. Martin et al. (2005) proposed to use learning

curves in addition to other common evaluation indicators (such as pre-/post-test learning gains) in order to

confirm the contribution of tutoring systems. Typically, learning curves represent a measure of student’s

performance (e.g., errors, or time on task) as a function of the number of attempts (Gallistel et al., 2004).

Thus, learning curves can be used to plot the development of students’ skills over time. This paper focuses on

two goals: First, we demonstrate how to deploy weight values of constraints to plot learning curves for

weighted constraint-based tutoring systems. Second, we report on the development of students’ programming

skills while using a tutoring system for Logic Programming (INCOM) with respect to learning curves.

In the next section, we first describe the weighted constraint-based approach for ITS development in more

detail and introduce briefly the system INCOM which has been developed based on this approach. In the

third section, we describe the evaluation of the system based on learning curves and report the results. In the

last section, we conclude with some remarks on the effectiveness of the system in terms of learning curves.

2. WEIGHTED CONSTRAINTS FOR ITS DEVELOPMENT

Constraint-based approaches have been employed for a variety of tasks, including diagnosing grammatical

errors in natural language utterances (Menzel, 1988) and building intelligent tutoring systems for various

domains such as SQL (Mitrovic et al., 2001). The tenet of the constraint-based approach is modeling a space

of correct solutions instead of creating an expert model by enumerating possible correct solutions. However,

this approach is not sufficient to evaluate the plausibility of hypotheses about different solution variants for a

problem which can be solved in many ways. Constraints might be satisfied under the assumption of one

solution strategy, but could be violated in the context of another strategy. If the dependence between

constraints and a specific solution strategy is not explicitly modeled, diagnostic information which is derived

from a violated constraint might be deceptive to the student, because the solution strategy the student

intended to implement might not be the same as the one based on which constraints are checked (Martin,

2001: 43; Kodaganallur et al., 2006: 321; Woolf, 2009: 85).

In order to hypothesize the most plausible strategy underlying a solution, we need to evaluate the

plausibility of hypotheses. This can be done by assigning a heuristic value to each constraint which is

referred to as a constraint weight. Weighted constraints have their root in the probabilistic constraint

satisfaction area and have been applied successfully to enhance the quality of error diagnosis, e.g., in natural

language processing (Foth, 2007). The overall plausibility score for a hypothesis is calculated by aggregating

all weight values of violated constraints. Here, two overall approaches are possible – an additive model

(weights of all violated constraints are added) or a multiplicative model. We propose to use the multiplicative

model to calculate the plausibility score and constraint weights are taken from the interval [0;1]. The value 0

indicates the weight for constraints which model the most important requirements. As compared to the

additive model, the multiplicative approach has the advantage that it allows tracing whether most important

constraint violations have contributed to the plausibility score.

We applied the weighted constraint-based approach to develop INCOM, a system which is intended to

coach students solving homework assignments of a Logic Programming course. The system informs the

student about possible errors occurring in her solution attempts and gives feedback to improve the solutions.

As a tutoring model, the system INCOM employs a two-stage coaching strategy: it first guides the students to

analyze a task and then supports them during the implementation of a solution. During the first phase, the

system requests the student to analyze a given problem statement and to transform the analysis result into an

adequate signature for the logic programming predicate to be implemented. If the specified predicate

signature is appropriate, the student is allowed to enter the second stage, where she is asked to define a

predicate. During both stages, the system generates hypotheses about the student’s input (a predicate

signature or an implementation) by matching it against a set of possible solution strategies coded into the

system. Once the hypotheses have been generated, the system evaluates each hypothesis with respect to their

plausibility using constraint weights. The hypothesis which has the highest plausibility score is considered

the most plausible one, and the system thus assumes that the student followed the solution strategy that this

hypothesis represents. Feedback to the student is then given with respect to this solution strategy. Details

about the system and its underlying technology have been published in (Le & Menzel, in press).

3. EVALUATION

3.1 Study design

The goal of our evaluation for INCOM is to answer the question whether the system’s feedback is useful for

helping students solve logic programming problems. The evaluation has been carried out during regular

classroom hours of a course in Logic Programming running at the Department of Informatics, University of

Hamburg. Students were given credits for participating in the study but had the possibility to opt out. They

were assigned randomly to two groups: a control and an experimental group. The balance of two groups has

been established in terms of the students’ achievement score of the preceding sessions. The study consisted

of a pre-test (10 minutes), an experiment session (60 minutes) during which the control group used the SWI

Prolog interpreter and the experimental group used INCOM to solve five exercises, and a post-test (10

minutes). The experiment exercises were collected from the homework and examinations of former years of

the same course. Note that Exercise 1.1 and 1.2 belong to the same domain context (product inventory), and

that Exercise 2.1, 2.2 and 2.3 require students to solve the same problem (return on investment) applying

different solution strategies:

 Exercise 1.1: Define a predicate which calculates the current value of the product inventory.

 Exercise 1.2: Define a predicate to create a new product list according to the following rules: Value of

products less or equal 3000$ will be raised 3% and value of products above 3000$ will be raised 2%.

 Exercise 2.1: The return of investing an amount of money at a constant yearly interest rate can be

computed according to the following recursive rule: Bi = Bi for i=0, and Bi= (1+Z)*Bi-1 otherwise, where

Bi represents the return of an investment period of i years, and Z is the yearly interest rate. Please map

the given recursive rule to a recursive Prolog predicate.

 Exercise 2.2: Define a non-recursive predicate with the same signature as in Exercise 2.1

 Exercise 2.3: Convert your solution for Exercise 2.1 into a tail recursive predicate, i.e., the recursive

subgoal must be the last one in a clause body.

In the first study, Le, Menzel & Pinkwart (2009) reported that the experimental group (18 participants)

outperformed their peers of the control group (17 participants) by an effect size of d=0.23 between conditions

(yet, these results were not statically significant at the 5% level). The second study, which has been

conducted in 2010 with 16 participants for each group, showed an even better performance of the

experimental group than the first study: the experimental group outperformed the control group by an effect

size of d=0.33. These effect sizes indicate an educational significance, i.e., something was learned due to the

use of INCOM compared to a standard programming environment. In addition to comparing the learning

gains between the experimental and the control group (which was detailed in a previous paper), we are

interested in the question how effective our system was in helping 34 participants of the experimental group

of both studies while solving logic programming problems. To answer this question, the next sections of this

paper use learning curves to represent the error rate of each problem solving attempt over time.

3.2 Analysis method

For a learning curve analysis, researchers usually plot the learning curve by counting the number of errors

occurred in a solution attempt to compute the error rate (Martin et al., 2005) or by counting the number of

attempts required to solve a problem type (e.g., Koedinger & Mathan, 2004). In the approach proposed here,

to compute the error rate for each solution attempt, we consider the severity of each error (i.e., the importance

of the error in the context of a solution) in terms of the associated constraint weight. The error rate of each

solution attempt is calculated based on the severity of all errors. This approach is feasible for tutoring

systems that make use of weighted constraints.

Since each constraint is associated with a constraint weight, the error rate of each solution attempt can be

accumulated according to the following formula: Error-Rate = log(, where Wi is the weight of the

i-th violated constraint. If a solution is correct, i.e., no constraint is violated, then the error rate for this

attempt is log(1)=0. If a solution contains many errors, then the product of the weights of the violated

constraints can approximate 0, and thus the error rate will be negative and can converge to -∞ as more and

more constraints are being violated.

In this paper, the diagrams are plotted by the error rate on the y-axis and the number of solution attempts

on the x-axis. Thus, the learning curve represents the development of the error rate over time. We

hypothesize that the error rate of a student will decrease after a number of attempts due to the use of the ITS,

i.e., the students learn. Here, a learning curve is meant a group curve which represents the averaged error

rates of solution attempts over a group of students who solved the same problem. If (as in our scenario)

students may need different numbers of attempts to solve the same problem, the overall group curve can be

truncated if some students solve a problem with few attempts while other participants, who have a high error

rate, still require more time (in terms of the number of attempts). This would result in a highly misleading

group curve (Gallistel et al., 2004), since each data point is calculated based on a different number of

students, with better students “dropping out” earlier and thus causing the curve to indicate a group

performance that is much worse than it actually is). To address this effect, the diagrams in this paper are

based on a dataset which includes the (realistic) assumption that the student who has finished solving a

problem in some attempt would not make any errors in next attempts of the exact same problems. For

instance, let us assume that a student achieves a correct predicate definition after his 2
nd

 attempt, and thus the

error rate for the 2
nd

 attempt is 0. Let X be the highest number of attempts that another participant needs to

achieve a correct predicate definition for the same problem. Then, in our approach, the first student would be

included in the calculation of the group error rate for the attempts in the interval [3;X] with an error rate of 0.

This approach results in smoother group curves, in line with the observation of Ritter and Schooler (2002)

that the learning curve appears smoother when the data is averaged across subjects, problems or both.

3.3 Results

Figure 1 shows the positive development of learning curves of students during the analysis (slope=0.50, fit

R2=0.99) and the implementation phase of Exercise 1.1 (slope=0.51, R2=0.89). This indicates that system’s

feedback was effective at helping students analyze the problem of Exercise 1.1 and specify a predicate

signature. We also notice that the learning curve for implementation decreases after x=4 (the fourth attempt).

That is because there were five students who finished their implementation successfully at the fourth attempt.

After this point, the development of the learning curve depends on the performance of the rest of the group

who were not as good.

Figure 1. Learning curves during solving Exercise 1.1 Figure 2. Learning curves during solving Exercise 1.2

Figure 2 represents the learning curves for Exercise 1.2. In overall, learning curves of students while

solving Exercise 1.2 are better than those while solving Exercise 1.1: slope=0.58 (R
2
=0.93) during the

analysis phase, and slope=0.88 (R
2
=0.66) during the implementation phase. This can be explained by the fact

that Exercise 1.2 builds up on Exercise 1.1, and thus students may have had a better understanding when

analyzing the problem of the same domain context. Indeed, students needed only 2.5 attempts to specify an

appropriate predicate signature for Exercise 1.2, less than for Exercise 1.1 (5.6 attempts). We also notice that

the learning curve during the implementation phase shows a decline between the 1
st
 and the 3

rd
 attempt. This

effect in the figure is due to the fact that the error rate of a few students developed negatively after the first

attempt. Thus, their performance strongly affected the learning curve during the implementation phase after

the 1
st
 attempt negatively. Due to the different development of performance among the students solving this

exercise, the fit of the learning curve for the implementation phase is relatively low (R
2
=0.66).

Figure 3. Learning curves during solving Exercise 2.1 Figure 4. Learning curves during solving Exercise 2.2

Figure 3 visualizes the learning curves for Exercise 2.1. The mean slope of learning curves during the

analysis phase is relatively steep (slope=0.66, R
2
=0.90). This can be caused by the students having gained

experience when solving Exercise 1.1 and 1.2. However, during the implementation phase, the mean slope of

the learning curve is 0.44 (R
2
=0.96), which is lower than the one for the previous exercises. This may be due

to the fact that this exercise is considerably more complex than Exercises 1.1 and 1.2.

Figure 4 shows that the students’ performance when specifying a predicate signature for this exercise

(slope=0.95, R
2
=1) is better than for Exercise 2.1, because students may have acquired experience when

specifying the predicate signature for the previous exercise. However, the slope of the learning curve during

the implementation phase (slope=0.13, R
2
=0.89) is worse than the one for Exercise 2.1. This may be

explained by the fact that the solution strategy, which is expected to solve Exercise 2.2 (this exercise

explicitly requires an analytic formula to calculate the return on investment), is totally different from than the

one required for Exercise 2.1 (recursive computation), so no knowledge transfer concerning the

implementation can be expected.

Figure 5 represents the learning curves when solving Exercise 2.3: slope=1.24 (R
2
=0.98) during the

analysis phase and slope=0.62 (R
2
=0.58) during the implementation phase. Remarkably, the development of

the learning curves for this exercise is better than for Exercise 2.2 and 2.1. However, the fit of the curve

during the implementation phase is relatively low. This can be explained by the fact that the number of

participants, who attempted to implement a predicate for this exercise, is relative small (6 students). In

addition, most of the participants could provide a correct predicate on the second attempt, but there was one

participant who could not construct a correct implementation even after twelve attempts.

Figure 5. Learning curves during solving Exercise 2.3

4. CONCLUSION

In this paper, we have shown how constraint weights can be used to compute error rates for student solution

attempts in a constraint-based Intelligent Tutoring System. We have conducted an evaluation study and used

learning curves to analyze the learning performance of students using the homework assistance system for

learning logic programming. We could determine that the slope of group learning curves when solving

exercises using the system is positive and most learning curves fit well in logarithmic functions. This agrees

with our hypothesis that system’s feedback is useful to help students solve logic programming exercises. Two

learning curves (during the implementation for Exercise 1.2 and 2.3) do not have a good fit due to the

diversity of performance among students. We also conclude that the slope of learning curves during the

analysis phase becomes steeper over time, indicating that students learn faster. It remains open whether this

approach is more realistic at showing student’s knowledge acquisitions than merely counting the number of

errors occurring in a solution attempt, as traditional learning curve analysis approaches would foresee.

Comparative analyses would be required to answer this question.

REFERENCES

Foth, K. A., 2007. Hybrid Methods of Natural Language Analysis. Shaker Verlag, Germany.

Gallistel, C. R. et al., 2004. The learning curve: Implications of a quantitative analysis. Proceedings of the National
Academy of Sciences of the USA, Vol. 101, No. 36, pp. 13124-13131.

Kodaganallur, V. et al., 2006. An assessment of constraint-based tutors: A response to Mitrovic and Ohlsson's critique of

"A comparison of model-tracing and constraint-based intelligent tutoring paradigms". International Journal of

Artificial Intelligence in Education, Vol. 16, pp. 291-321.

Koedinger, K.R. and Mathan, S., 2004. Distinguished qualitatively different kinds of learning using log files and learning
curves. Proceedings of ITS 2004 Log Analysis Workshop, Maceio, Brazil. pp. 39-46.

Le, N.-T. and Menzel, W. Using weighted constraints to diagnose errors in logic programming - The case of an ill-

defined domain. Int. Journal of Artificial Intelligence in Education - Special Issue on ill-defined domains, in press.

Le, N.-T., Menzel, W., and Pinkwart, N., 2009. Evaluation of a constraint-based homework assistance system for logic
programming. Proceedings of the 17th International Conference on Computers in Education.

Martin, B., 2001. Intelligent Tutoring Systems: The practical implementation of constraint-based modeling. Ph. D. thesis,
University of Canterbury.

Martin, B. et al., 2005. On using learning curves to evaluate ITS. Proceedings of the conference on AIED. pp. 419-426.

Menzel, W., 1988. Diagnosing grammatical faults - a deep-modelled approach. Proceedings of AIMSA, pp. 319-326.

Mitrovic, A. et al., 2001. Constraint-based tutors: A success story. Proceedings of the 14th Int. conf. on Industrial and
engineering applications of AI and expert systems. pp. 931-940.

Ritter, F.E. and Schooler, L. J. (2002). The learning curve. In International encyclopedia of the social and behavioral
sciences. 8602-8605. Amsterdam: Pergamon.

Woolf, B. P, 2009. Building intelligent interactive tutors. Morgan Kaufmann.

