
Collaborative Modeling in Graph Based Environments

Vom Fachbereich Ingenieurwissenschaften der
Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

genehmigte
Dissertation

von

Niels Pinkwart
aus Orsoy (jetzt Rheinberg)

Referent: Prof. Dr. H. Ulrich Hoppe
Korreferent: Prof. Dr. Daniel D. Suthers

Tag der mündlichen Prüfung: 19. Juli 2005

ii

iii

Acknowledgements

There are a number of people who have helped and encouraged me in completing
this work.

Foremost, I would like to thank Ulrich Hoppe, the advisor of this thesis, for
motivating and encouraging me, and for the support he provided. I am grateful
for the chance of being a member of his research group during the last years of
preparing and writing this thesis. Also, I would like to thank Dan Suthers for
co-advising this work. The ”hawaiian style” experiences that I could gather during
my visit in his lab allowed me to view my work from a helpful additional perspective.

I thank the current and former members of the COLLIDE research group. The
creative and inspiring working atmosphere in this group has been a continuous
source of inspiration for this work. In addition, the usage of the different Cool
Modes prototypes during the last years and the resulting feedback pushed forward
the development. I am thankful to Katrin Gaßner and Andreas Lingnau, who have
shared an office with me for years, for their collaborative working style and the
pleasant working environment. Most of the research and student assistants of the
COLLIDE group have provided important assistance in programming tasks, and
have given valuable contributions during countless technical discussions. I am also
grateful to Sam Zeini for advising me in evaluation methodology issues, and to the
teachers and programmers who volunteered for the interviews. Without their col-
laboration, the evaluation parts of this thesis would not have been possible.

A special thanks goes to Andi Harrer. He has spent hours proof-reading this
thesis and discussing it with me. Such a kind of support is invaluable.

Finally, I want to thank my wife Julia. Her patience and understanding made
this work possible. I love her.

iv

v

Abstract

This thesis presents a conceptual approach and a corresponding system implementa-
tion to support collaborative modeling with graph based representations. Motivated
by promising application potential in the field of education, the work is methodolog-
ically rooted in computer science, at the intersection of fields like metamodeling,
software design, distributed systems, and visual languages in HCI contexts. In this
combination of computer science methods applied with a view towards educational
scenarios, the work is in the tradition of research fields like groupware, AIED, and
CSCL.

In introductory requirements analysis parts, different notions of interoperabil-
ity (syntactic, semantic, social, and task) and further criteria for a collaborative
modeling system relying on graphs as primary representations are worked out. Re-
views of the current state-of-art in dynamic and collaborative modeling tools and
theory show that there are neither existing software environments that meet these
requirements, nor conceptual approaches that address all the criteria.

Taking up concepts and approaches from graph theory, visual language theory,
and metamodeling, this thesis presents the concepts of visual typed graphs and
Reference Frames as formal notations for models and modeling languages usable in
collaborative contexts. On this conceptual level, interoperability issues for shared
heterogeneous models are discussed.

Building upon existing libraries for communication support and graph represen-
tations (identified through a requirement list which takes into account the needs
of the abstract Reference Frame concept), an architecture as a base for system
implementations of the Reference Frame approach is presented. This architecture
offers rule based syntax specification options and support for model synchronization.
Furthermore, it contains a lightweight event based mechanism for model interpre-
tation (which comprises model simulation functionality), and options for Reference
Frame interoperability also on the implementation level - the latter corresponding
to relations already exemplified on the conceptual level. Central design decisions,
including trade-offs between expressiveness and flexibility on the one hand, and
central control on the other hand, are discussed.

The Cool Modes modeling framework as one example implementation of the
Reference Frame architecture is presented in detail. This application manages mul-
tiple Reference Frames and supports collaboration relying on a ”shared workspace”
metaphor. Through specific user interfaces for Reference Frames (called Palettes),
the users are provided with an easy means to build heterogeneous models using
primitives (nodes and edges) that (externally definable and ”pluggable”) modeling
languages provide. Cool Modes as a tool which offers multiple work phases and
several forms of partial synchronization (relying on language-specific synchroniza-
tion contexts) is described.

This thesis concludes with an evaluation of the Cool Modes system: sev-
eral non-technical requirements which are not suitable for formal proofs (like, e.g.,
social interoperability) are evaluated on the base of interviews conducted with pro-
grammers who have used the application framework, and with teachers who have
conducted lessons using the Cool Modes environment.

vi

Contents

1 Introduction 1
1.1 Mindtools . 2
1.2 CSCL . 5
1.3 The Collaborative Mindtool Approach 8
1.4 Collaborative Modeling with Graphs 11
1.5 Challenges and Aims . 16

2 Theoretical Foundations 23
2.1 Graph Theory . 23
2.2 Visual Language Theory . 27
2.3 Meta Modeling . 36
2.4 Summary and Conclusions . 50

3 Graph Based Modeling Tools 53
3.1 Criteria . 53
3.2 Graph Based Modeling Tools . 56
3.3 Discussion . 70
3.4 Challenges . 72

4 The Reference Frame Approach 75
4.1 Typed Graphs and Layouts . 75
4.2 Integrity Constraints . 78
4.3 Expression Semantics . 80
4.4 Synchronization Requirements . 83
4.5 Reference Frames . 86
4.6 Reference Frame Based Interpretation 93
4.7 Interoperability Issues and Design Aims Met 101

5 Existing Technology 105
5.1 Criteria for Graph Representations 105
5.2 Systems for Graph Based Representations 107
5.3 Synchronous Cooperation Support 118
5.4 Technical Solutions for Cooperation Support 123

6 An Abstract Implementation Model 131
6.1 Visual Typed Graphs . 131
6.2 Rules as Expressions for Constraints 133
6.3 Reference Frame Implementations 135
6.4 Event Based Model Interpretation 143
6.5 Interoperability Issues and Design Aims Met 151

vii

viii CONTENTS

7 The Cool Modes Framework 155
7.1 Definition and Usage of Reference Frames 155
7.2 Visual Interfaces and Interaction Paradigms 161
7.3 Collaborative Modeling Support . 165
7.4 Interoperability Issues and Design Aims Met 169

8 Applications and Evaluation 171
8.1 Application Areas . 172
8.2 Teacher’s Views . 176
8.3 Programmer’s Views . 187
8.4 Summary . 199
8.5 Conclusions . 200

9 Summary and Discussion 203
9.1 Summary . 203
9.2 Discussion . 206

References 213

Chapter 1

Introduction

The ability to learn is absolutely essential for human beings in order to acquire
knowledge, skills, and behavior and thus to adapt to a changing reality. Conse-
quently, questions dealing with the factors that determine human learning have
been an important subject of research in the past decades. Researchers have not
only been exploring the nature of learning in various general perspectives, but have
in particular formulated a number of approaches that deal with specific conditions in
which learning may occur. Some of these approaches are more from a practitioner’s
point of view, others base on a scientifically sound set of principles. According to
Schunk (1991), an important role of the latter type - learning theories - is that they

”[...] provide frameworks for making sense of environmental observa-
tions, serving as bridges between research and educational practices and
as tools to organize and translate findings into recommendations for ed-
ucational practice.” (page 17&18)

Gredler (1992) identifies four functions that theories of learning have in the
different educational disciplines:

• Serve as guidelines to design instruction

• Allow for evaluation of current products and practices for classroom use

• Diagnose problems in the educational situation

• Evaluate research conducted on theories

In all these different functions, theories of learning are concerned with factors
that determine or influence learning. While for quite a long time, these factors
mainly played a role in ”traditional” educational settings (like classroom situa-
tions), evolving new possibilities available with developing computer technology
have opened some new directions. Starting with Computer Assisted Learning ap-
proaches that came up in the 1960s (Suppes & Macken, 1978), the possibilities
that technology as a means for learning support offers became a subject of research.
Typical questions in this intermediate area between pedagogy and computer science
deal with the design and use of software tools that support learning.

Not all the tools built in this area have been explicitly designed in context of
a specific learning theory. Even if they are, an important factor to understand is
that the theoretical foundations are mostly far from being operational enough to
allow for a direct and determined derivation of a learning environment. In any
case, it is obvious that, if a learning theory is adopted and taken as premise for
designing computer-based learning tools, this theory has an impact on the properties

1

2 CHAPTER 1. INTRODUCTION

and foci that the resulting tools have. For instance, building upon behavioristic
positions like presented by Skinner (1974) will almost definitely result in systems
that implement stimulus-response patterns and offer reinforcements or punishments.
Another example: a foundation on social learning theory like presented by Bandura
(1977) is likely to produce systems in which learners can observe other (real or
artificial) agents’ actions and their consequences.

Of course, the described impact is not direct. Given this fuzzy but existing
relation and the heterogeneity of existing learning theories, it is not surprising that
the one educational piece of software that supports learning in all its (theoretical
and practical) varieties does not exist. In addition, we can not observe tendencies
towards a unifying learning theory, which could be used to derive design guidelines
for general purpose educational software tools. Even if such a theory existed, it
is unclear in how far it would or could have operational characteristics that could
directly and deterministically guide implementations, in particular taking into ac-
count the complexity of learning scenarios and, therefore, the need to drop ”closed
world/full control” positions (Hoppe, 2005, to appear).

Despite these points of criticism (fuzzyness, heterogeneity and missing oper-
ational character), there is a large number of research results in particular from
the last two decades that illustrate how successful learning support can be realized
by adopting a pedagogical theory and using engineering approaches to implement
appropriate computer-based tools. We can even observe families of tools (consist-
ing of tools with similar common properties) that seem to be suitable for certain
educational approaches. In the following of this introductory chapter, I describe
two prominent examples for this relation between pedagogical theory and system
engineering and briefly outline exemplary educational software families that have
emerged. The main motivation for this thesis lies in an integration issue between
these two areas: it is observable in CSCL (Computer Support for Collaborative
Learning) literature that two theoretical positions shown in sections 1.1 and 1.2 are
frequently combined and taken as a joint foundation or justification for educational
approaches or tools. As both of these theories have some typical ”established” as-
sociated software tools that are designed to support learning in the sense of the
respective educational approach, the question arises in how far also on the techno-
logical side, an integration is possible and reasonable.

On a more concrete level, this question is formulated in section 1.3 and manifests
in the challenge to build a flexible Collaborative Mindtool. This thesis deals with
this integration question on an engineering level by analyzing and formulating re-
quirements, and presenting a solution - a collaborative modeling framework - based
on current technology.

1.1 Mindtools as Constructivist Learning Envi-
ronments

In recent literature, we often find the claim that specific computer-based learning
environments allow for constructive tasks and/or induce an active learner role. An
illustration: out of 60 papers accepted for the CSCL 2003 conference, 21 explicitly
mention this direction in title, abstract or introduction. 11 of these 21 present
a computer-based learning environment based on that particular direction. One
of the theoretical foundations frequently given for this is constructivist learning
theory, which bases on philosophical and pedagogical ideas developed mainly by
Piaget, Dewey, Montessori, Bruner, and Vygotsky. The common adoption of this
theory is not beyond critique. Sfard (1998) generally states that all simplified models
to explain learning fall short at some point and thus a restriction to one theory or

1.1. MINDTOOLS 3

metaphor is likely to lead towards a too restricted view on complex real phenomena.
Another point of criticism to the ”common sense” adoption of constructivism is put
by Glasersfeld (1995), who believes that the current vogue of constructivism in
educational literature is to some extent superficial:

”Some of its advocates tout it as a panacea but would reject it if they
became aware of its epistemological implications.” (page 176)

Constructivism is founded on the premise that, by reflecting on experiences,
learners construct their own understanding of the world they live in (Fosnot, 1996).
Learning, therefore, is the process of adjusting our mental models to accommodate
new experiences. This suggests that learning is an active, rather than a passive,
process.

The educational paradigm of constructivism is far from being exactly definable
(in fact, a variety of definitions can be found) or even suitable for operationalization.
Nevertheless, a number of attempts have been made that go towards elaborating
concrete design criteria for learning environments in order to fulfil constructivist
claims.

Wilson (1996, page 5) defines a constructivist learning environment as

” [...] a place where learners may work together and support each other
as they use a variety of tools and information resources in their guided
pursuit of learning goals and problem-solving activities.”

He emphasizes learning environments (as opposed to instructional environments)
in order to promote a more flexible idea of learning which stresses

”[...] meaningful, authentic activities that help the learner to construct
understandings and develop skills relevant to problem solving.” (page 3)

A number of approaches have been made to transform higher order goals into
concrete guidelines that explain the design principles or goals for constructivist
learning environments. Not surprisingly, these guidelines tend to be on a relatively
high or general level.

Glasersfeld (1995) reflects upon constructivist implications for educational sit-
uations is general, including the critical question what teaching means when there
is no such thing as objective knowledge. The four central suggestions he makes are
the following:

• Teachers should help rather than instruct, the notion for educational activities
should be teaching instead of training.

• The orienting function of language and perceptual material can be conductive
to reflections and abstractions.

• Teachers should try to infer the thinking of their students in order to be able
to orientate them and understand the conceptual changes that occur.

• Reflection, as it can cause conceptual changes, should be fostered, e.g. by
applying group work phases in which the weakest student will have to present
the final result.

The results of Honebein (1996) are more guiding for educational practitioners.
They can be summarized briefly as follows:

• Provide students with experience with the knowledge construction process.

4 CHAPTER 1. INTRODUCTION

• Provide experience in and appreciation for multiple perspectives.

• Maintain the authentic context of the learning task.

• Allow for a student-centered learning process whereby students play an im-
portant role in setting the goals for learning.

• Provide for collaboration.

• Use multiple modes of representation.

• Encourage metacognitive and reflexive activities.

While these principles relate to the design of generic educational environments,
some other approaches have put a specific focus on the design criteria for computer-
based tools in order to make them usable in a constructivist sense.

A very prominent example for this viewpoint is the notion of Mindtools as
introduced by Jonassen (2000). He takes up the constructivist perspective as a key
foundation for the use of computer technology in education. His approach aims at
fostering critical thinking by learning with (instead of from) the computer:

”Mindtools are computer-based tools and learning environments that have
been adapted or developed to function as intellectual partners with the
learner in order to engage and facilitate critical thinking and higher or-
der learning. [...] Mindtools are constructivist knowledge construction
tools.” (pages 9 & 12)

Mindtools are interactive learning environments and ”computational objects to
think with”. They foster meaningful learning defined by Jonassen, Peck, and Wilson
(1999) as being active, constructive, intentional, authentic and cooperative. The
characteristics by which can be determined whether a tool is a Mindtool or not
(and thus the key properties a tool should have in order to support such high-level
goals as meaningful learning) as given by Jonassen are listed below. Interestingly,
these criteria are associated to very different areas and in particular cover several
fields of educational and computer science.

• Computer-basedness. While in general, Mindtools are not necessarily
computer-based, Jonassen lists this requirement as his concern is computers
in education.

• Availability. A Mindtool must be a readily available, ”off the shelf” general
computer application.

• Affordability. Mindtools should be available at low costs to allow for regular
school use.

• Knowledge construction. Mindtools can be used to construct and repre-
sent content or personal knowledge.

• Generalizability. A Mindtool can be used in different domains, they are
not restricted to specific areas or subjects.

• Critical Thinking. The use of a Mindtool engages the learner in critical
thinking, which is deeper and higher order than just memorizing what someone
else said about the content.

• Transferability. Using Mindtools results in the construction of generaliz-
able, transferable skills that is not bound to the subject the Mindtool was
used with.

1.2. CSCL 5

Table 1.1: Mindtool examples - categories and applications

Category Applications
Semantic Databases

Organization Tools Semantic Networks
Spreadsheets

Expert SystemsDynamic Modeling Tools
Systems Modeling

Microworlds
Intentional Information SearchInterpretation Tools

Visualization Tools
Knowledge

Construction Tools
Hypermedia Editing Tools

Synchronous Conferencing ToolsConversation Tools
Asynchronous Conferencing Tools

• Formalism. The formalism embedded in a Mindtool provides a simple but
powerful way of thinking.

• Learnability. The use of a Mindtool must be easily learnable, so that the
effort needed to learn how to use the tool does not exceed the benefits which
result from using it.

In the sense of Jonassen, these criteria are not to be considered as absolute but
as indicators of the degree of ”mindtoolness” that a tool has. Some application
categories with a high degree of such ”mindtoolness”, together with some specific
example applications for each category, are listed in table 1.1 which is taken from
Jonassen (2000). This table does not mean to be exhaustive. We can find several re-
cent publications in which tools are being attributed Mindtool-like properties or are
explicitly categorized as being Mindtools. Examples include the WORLDMAKER
modeling tool for children (Law & Tam, 1998), the Inspiration concept mapping
application (Dabbagh, 2001), the mathematics learning environment ELLE (Mor-
teo & Mariscal, 2003), tools targeted towards learning the concept of time (Wang,
Wang, & Huang, 2002), and some usages of Lego Mindstorms technology (Savage,
Sanchez, O’Donnel, & Tangney, 2003).

1.2 Computer Support for Collaborative Learning

Compared to other ”established” research areas in the educational sciences, the
field of collaborative learning is still relatively young. The basic and simple idea
behind it is that it is beneficial for learners to work together on learning tasks. It
is assumed that the joint construction of meaning through interaction with others
enhances learning (Littleton & Häkkinen, 1999). Evidence for this hypothesis has
e.g. been given by Johnson and Johnson (1990, page 26) who state that:

”[...] generally achievement is higher in co-operative learning situations
than in competitive or individualistic ones and that cooperative efforts
result in more frequent use of higher-level reasoning strategies, more
frequent process gain, and higher performance on subsequent tests taken
individually than do competitive or individualistic efforts.”

As both the term collaboration and the term learning are used in a variety of
meanings, a precise and universally accepted definition of the term ”collaborative

6 CHAPTER 1. INTRODUCTION

learning” did not yet evolve. While the term ”learning” is already used ambiguously,
the meanings of the adjective ”collaborative” diverge even more (Dillenbourg, 1999).
For instance, some authors refer to ”collaboration” whenever two or more people
interact at all, while others carefully distinguish between the different nuances ex-
pressed with terms like cooperation, coordination, communication, cooperation and
collaboration (Herrmann, 2001). In these cases, the difference between collabora-
tion and cooperation is mainly seen in the fact that collaboration requires more
than an effective division of labor (which would already constitute cooperation) but
”real” joint activity. In this sense, Roschelle and Teasley (1995, page 70) give the
following definition:

”Collaboration is a coordinated, synchronous activity that is the result
of a continued attempt to construct and maintain a shared conception
of a problem.”

Dillenbourg (1999) takes up this definition, but states that it lacks one important
aspect of collaborative learning that a common theory would have to offer as a
dimension: the inclusion of collaborative situations. In his analysis, he points out
the four aspects of ”collaborative learning” listed below.

Situations. A situation is called collaborative if it contains a certain symmetry
between the actions, knowledge, and status of the participants. Furthermore,
collaborative situations are often characterized by shared goals among the
participants and a low division of labor (i.e., participants solve a task together
instead of dividing it into independent subtasks, merely assembling partial
solutions).

Interactions. Collaborative interactions are characterized as being interactive (in-
dividual actions are interwoven), synchronous (though a sharp distinction be-
tween what is still synchronous and what is already asynchronous is hard to
make) and negotiable. The latter means that in collaborative interactions,
participants are expected to justify their positions and argue for their stand-
points.

Processes. Learning mechanisms in collaborative learning definitely involve those
of individual cognition (e.g. induction, cognitive load, or conflict), one might
hope that collaboration is a key for making these processes happen more often.
However, there are also processes that are specific to collaborative situations.
Examples given by Dillenbourg include internalization, appropriation, and
mutual modeling.

Effects. Methodological issues around the question of measuring effects of collab-
orative learning deal with, e.g., group performance measurements versus indi-
vidual measurements. Also the choice of dependent and independent variables,
influenced by the availability of detailed interaction data (through recordings
done by CSCL systems) is of interest here.

As opposed to other learning concepts (including the constructivist approaches
as presented in the previous section), research in the area of collaborative learning
has already established quite close connections to more technological oriented fields.
Koschmann (2002, page 20) has given a definition for the research area of computer
supported collaborative learning:

”CSCL is a field of study centrally concerned with meaning and the
practices of meaning-making in the context of joint activity and the ways
in which these practices are mediated through designed artifacts.”

1.2. CSCL 7

Not surprisingly, a lot of these ”designed artifacts” employ modern networked
computer technology to support one or more aspects of collaborative learning. The
role of the computer in these collaborative learning settings varies considerably. Ex-
treme examples are the pure usage of computers in traditional face-to-face learning
scenarios as well as approaches in which the computer is intended to be a collabo-
ration partner (Dillenbourg & Self, 1995). The following roles can be found more
frequently.

Direct collaboration means. In a lot of CSCL systems, the most important pur-
pose of the computer is to enable or support the collaboration between the
learners on a technical level. Typical examples range from pure communi-
cation support (e.g. through chats or discussion forums) to co-constructive
environments. A very early example of the latter type are the COGNOTER
and ARGNOTER tools developed in the Colab at Xerox PARC (Stefik et al.,
1987).

Indirect collaboration mediator. In collaborative learning, the computer can
also be used to build and maintain models of the learners. These user mod-
els, together with a group model, can be of value to support collaborative
processes in the group, e.g. by recommending suitable peer learners (Hoppe,
1995), by dynamically building groups that are likely to benefit from collab-
oration (Ikeda, Go, & Mizoguchi, 1997), or through feedback processes which
can allow for community building (Suzuki & Funaoi, 2002). In all these sce-
narios, the computer has a mediating role - though one could reasonably argue
that more sophisticated systems in this category are also means of intelligent
support (see below).

Interaction analysis. If the computer is used as a collaboration means, detailed
log files about the interaction that took place are usually available. Using
these files (or even ”live” data from ongoing collaboration processes) as input
for analysis methods as done, e.g., by Mühlenbrock (2001) and Soller and
Lesgold (2003) enables insight into the interactions that occurred, and may
therefore be of value, e.g. to understand the group dynamics with respect to
the collaborative task.

Intelligent Support. The results of interaction analysis can be used to provide
the learners with feedback on their collaborative task. Jermann, Soller, and
Mühlenbrock (2001) have given a good overview on existing applications that
apply such ”guiding” mechanisms. Considering the enormous complexity and
variety of human interactions, the intelligent support for collaborative learning
is still in its infancy. In fact, it is reasonable to argue that also within the
roles of the computer as direct or indirect collaboration facilitator, a number
of intelligent collaboration techniques can be embedded without an explicit
system intervention.

For further, more systematic, investigations about the possible advantages of
computer technology in collaborative learning, fundamental and general research re-
sults about factors for effective collaboration are necessary. For the process-oriented
dimension of collaborative learning, Linden, Erkens, Schmidt, and Renshaw (2000)
suggest the following factors.

• Maintaining common ground - participants must be aware of the task goal
and stay in common focus

• Co-responsibility, equality and mutuality - participants must have a significant
role and be co-responsible for the overall task.

8 CHAPTER 1. INTRODUCTION

• Mutual support and criticism - a central point for the effectiveness of col-
laborative learning, which makes learners reach higher goals than they could
individually.

• Verbalization and co-construction - the externalization of knowledge helps
students with the performance of cognitive processes.

• Elaboration - students can learn themselves by acting as peer helpers.

• Tuning in cognitively and socially - as learners are more at one level of under-
standing than teacher and learner, it is assumed that communication within
a learner group can be more effective than teaching.

As Veerman and Treasure-Jones (1999) point out, supporting collaboration with
computer-based tools can be successful if it aims at supporting one or more of these
factors. They explicitly mention the usefulness of general communication tools in
the sense that these already support the criterion of verbalization by allowing the
learners to negotiate on the common task.

Joolingen (2000) takes up this idea and states that some factors of collaborative
learning can be supported more or less independent of a concrete task by features of
existing general tools. One of these general features is e.g., the sharing of resources.
If an environment enables an exchange and joint creation of material, this is likely
to contribute to the criterion of co-responsibility.

Applications that rely on shared workspaces and enable the users, usually by
means of direct manipulation, to ”communicate through the artefact”, are likely
to contribute to the criterion of co-construction, as Dix, Finlay, Abowd, and Beale
(2004, page 690) state:

”The lesson [...] is that cooperation does not necessarily involve direct
communication and, even where it does, the indirect channel through the
artifact may be central to effective working.”

As argued, at least the criteria of verbalization, co-responsibility and co-con-
struction can be supported by general, task-independent tools. Specifically designed
applications can of course reach even higher levels. One perspective on this the-
sis is that it illustrates the implementation of a relatively flexible framework that
effectively contributes to reaching some of these higher levels

1.3 The Collaborative Mindtool Approach

As presented in the two previous sections, the approaches of constructivist learning
environments and collaborative learning are not unrelated, neither from theoretical
foundations nor from practical positions. A lot of CSCL environments base on con-
structivist learning approaches, and the aim of allowing the learners to co-construct
meaning is frequently formulated. In turn, we find statements that the provision for
collaboration is among the design criteria for constructivist learning environments
and that communication technologies can realize constructivist ideals of learning
(Bonk & Cunningham, 1998). Also the example Mindtools list contains one entry
(conversation tools) in which a single-user mode does not make sense.

However, the majority of research results that deal with the relation between
constructivist learning and collaborative learning are on a conceptual or theoretical
level. Although for both areas, potential benefits gained by computer support are
known, technological implementations with a clearly integrative aim are rare.

There are, indeed, some applications that are designed to meet both collabora-
tive and constructivist approaches. Examples include the following:

1.3. THE COLLABORATIVE MINDTOOL APPROACH 9

• In the area of language learning, Weasenforth, Biesenbach-Lucas, and Meloni
(2002) have explored the use of threaded discussions as a means to reach
constructivist learning goals.

• Savage et al. (2003) have used Lego Mindstorms technology as a Mindtool in
a collaborative setting (Lego Mindstorms, n.d.).

• The CoVASE application (Jensen, Seipel, Nejdl, & Olbrich, 2003) for collab-
orative visualizations of complex virtual experiments.

• Conducting studies about constructivist collaborative learning,
Hübscher-Younger and Narayanan (2003) have used the CAROUSEL tool
for collaborative algorithm representation.

• A number of collaborative concept mapping tools that have been used in
varying contexts with diverse aims (Cicognani, 2000; Kuan, Lee, & Ho, 2003;
Silander, Sutinen, & Tarhio, 2004).

As this list may suggest, the (few) present tools and environments are either
domain specific, or asymmetric in the sense that they explicitly focus on one of
the two directions. The absence of a variety of general and systematic integration
approaches surprises, as especially the Mindtool notion given by Jonassen (2000)
seems to be designed for further investigations from a CSCL perspective.

Hoppe (2001) introduced the notion of Collaborative Mindtools: tools that in-
herently synthesize communication and collaboration support with interactive and
constructive features. In (2004), he illustrates three practical examples (including
two which technically base on earlier versions of the software described within this
thesis) and outlines general benefits gained by combining techniques of computer
based communication with interactive cognitive tools. His characterization of Col-
laborative Mindtools is:

”In summary, the notion ’collaborative mind tools’ stands for a new
tendency to extend CSCL technology beyond language centred computer-
mediated communication towards richer environments providing ’com-
putational objects to think with’ - now jointly.” (page 226)

In a related area, Joolingen (2000) has also proposed such an integration: intro-
ducing his approach of collaborative discovery learning, he analyzes potential and
criteria for computer support that takes into account both discovery and collabo-
rative learning principles. He expects that

”[...] the discovery behavior displayed by learners may improve under
influence of collaboration. On the other hand, collaboration, and espe-
cially the communication that underlies it, may benefit from information
that can be extracted from the discovery process.” (page 204)

Driving this approach forward, Joolingen presents a high-level software archi-
tecture that embeds both experimentation spaces and collaboration tools.

Another proposition that deals with integration of cognitive tools in collabora-
tive environments has been given by Milrad, Spector, and Davidsen (2002). Their
approach of Model Facilitated Learning contains a conceptual framework for the
integration of modeling and simulations into rich learning environments. Empha-
sizing the diverse options of using models and modeling in learning situations, they
explicitly mention the need for supporting collaboration, interaction and reflection
”around and beyond” simulations.

Milrad et al. explicitly refer to the modeling means of causal loop diagrams
(Senge, 1990) and System Dynamics (Forrester, 1968). These techniques clearly

10 CHAPTER 1. INTRODUCTION

fulfil the Mindtool criteria of Jonassen - in fact, dynamic modeling tools even
constitute a separate category in his classification of examples. Joolingen illus-
trates his approach with the integration of a domain knowledge component into the
Belvedere argumentation tool (Suthers, Toth, & Weiner, 1997). The resulting
environment also fulfils the core Mindtool criteria, leaving out some practical issues
like availability. Abstracting from the concrete Belvedere example, we can argue
that the experimentation spaces have a high ”mindtoolness” potential: they are de-
signed to support discovery learning and encapsulate a domain model. Thus, they
are intended to engage the learner in interacting with the underlying semantics and
formalism of the model, trying to make meaning - which is not far from the essence
of Mindtools.

As shown, a common element between the two approaches of collaborative dis-
covery learning and Model Facilitated Learning is that they, without explicitly
mentioning it, demand for research and development in the area of Collaborative
Mindtools - computer-based tools that fulfil the Mindtool criteria and provide a
generic collaboration support.

The construction of a system that allows for this kind of integration is the core
motivation for this thesis from a pedagogical point of view. From an engineering
point of view, this challenge does not only translate to the enhancement of some
existing Mindtool with specific collaboration support features. Moreover, taking
into account established research and development principles of computer science
and in particular software design, the challenges lie in a combination of the following
four requirements:

1. The system should contain a generic support for collaborative activities and,
in particular, for co-constructive processes.

2. The generic design of the collaborative system should not be sacrificed for
specific integration needs (Roschelle, DiGiano, & Chung, 2000) - on the other
extreme, the system should still be simple and expressive enough to be really
useful for practical issues (and not ”just” a high-level architecture).

3. The software system to be developed should be easily extensible and can,
through these extensions, be used as a Mindtool in flexible ways, potentially
even covering several of the categories that Jonassen lists.

4. An integrated and flexible use of these different system extensions should be
possible (Roschelle et al., 1999). This does not intend to claim that integrating
different tools is always beneficial for the user - however, the system should
allow for the construction and use of such integrated tools.

Considering in particular the fourth criterion, the trade-off between generality
and expressiveness of the intended system is one of the critical design questions.
It is obvious that the targeted application range that the framework is designed to
support does have an impact on the answer to this question. A too wide range (i.e.
the claim to integrate all possible Mindtools with good and generic collaboration
support) risks losing expressiveness. On the other hand, an area too small (which
could result from restricting the focus to one specific tool like, e.g., spreadsheets)
may be criticized for lacking flexibility. The next section describes and motivates
the choices made.

1.4. COLLABORATIVE MODELING WITH GRAPHS 11

1.4 Collaborative Modeling with Graph Based
Representations

In science, the termmodel refers to a schematic, simplified and idealized representa-
tion of an object or a domain, in which the relations and functions of the elements
of the objects are made explicit. There is an analogy between the model and the
object it describes in the sense that these two are structurally identical (Meyers En-
zyklopädisches Lexikon, 1976). Modeling is understood as the activity of creating,
manipulating and using models.

As models are a simplified and manageable means of understanding complex real
phenomena, the importance of modeling in science education is evident. Bredeweg
and Forbus (2003) support this position and additionally emphasize the function of
modeling as a means of knowledge externalization:

”Modeling is a central skill in scientific reasoning and provides a way of
articulating knowledge. Learning to formulate, test, and revise models
is a crucial aspect of understanding science and is critical to helping
students become active, lifelong learners.” (page 35)

Also in the specific area of learning environments that emphasize a constructive
learner role, the potential for modeling as a powerful learning technique is recognized
(Jonassen, 2000; Perkins, 1991).

A general function that computers can have in the domain of modeling is that
they can serve as tools that execute models or run simulations that are based
on models. Both is possible for many formal modeling languages like e.g. Petri
Nets (Petri, 1962) or System Dynamics (Forrester, 1968). Interestingly, also some
qualitative models can be ”run”, as Biswas, Schwartz, and Bransford (2001) show
with their implementation of generating explanations and ”teachable agents” from
concept maps.

In a general sense, the idea of using computers as active tools for modeling and
running models is indeed not new: Kay and Goldberg (1977/2001) described their
vision of a Dynabook - a notebook size ”self-contained knowledge manipulator”
that can, among functions for displaying different media types, serve as an inte-
grated repository for dynamic media and simulations. The hypothetical device that
Kay and Goldberg describe offers the option to run these simulations and to interact
with them. Their vision includes educational usages:

”Mathematics could become a living language in which children could
cause exciting things to happen. Laboratory experiments and simulations
too expensive or difficult to prepare could easily be demonstrated.” (page
177)

With technology as available today, these usages of computers for modeling and
simulation are possible and established - with some right, these usages could be
called ”basic support for modeling”. More sophisticated functions of computers
within modeling tasks have been worked out. It has also been shown that from an
educational perspective, there are specific reasons for supporting modeling activi-
ties with modern computer based tools (Bredeweg & Forbus, 2003; Milrad et al.,
2002; Jackson, Stratford, Krajcik, & Soloway, 1996). Specific reasons include the
following:

• The Microworlds idea of Papert (1980) in which computer-based tools (he
does not directly call these modeling tools, but this classification would fit
well in most cases) would provide children with a whole range of transfor-
mative developmental experiences. He imagined that constructions within

12 CHAPTER 1. INTRODUCTION

these powerful computing engines would enhance children’s imaginative and
intellectual power.

• Wild (1996) has argued that, as computer modeling externalizes thinking and
knowledge, models become tools for the conscious manipulation of thought.

• Dynamic models which can be ”run” are of more value when used with a
computer. Kurtz dos Santos and Ogborn (1994) argue that the increase of
flexibility and interactivity that computers offer (e.g., certain parameters can
be changed quickly and the result can be compared to the original state)
enhances learner’s understanding of problem.

• Sometimes, a modeling task can benefit from the use of multiple representa-
tions. The exploration of these different representations can be beneficial for
learners (Ainsworth, 1999), and computers enable or facilitate the transitions
between different representations greatly.

Digital technology can also, through archival and retrieval functions, foster the
exchange and re-use of modeling material. Networking also principally enables the
cooperative use of modeling tools.

The question of the specific kinds of appropriate or needed support that com-
puters can offer for collaborative modeling tasks is not completely answered and
an issue of current research. Sierhuis and Selvin (1996) describe some general cri-
teria they consider as necessary for successful modeling support in a collaborative
project. For the task of team based system perception and construction of static
models, they mention the following ones:

Create meaning. The modeling technique used should enable the creation of ex-
ternal representations that reflect meaning created by the participants.

Shared understanding. The joint creation of the external conceptualization is
likely to lead to a shared understanding among the group members. Scaffold-
ing this process is an important issue.

Create structure. A framework to guide the shared modeling process is needed
to assert the group members a certain process structure.

Communication. A shared conceptualization will allow the users to talk about
the domain without ambiguity and confusion - yet this communication must
be enabled technically.

Reduce complexity. The modeling method used should be suitable to reduce the
complexity of a certain domain or situation.

More recent contributions to the area of collaborative modeling, which also em-
phasize the learning perspective, have been made by Joolingen and Löhner (2001)
and Or-Bach (2003). The former paper focuses on the use of different representa-
tions (textual, graphical or output oriented) for collaborative modeling tasks, the
latter reflects about design decisions in terms of interaction modes and support
mechanisms for computer based modeling tools.

Treating the domain of computer technology for modeling, it is not a surprise
that both papers address the function of the computer as an active medium that
can be used to run simulations generated from the constructed models. This level
of support can be classified as task support. Indeed, a second joint position of the
papers is that they see the basic means for supporting collaborative modeling in
process support (cf. 1.2), namely in enabling the learners to jointly work on the
model and co-construct it. This technique of sharing of external representations

1.4. COLLABORATIVE MODELING WITH GRAPHS 13

with the option of communicating through the constructed artefact has been men-
tioned before in this thesis as an approach that fulfils both constructivist criteria
and positions from collaborative learning. An implementation of this idea with suit-
able external conceptual representations (i.e. modeling languages and techniques),
eventually enhanced with additional communication features, it likely to fulfil the
methodology criteria of Sierhuis and Selvin (1996).

External representations and their functions are a research field within cognitive
science. Within a recently published analysis of the use of external representations
for modeling, Löhner, Joolingen, and Savelsbergh (2003) have presented a review
on literature in this field and summarize the different general functions of represen-
tations as follows:

• They serve as an extension of the internal working memory.

• Different representations make certain aspects more or less accessible and
visible and thus give a layout for a problem space.

• External representations can anchor and determine cognitive behavior by al-
lowing or restricting certain cognitive actions.

• In situations that involve multiple users, representations have a communica-
tion function by helping to express ideas.

In collaborative contexts, shared representations have some additional functions.
Hoppe and R-Plötzner (1999) have identified the following effects of shared repre-
sentations on shared cognition:

Coordination. The coordination of individual contributions is both constrained
and mediated by the external environment.

Reification. Contributions are given objective, material evidence in the external
environment.

Illustration. In addition to their content, the individual contributions may be
illustrated by the external representation.

Storage. The external environment may store individual contributions for later
use, e.g., for the purpose of reflection.

”Mise en relation”. The external environment relates different contributions to
each other in an objective way.

Suthers and Hundhausen (2003) confirm these functions of shared representa-
tions. They add the following two:

• The manipulation of external representations can initiate negotiations of mean-
ing: the negotiation can be prompted by potential for action offered by the
representation before that action even begins.

• By means of gestural deixis, the individuals can use the developed external
representations as a proxy for the ideas that they represent.

It is a known fact that even in the individual case, not all representational nota-
tions fulfil each of these functions in the same way (Larkin & Simon, 1987; Zhang,
1997) and thus the used representation may have an influence on a task result.
Suthers (1999a, 1999b) has motivated theoretically and empirically that for the
case of collaborative representations (i.e. collaboratively created and manipulated
external representations), even more specific effects occur: the representation used

14 CHAPTER 1. INTRODUCTION

for the collaborative activity biases the collaboration process itself. In a prominent
example (Suthers & Hundhausen, 2003), he compares groups engaged in a task of
collaborative scientific inquiry. He shows that the quality of the group results dif-
fers considerably depending on the representation the group used for argumentation
(text, matrix of graph).

Löhner et al. (2003) conducted some similar studies in the domain of modeling
complex phenomena: students had to solve a dynamic modeling task collaboratively.
One group of them used a textual representation and typed in the formulae, the
other group used a graph representation similar to System Dynamics. Additionally,
both groups had the option to run simulations based on their model. The study
results presented by Löhner et al. (2003) address the general affordances of the
representations for the collaborative modeling task (the specific impacts on the
character of the collaboration process are not deeply analyzed). These results seem
to confirm the findings of Suthers: the modeling representations strongly influenced
the result of the collaborative task.

The specific results of the study are manifold and generally seem to encourage
the use of visual, graph based representations for modeling - at least for dynamic
modeling techniques as used by Löhner et al.. Their detail analysis includes the
following:

• The quality and complexity of the constructed models was much higher in the
case of the graph based representation.

• The graph based representation was more inviting to use as an external work-
ing memory: it seemed to be easier to use and express knowledge in. On the
other hand, for experienced users it sometimes seemed too restricting.

• The graph based representation invited more for trying out different solutions.
Though this was not always directly guiding the learners towards the correct
solution and is thus a negative argument from a formal modeling point of
view, it can definitely be seen as a general advantage from a constructivist
educational perspective.

• Although the learners with the textual representations were able to reason
deeply and systematically about the task, they had serious difficulties in
putting their ideas into practice.

• There is an indication that learners would benefit from mixed representations,
allowing both easy experimenting and expression power.

• An ideal representational system should provide for smooth transitions be-
tween qualitative and quantitative phases.

As motivated in the previous section, one aim of this thesis is to describe the
implementation of a flexible and expressive framework to support heterogeneous
Collaborative Mindtools. It was also argued that a certain restriction of scope
might be needed to retain expressive power. The critical design question is whether
a restriction to graph based representations is reasonable or not. Some imaginable
reasons against graphs as representational primitives are that they are less compact
than texts (requiring more space), and require the user to make explicit relationships
which can be implicitly expressed in text structures. Furthermore, simply typing
in a formal semantics might be easier than building it with a graph. Indeed, some
detail findings of Löhner et al. challenge a positive answer to the question whether
graphs as representational primitives are really suitable. The use of graph based
representations, as opposed to textual representations, sometimes seemed to restrict
the insight into the created model and was partially hindering users in expressing

1.4. COLLABORATIVE MODELING WITH GRAPHS 15

their knowledge. However, the result of their study as a whole seems to suggest a
positive answer. In other sources, in particular also from different areas of research,
we can find additional confirming evidence:

• The results of Suthers and Hundhausen (2003) generally motivate that vi-
sually structured representations seem to provide guidance for collaborative
learning. His findings specifically include that graph based representations
seem to invite learners to elaborate on created structures, and that they seem
to be suitable for remembering.

• The variety of modeling languages that relies on graph based representations
(or that can, as one alternative, be represented in such a notation) is impress-
ing. More formal languages with exactly defined semantics are, e.g., Petri
Nets (Petri, 1962), System Dynamics (Forrester, 1968), entity relationship di-
agrams (Chen, 1976), finite state automata (Hopcroft, Motwani, & Ullman,
2000), or Bayesian networks (DeGroot, 1989). Languages with an intermedi-
ary level of formality (i.e., some parts of the expressions allow for an automatic
interpretation and eventually simulation, while others do not) include most
diagram types of the unified modeling language UML (Booch, Jacobson, &
Rumbaugh, 1998), causal feedback diagrams (Senge, 1990), or hypermedia
editing languages like in XCHIPS (Wang, Haake, Rubart, & Tietze, 2000).
Finally, there are also a lot of qualitative modeling techniques that make use
of graph based representations. In those, the object and link types can usually
be exactly distinguished and are possible subject of interpretation, the content
of these objects and links is however usually not accessible to computer based
interpretation techniques. Examples of this category include mapping tech-
niques like concept mapping (Novak & Gowin, 1984; Dabbagh, 2001) or mind
mapping (Buzan, 2002), and the design rationale method QOC (MacLean,
Young, Bellotti, & Moran, 1991).

• Also apart from modeling in the narrower sense that a formally defined mod-
eling language is employed, graph based representations are widely used, in
particular also collaboratively and/or in areas that go well with the Mindtool
approach. Here, prominent application areas include discussions (Gaßner,
2003), and argumentations (Suthers et al., 2001; Stefik et al., 1987). Collabo-
rative modeling approaches with graph based techniques that are self defined,
deeply domain related and unstandardized but indeed helpful to learners have
recently been demonstrated in the areas of stochastics (Lingnau et al., 2003),
seismology (Baloian, Breuer, Hoppe, & Pino, 2004), and astronomy (Hoek-
sema, Jansen, & Hoppe, 2004). The latter three scenarios have used the
framework described within this thesis.

• Any modeling technique that is accessible with a graph based representation
induces a certain structure on the models created with that technique: they
consist of objects and links of some type. The specific types are often fixed
and predefined, and sometimes supplemented by syntax constraints, to al-
low a certain system-side insight into the created representation. With two
languages that both employ dedicated object and link types and thus offer
structure, connections and transformation between these languages can be
enabled on very fine granular level. In fact, this structure that is available for
graph based modeling representations but not within general modeling tools,
is what enables tight and at the same time flexible integration. It allows, e.g.,
a system dynamic network that simulates traffic jams, to receive input from
several Petri Nets that model the logic of traffic lights - without having to
define a general transformation between these two different languages, some
partial mapping rules are sufficient.

16 CHAPTER 1. INTRODUCTION

• Also due to the structure that is inherent to graph based representations,
flexible ways of cooperating by using shared models arise. Examples include:

– the sharing of single objects or whole subgraphs, either defined through
some neighborhood criteria, or even by semantic type - the latter allowing
e.g. generic support for private comments attached to a jointly used
model.

– ”jigsaw” designs (Aronson, 1978) in which the different available object
types are distributed among the participants (e.g., one learner can add
classes to a UML diagram, another one interfaces, and a third the rela-
tionships). As no learner can construct a complete solution on his own,
this method is expected to induce and enhance collaboration.

• Aiming at supporting collaborative modeling in general is likely to result in
relatively high level architectures or protocols, because little is known about
concrete tools or representations. A restriction to graph based structures
meets requirements coming from modern object oriented software design quite
well and allows a more detailed computational abstraction. In addition, es-
tablished principles from graph theory (Berge, 1976) can be applied already
on the framework level, which instantly brings advantages for all supported
tools.

This section aimed at showing two things. Firstly, it has been argued that mod-
eling is a good candidate for a collaborative Mindtool. Secondly, I tried to convey
that graph based representations for modeling are commonly used and often rea-
sonable. From a computational point of view, some reasons were given that the loss
of generality that inevitably occurs when restricting a framework for collaborative
modeling tools might be compensated by gained structure, which can constitute a
base for interoperability, integration and generic collaboration support.

1.5 Challenges and Aims

In this final section of the introduction to this thesis, I want to briefly summarize
the aims of this thesis as developed before, and the challenges that have to be faced
in order to reach these aims.

As pointed out in section 1.3, the motivation for the work in this thesis is
to build a flexible collaborative mindtool that supports co-constructive modeling
activities. The choice of modeling as a target activity is supported by various
authors, such as Bredeweg and Forbus (2003), Jonassen (2000), Perkins (1991),
Papert (1980), or Wild (1996) who state the importance of modeling in educational
contexts. The value of collaboration in modeling contexts has been pointed out by
Sierhuis and Selvin (1996), and specific contributions to the educational dimensions
of collaborative modeling have been given by, e.g., Joolingen and Löhner (2001),
and Or-Bach (2003).

A number of authors point out that in the context of collaborative modeling (in
particular in education), two design principles are key factors for success:

• Flexibility with respect to the supported representations, to support multiple
representations of problems, different phases in the activity (which correspond
to different representations), and dynamic interactive changes of simulation
parameters (Löhner et al., 2003; Ainsworth, 1999; Kurtz dos Santos & Ogborn,
1994).

1.5. CHALLENGES AND AIMS 17

• Interoperability between different models and different model representations,
to enable mixed structures and flexible creation of customized expressions
with ”building blocks” (Löhner et al., 2003; Roschelle et al., 1999).

In particular concerning the second point, several interoperability requirements
can be distinguished:

Syntactic interoperability. The framework should allow the use of mixed exter-
nal representations and must therefore be able to deal with the heterogeneous
elements represented within the graph structures that occur in these cases. A
basic requirement is that it should be possible to connect arbitrary elements
- and also to restrict or control these options in a suitable way if desired.

Semantic interoperability. Going beyond the ability to allow for mixed repre-
sentations, the framework should foresee tool integration issues. The design
goal is to allow tools to reuse elements defined within others, share semantic
definitions and also offer support for easy transformations of expressions from
one language to another (Heiler, 1995; Read, Verdejo, & Barros, 2003).

Social interoperability. Given the targeted educational use, the framework must
be easy to operate, and also foresee an easy use of the embedded tools. It
should allow for an integrated collaborative use of different tools in a way
that enables the co-learners to remain in their social work context, even when
switching to other means of expression. In the context of applying mobile
devices in educational settings, Milrad, Hoppe, Gottdenker, and Jansen (2004)
have named this feature educational interoperability.

Task interoperability. Details of task support and interoperability can clearly
not be treated on a framework level, as they are dependent on specific tools
or even tasks. The dimensions of task interoperability that a framework can
support are the avoidance of tool breaks (in analogy to media breaks), a flex-
ible collaboration support to allow for task-compliant collaborative settings,
and the support for work phases that go in line with the needs of different
modeling tasks. To implement these ideas of collaborative task support (and
also those of social interoperability), the framework should provide generic
collaboration process support (both within itself and induced into the sup-
ported tools) by suitably enabling the learners to co-construct models. Also,
there should be an explicit yet flexible support for phases in the collaborative
modeling process. Apart from this generic support, collaboration can also be
supported by means of specific communication oriented graph based repre-
sentations, e.g. for argumentation or discourse, that can be included in the
framework in the same way as the modeling tools. For further collaboration
support (e.g. interaction analysis), the framework should contain suitable
interfaces to connect external components.

Apart from these basic interoperability requirements, some very important de-
sign parameters for the practical implementations within this thesis are dependent
on the usage scenario: considerable parts of the system (though not necessarily its
computer science foundations) are influenced by the targeted learning scenarios.
Here, two typical views are possible:

• The tool is a learning environment.

• The tool is part of a learning environment.

18 CHAPTER 1. INTRODUCTION

Figure 1.1: A collaborative modeling tool supporting an educational face-to-face
scenario

The first position obviously has its justification, e.g. in fields like distance ed-
ucation. Here, the learner and the computer system are the only ”participants”,
and (in the case of collaborative environments) the tool is also the only means of
communication between the participants. In this philosophy, the success of the tool
can be defined directly dependent on the learning effect on the user’s side, as other
factors do not play a significant role.

The second position, where a computer tool is conceived as being part of a
learning scenario, but not the only determining factor, is adopted by a number of
educational practitioners. On a theoretical level, justifications for this premise have,
e.g., been given by Hoppe (2005, to appear) and Goldman (1996), who emphasizes
the importance of social glue in science learning:

”The complement of Dynagrams studies documents that students can
become engaged in more science practices and conversations when they
have access to each other, well-planned challenges, and resource-rich ma-
terials such as manipulatives and the computer modeling environment.”
(page 74)

In this pedagogical approach, the computer tool has an orchestrating role, is used
occasionally and where appropriate, and co-exists with other tools - also physical
ones. An even more important point is that educational decisions made outside the
tool (e.g., by a teacher), social factors (e.g. group constellations), and the physical
environment play a central role. Figure 1.1, taken from Hoppe (2002), illustrates
nicely this approach: students, here shown in a mathematics lesson, can interact
with each other in a variety of ways (directly or via the computer based tool), the

1.5. CHALLENGES AND AIMS 19

machines are embedded in the learning environment, and the software systems are
used together with other traditional ones (like paper and pencil).

It is obvious that in these settings, an evaluation of the ”value” of the software
tool is not easy, because the usage scenario plays an important role and includes a
whole range of variables. Yet, as the underlying principle of ”priority of pedagogy
over technology” (Hoppe, 2002) is indeed highly relevant for current educational
practice, I have decided to adopt it within this thesis - taking into account that
this makes a systematic general evaluation of the isolated tool (concerning the
question: ”does it support learning”) significantly more difficult. This problem is
even increased by the fact that my target system is a framework designed to support
a multitude of modeling languages, and these even in an integrated manner - thus,
a suitable evaluation must be independent of the employed languages.

Having named the general motivation and pedagogical target scenario, I want
to conclude this summary section with a list of concrete challenges that lie in the
development of a methodology and an implementation for an interoperable collabo-
rative modeling system of the described type. Here, different types of requirements
can be distinguished according to the following general challenges:

• Interoperability of modeling languages in a general sense (Dolk & Kottemann,
1993).

• The computational design of interoperable tools in educational contexts (Ro-
schelle et al., 2000).

• Educational software components and their specific needs (Roschelle et al.,
1999).

Concerning interoperability of modeling languages, a number of requirements
have been identified by Dolk and Kottemann (1993). Rooted in database theory
and structured modeling (cf. subsection 2.3.3) but exceeding the scope of these
approaches, they discuss various approaches of model integration (organizational,
definitional, procedural, and implementation-related). Within this framework, they
develop a list of criteria that they consider necessary for an integrated modeling
environment:

1. A uniform internal model definition scheme that is capable
of representing many classes of models.

2. Conversion mechanisms that allow external model defini-
tions to be transformed into the internal scheme.

3. Robust typing and inheritance at both the variable and the
model level.

4. A model manipulation language that is based on message
passing and allows the integration of external libraries.

5. Model solution libraries and transformation routines that al-
low the conversion of internal data structures to the external
algorithm libraries.

6. A graphical user interface and appropriate views for sup-
porting model definition and integration.

Apart from this requirements list, Dolk and Kottemann (1993) also pose some
questions that they see as open, even when restricted to the technique of structured
modeling. In particular, they mention the question of a suitable (complete) set of

20 CHAPTER 1. INTRODUCTION

primitives for a model manipulation language, and the open issue whether there is
a set of necessary and sufficient abstract data types and inheritance hierarchies for
modeling.

While Dolk and Kottemann mainly present thoughts about model integration in
general, a number of aspects closely related to the computational design of interop-
erable tools in educational usage contexts are listed by Roschelle et al. (2000), who
report on a project in the field of mathematics education. Their findings include
the following:

1. The value of external tools (which they call ”found”) should
not be estimated too high. Instead, they suggest a focus on
few but powerful and generative tools, embedded in high-
quality libraries of well-designed tools.

2. Programming conventions should be made explicit, and de-
sign patterns should be used in order to attract developers
to use the system. Roschelle et al. (2000) state that these
code-level issues can enormously increase re-use, as they en-
courage programmers.

3. On the detail level, a number of basic functions and mech-
anisms must simply be available in order to allow for inter-
operability. In particular, Roschelle et al. (2000) name the
following:

• Dynamic publishing and subscribing mechanisms to al-
low for interoperability at runtime.

• Change coordination patterns to propagate events.

• Advanced component persistence mechanisms (e.g.,
XML based) that exceed the capabilities of class se-
rialization.

There are a number of common points between Dolk and Kottemann (1993)
and Roschelle et al. (2000), including in particular the requirement of protocols
for change notification. A major difference, however, is that Roschelle et al. de-
emphasize the claim of being able to integrate arbitrary externally found compo-
nents, and instead focus on smaller but better designed libraries.

All the points listed above are related to more or less technical aspects, either
on the design level or on the implementation level. The requirements brought up by
Roschelle et al. (1999) are derived from more educational dimensions. Their vision
is a modular system that is able to connect ”educational software components”.
The latter are characterized as

”[...] high-level computational objects that are available as tangible build-
ing blocks.” (page 51)

According to Roschelle et al. (1999), the challenges in building these educational
software components include the following:

1.5. CHALLENGES AND AIMS 21

1. Standards (technical, educational, curricular, and concep-
tual) should be used wherever possible in order to allow for
plug-and-play operations among components.

2. The incorporation of new components into a system should
be as simple as copy and paste operations.

3. An explicit focus should be set on enabling developers to
re-use functionality of other components in the system, to
reduce redundant developments.

4. There should by advanced and dynamic wiring options be-
tween components, and these wiring options must be made
clear to both the programmer and the user.

5. Interoperability should not be restricted to wiring options,
but must also cover domain concepts.

6. Translators and wrappers should be used to adapt existing
external resources.

As a final summary of this introduction, the scope and target for this thesis
can be sharpened as follows: the overall aim is to define a methodology that al-
lows for collaborative modeling with heterogeneous and interoperable graph based
structures, and to implement a flexible collaborative framework that implements
this methodology. There should be an easy definition mechanism for specific repre-
sentational languages, and limitations on the expressiveness of the supported graph
based representations must be avoided wherever possible. This condition is due to
the fact that implementations of formal modeling languages with clear operational
semantics may need to apply arbitrary algorithms in order to calculate expression
semantics. Apart from general issues of software engineering, specific challenges
in building the methodology and the system lie in the desired levels of interop-
erability and flexibility - more specifically, critical design choices can be expected
with respect to data structures for interoperable heterogeneous models, dynamic
mechanisms to wire components, interfaces to external components, and easy to
use plug-in mechanisms.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Foundations

Having presented the general motivation and scope of this thesis in the previous
chapter, the following parts of this thesis are intended to give an overview about
theory and existing technology in fields close to collaborative modeling with graph
based representations. The aim of this chapter is to outline the theoretical back-
ground in three relevant areas: graphs, visual languages, and meta modeling ap-
proaches.

The contributions of these single areas to this thesis can be characterized as
follows: graph theory, as a subdiscipline of mathematics, offers a conceptual view
on abstract graph structures including solid terminology definitions and algorithmic
approaches. This is supplemented by the research field of visual language theory,
which explicitly considers visual representations and offers descriptive and process-
oriented formalizations for these. The aspects of meta modeling presented in this
chapter relate to descriptive, transformative and integrative perspectives on models,
focusing on graph based models.

Together, graph theory and visual language theory serve as foundations for visual
typed graphs, which play a key role in the approach for collaborative modeling to be
presented in chapter 4. The basic contributions of meta modeling are twofold: on
the one hand, the corresponding theory serves as a background for the conception of
”Reference Frames” as abstractions of modeling languages, and on the other hand
the integration and transformation oriented approaches are a considerable input
concerning interoperability issues in heterogeneous models.

2.1 Graph Theory

Large parts of the implementations within this thesis essentially make use of graph
based representations and their use for modeling. For that reason, a systematic
investigation of the theoretical foundations in these fields is necessary. The aims of
these investigations are threefold:

• to understand the concept of a graph, as used in relevant fields of research,

• to review existing formalisms and techniques operating on graphs that are
worth considering for the implementations within this thesis,

• to obtain criteria for a systematic comparison of existing technology, which
will be done within the chapters 5 and 3.

Since this thesis targets modeling with graph based representations, the theory
of graphs as such is worth considering. This theory belongs to the field of discrete
mathematics and has a quite unusual development, from a collection of scattered

23

24 CHAPTER 2. THEORETICAL FOUNDATIONS

and seemingly unconnected problems and puzzles (like, e.g., the Königsberg bridge
problem) in various areas to a unified theory that started its rapid development in
the 1950s (Berge, 1976). Today, largely due to the usefulness of graphs as models
for computation and optimization, graph theory is a field of intensive mathematical
studies that gains considerable interest (Gross & Yellen, 1999). All definitions
within the following subsections have been taken from Berge (1976), Gross and
Yellen (1999), and Aigner (1993), though any other introductory book on graph
theory would give equivalent definitions.

2.1.1 Basic Definitions

As a discipline of mathematics, it is not surprising that graph theory offers a set of
definitions that provide a formal and unambiguous fundament for further investi-
gations. The base definition for graph theory is of course that of a graph, which is
a structure that consists of elements and links between these elements.

Definition 2.1 A graph G is defined to be a pair (N,E), where

1. N = {n1, n2, ..., ni} is a finite set of elements called vertices, and

2. E = {e1, e2, ..., ej} is a finite family of pairs (x,y) ∈ N ×N , called edges. An
element (x,y) can appear more than once in E. A graph in which no element
of N ×N appears more than p times in E is called a p-graph.

As expressed in this definition, there is no restriction concerning the multiplicity
of edges in a graph. For some applications, it is reasonable not to allow multiple
edges and loops (edges from a vertex to itself). This is done in simple graphs.

Definition 2.2 A 1-graph G=(N,E) with

∀n ∈ N : (n, n) /∈ E

is called a simple graph.

Example 2.1 Let N = {a, b, c}, and E = {e1, e2, e3, e4} with e1 = (a, b), e2 =
(b, a), e3 = (c, c), and e4 = (a, c). Then G=(N,E) is a graph with three vertices and
four edges. G is not simple because e3 is a loop.

Graphs as introduced in definition 2.1 are directed because they distinguish
between start and end vertices of edges. Undirected graphs are structures that do
not make this distinction:

Definition 2.3 An undirected graph G is a pair (N,E), where

1. N = {n1, n2, ..., ni} is a finite set of elements called vertices, and

2. E = {e1, e2, ..., ej} is a finite family of 2-element multisets {x, y} ⊆ N , called
edges. An element {x,y} can appear more than once in E. An undirected graph
in which no element of E appears more than p times is called a p-undirected
graph.

Similar to the case of (directed) graphs, also undirected graphs can be simple:

Definition 2.4 A simple undirected graph G=(N,E) is a 1-undirected graph where

∀n ∈ N : {n, n} /∈ E

2.1. GRAPH THEORY 25

Figure 2.1: Visualization of the graph given in example 2.1

In addition to the different graph structures above (directed and undirected
graphs), an extension that is important within this thesis is that of a hypergraph.
This concept, which is a generalization of graphs, allows for edges that connect more
than two vertices, and thus adds a considerable degree of expressiveness. Note that
this definition as given by (Berge, 1976) allows for infinite edge families, but not for
unconnected vertices.

Definition 2.5 Let N = {n1, n2, ..., nj} be a finite set, and let E = {Ei|i ∈ I} be
a family of subsets of N (with I being an index set). Then H=(N,E) is called a
hypergraph if

• ∀i ∈ I : Ei 6= ∅, and

•
⋃
i∈I

Ei = N .

In analogy to the case of graphs, N is called the set of vertices, and the elements of
E are called edges.

Example 2.2 Let N = {a, b, c, d, e}, and E = {e1, e2, e3, e4} with e1 = {a, b}, e2 =
{a, b, c}, e3 = {c, d}, and e4 = {e}. Then H=(N,E) is a hypergraph with three
vertices and four edges.

It is worth noticing that in all these definitions (and in contrast to a naive
interpretation of the term graph), graphical representations do not play any role -
mathematical graphs are defined solely on an abstract level. As will be shown in
the next part, most (yet, not all) results of graph theory are indeed not related to
visual representations.

Throughout mathematical literature, however, a common and intuitive visual-
ization of graphs is used: vertices are represented by dots and edges by lines or
arrows, depending on whether they are directed or not. Figure 2.1 shows such a
typical representation of the example graph 2.1, and figure 2.2 illustrates the hy-
pergraph of example 2.2. The representation is of course not exactly determined
by the original graph, as the latter does not contain any piece of information about
visual aspects, such as position of nodes, shapes of edges, etc.

2.1.2 Important Results and Fields of Study

Based on the principal definitions as presented before, the mathematical theory of
graphs covers a wide range of results. A full overview of these cannot be given
within this thesis. However, it is reasonable to present some principal areas with
significant contributions from graph theory:

Structure and Mappings. Based on the core definitions, some characteristics
of graphs are made explicit in definitions. Examples include the order of a

26 CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.2: Visualization of the hypergraph given in example 2.2

graph (which is the amount of its vertices), or specific indices that measure
the connectivity of graphs. Furthermore, graph theory characterizes mappings
between graphs that retain the internal structure (graph isomorphisms), and
formalizes substructure relations for graphs. Even in these basic areas, not all
questions are solved from a computational point of view: for the isomorphism
problem of two graphs, e.g., a final result concerning its complexity is not
yet available - the problem is neither known to be in P, nor proved to be
NP-complete (Skiena, 1990).

Paths and Circles. A path in a graph is defined as a sequence of edges. The
existence of paths between vertices, the distance of vertices in graphs, and
the handling of cycles (paths from a vertex to itself) are subject of graph
theory. An important subtopic with lots of applications is the treatment of
connected graphs without circles, named trees. These structures have found
a lot of application areas in computer science, as they represent any kind of
hierarchical structure nicely.

Flows in Networks. Adding a capacity attribute to edges allows the analysis of
possible flows in the resulting network. Here, an important question is the
calculation of a maximum flow, e.g. in a tube system.

Graph Traversals. Two essential and related questions motivate this area. The
first is the question of finding a path in a graph that contains each edge exactly
once - an Eulerian tour. The second one is dual to this and requires a path
that contains each vertex exactly once, a so-called Hamiltonian path. Several
other known questions like the ”postman problem” or the ”traveling salesman
problem” base on these two.

Planarity. The conditions that have to hold in order to be able to imbed a graph
representation in some surface without having intersecting edges is subject of
research. For the case of planar imbedments, this has been completely solved
and reduces to determining whether the graph contains one out of two specific
subgraphs.

Colorings. Originating from the question whether any geographic map can be
colored with four colors so that no two adjacent countries have the same
color, a subdiscipline of graph theory concerned with attributing vertices and

2.2. VISUAL LANGUAGE THEORY 27

assuring that any two neighbor vertices have different attribute values, has
developed. There is still no closed formula that gives the minimum number
of needed values to ensure this property for an arbitrary graph. For the case
of graphs that allow for an imbedding in the plane, this question is solved -
and even caught the attention of a general public (Wilson, 2002).

Not surprisingly, most mathematical contributions in the field of graph theory
are on a conceptual and structural level, and do not relate to the representation of
graphs. Two exceptions to this are the aspects of planarity and colorings - however,
also here, the used methods are algebraic and ”only” the results can be applied to
visual representations.

Beyond the theoretical and conceptual results that graph theory provides, in
particular the latter five mentioned areas also offer algorithmic results that make
explicit how to find solutions to certain problems. Prominent examples include an
algorithm to determine the shortest paths in graphs (Dijkstra, 1959), and a method
to calculate the maximum flow in networks (Ford & Fulkerson, 1962). These more
process oriented results constitute an important connection between mathematical
theory and process-oriented approaches in computer science.

2.1.3 Discussion

As outlined, the fields of graph theory are manifold. Clearly, not all results will be
directly applicable to the implementations within this thesis.

I see the primary contribution of graph theory for the developments within this
thesis in the area of conceptualization: the formal definitions of graphs, vertices,
edges and their relations constitute a solid foundation for extensions towards func-
tionally enriched and typed graph structures, the latter seemingly needed in the
context of using graphs for modeling.

The structural results of graph theory, in particular the mappings between
graphs and the subgraph relation, are also interesting. Yet, as these are further
investigated and presented in a computationally more accessible way in the domain
of visual languages (cf. section 2.2), the impact on my work is only indirect.

Finally, some algorithmic results, especially around questions of path finding
in graphs, are worth considering, particularly on the level of concrete modeling
and simulation languages, but also for synchronization of graph based models (cf.
chapter 4).

2.2 Visual Language Theory

As shown in the previous subsection, the mathematical theory of graphs allows
for detailed insight into structural characteristics of graphs, understood as abstract
constructs that consist of vertices and edges. However, this theory does not ad-
dress or even systematically formalize visual graph representations. This is on the
research agenda in the field of visual languages, which investigates visual represen-
tations (not restricted to graph representations!) with their syntax, semantics, and
their use for communication - all connotations of the word ”language”. A concrete
and broadly accepted definition of the term visual language did not yet evolve.
Costagliola, Delucia, Orefice, and Polese (2002) have offered the following:

”A visual language may be conceived as a collection of visual sentences
given by graphical objects in the two- or higher-dimensional space. Syn-
tax of visual languages is described through the graphical objects of the
language (the vocabulary), the relations used to compose the sentences,

28 CHAPTER 2. THEORETICAL FOUNDATIONS

and a set of rules defining the visual sentences belonging to the lan-
guage. The graphical objects of a visual language are characterized by a
set of attributes that can be classified as graphical attributes, syntactic
attributes, and semantic attributes.” (page 575)

A lot of contributions in the research area of visual languages are application
oriented in that they investigate in the usage of specific visual languages for certain
domains. Within her research on the use of visual languages for discussion support,
Gaßner (2003) has identified several following different aims for the use of visual
languages, including reasoning in visual representations, learning support, knowl-
edge elicitation, and the use as communication means and knowledge product. Her
points stress the potential of considering visual language theory as a foundation for
my collaborative modeling framework implementations.

The following parts of this section describe different theoretical approaches in the
field of visual languages. I will give an overview on current methods that formally
and systematically handle visual languages, and discuss implications for the work
within this thesis.

2.2.1 Classification Schemes for Visual Languages

Given that the target for this thesis is a framework to support multiple integrated
representations, it is reasonable to search for visual language classification schemes.
Here, a literature review yields essentially three different approaches.

The idea of the first one, given by Costagliola et al. (2002), is to take the modality
by which visual sentences are composed as discriminating factor between different
classes of visual languages. They identify three basic classes: connection-based
languages, in which visual sentences are formed by interconnecting graphical ob-
jects, geometry-based languages, where sentences are created by spatially arranging
graphical objects, and hybrid languages. In the latter case, both interconnections
and spatial arrangement are of importance. For the former two classes, the authors
present the following subclass hierarchy:

Plex. The plex class is connection-based and consists of graphical objects that only
have a limited number of connections, which can be added at attaching points.

Graph. The graph class is the super class of the plex class and allows for an
unlimited number of connections to a set of attaching regions.

String. This class is geometry-based and represents the reduction of visual lan-
guages to the textual case. Graphical objects of this class are textual charac-
ters - the 2-dimensionality comes from their visual representation, not their
information type.

Iconic. This generalization of the string class allows for icons, which are defined
as images within boxes of equal fixed size.

Box. Members of this super class of the iconic class are characterized by their
rectangular bounding box, which can be of variable size.

Table 2.1 contains syntactic attributes and typical relations for each of these
classes, together with example languages that belong to the classes. Commenting
their results, Costagliola et al. (2002) state that many modeling languages mix
elements from different subclasses, in particular within one major class (e.g., plex
objects with graph objects). They also mention the UML (Booch et al., 1998) as an
important hybrid modeling language - state chart diagrams or package diagrams,
which make use of connections as well as spatial arrangements, illustrate this.

2.2. VISUAL LANGUAGE THEORY 29

Table 2.1: Classes of visual languages

Class Attributes Relations Example
plexPlex attaching points

interconnections
Flowcharts

graphGraph attaching regions
interconnections

Petri Nets

position of character stringString
in string concatenation

Texts

position of icon spatialIconic
in grid concatenation

Puzzles

complex spatial StateBox position and size
relations charts

Marriott and Meyer (1998) take a completely different approach in their classifi-
cation of visual languages. They provide a systematic hierarchy of visual languages
based on formal properties, similar to the case of the Chomsky hierarchy for text
based languages (Chomsky, 1959). This way, they achieve a characterization of vi-
sual languages based on their fundamental computational properties. Their primary
means base on the following grammar definition:

Definition 2.6 A constraint multiset grammar (CMG) over a computational
domain D is a quadruple (TT , TNT , TS , P) consisting of a set of terminal symbols
TT , a set of non-terminal symbols TNT with TT ∩ TNT = ∅, a start symbol
TS ∈ TNT , and a set of productions P. All symbols except for the start symbol can
have attributes. A production p ∈ P has the following form:

xX ′
1 . . . X ′

m → X1 . . . XnX ′
1 . . . X ′

m‖C ∧ −→v = E

Here, x is a non-terminal symbol, and −→v are the attributes of x. X1, . . . , Xn and
X ′

1, . . . , X
′
m are terminal or non-terminal symbols with n ≥ 0, and the constraint C

and the expression E are over the attributes of X1, . . . , Xn and X ′
1, . . . , X

′
m.

Derivation steps are defined in analogy to text grammars, with the additional
step of checking the constraints and assigning new attribute values as resulting from
specific computations. Marriott and Meyer (1998) state that the CMG class is too
powerful to allow the construction of a reasonable hierarchy, due to the arbitrary
calculation of attribute values. As a consequence, they restrict the expressiveness
of CMGs by allowing only attribute copying instead of calculating. The severeness
of this step becomes clear upon consideration that the attributes are the elements
that really contain the visual information in the language - typical attributes relate,
e.g., to positions or connections of elements.

The resulting class of grammars, copy-restricted constraint multiset grammars
(CCMGs), is further subdivided into several types (similar to the Chomsky hierar-
chy), and results in a hierarchy of the corresponding languages.

Marriott and Meyer (1998) show the equivalence of CCMGs with other grammar
types (cf. next subsection), and analyze the complexity of the membership problem
(given a CCMG G and a sentence S, can S be generated by G?). One important
result is that even for the most restricted type of CCMGs, the membership problem
is NP-complete. In the general case, it is even undecidable.

The approach of Bottoni, Costabile, Levialdi, and Mussio (1998) classifies visual
languages with respect to human computer interaction criteria. They take a pixel

30 CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.3: Inclusion relations for visual language classes in the classification of
Bottoni et al.

oriented approach to formalize images and image descriptions over attributed sym-
bols, and define a visual sentence essentially as a triple 〈i, d, 〈int,mat〉〉, consisting
of an image i, a description d, an interpretation function int and a materialization
function mat. int essentially maps images to descriptions, mat maps in the other
direction. A visual language is defined as a set of visual sentences.

Based on these low level definitions and properties of the int and mat functions,
Bottoni et al. (1998) give a taxonomy for visual languages whose relationships are
illustrated in figure 2.3.

The most important classes are the following: strictly full languages have no
ambiguities in image interpretation, so that a characteristic structure is always in-
terpreted in the same way, even if it may appear in different contexts. A language is
strictly faithful if a given description is always materialized in the same character-
istic structure, i.e. no multiple representations of the same description are possible.
Invertible languages ensure that each pixel in the image is controlled by exactly
one system component, and that a click on that pixel allows the user to refer to
that component. Finally, consistent visual languages are those that are strictly full,
strictly faithful and invertible.

Bottoni et al. (1998) study systems that belong to the different classes of their
taxonomy, and derive interaction characteristics of these systems.

2.2.2 Formal Approaches and Employed Methods

The methods employed in visual language research with the aim of specifying and
recognizing visual languages are heterogeneous. According to Marriott, Meyer, and
Wittenburg (1998), we can identify three different general lines, which rely on either
grammars, logic, or algebra.

Grammar Based Approaches

The grammatical approach is based on mechanisms similar to the ones used in
string language specification. It is a constructive method that is useful to formalize
the notion of ”belonging to a language” and that consequently has potential for
parsing applications. A wide variety of grammar based approaches exists, each

2.2. VISUAL LANGUAGE THEORY 31

Figure 2.4: Example graph grammar for Entity-Relationship diagrams

with specific strengths concerning expressiveness, suitability for specific notations,
and options for efficient parsing. Marriott et al. (1998) give a good survey on the
existing state-of-art in this area. One example, the (C)CMG approach, has already
been described in the previous subsection. For the topic of this thesis, two other
important grammar types are worth considering:

Graph grammars use graph structures, usually enriched with attributed vertices
and/or edges, as sentences and (consequently) within production rules. There is
a variety of different graph grammar formalisms, e.g. precedence graph grammars
(Kaul, 1982), or edNLC (edge-labeled directed node-label controlled) graph gram-
mars (Brandenburg, 1988). Rekers and Schürr (1997) give a very intuitive definition
of a graph grammar in a general sense. They rely on the mathematical notion of
graphs, enriched with labels for edges and vertices:

Definition 2.7 A graph grammar G is a tuple (A,P), with A a nonempty initial
graph (the axiom), and P a set of graph grammar productions. A production p ∈ P
is a tuple (L,R) of graphs over the same alphabets LV and LE of vertex and edge
labels. It can be applied to a graph G and rewrites it into G′ = G ∪ R \ ML, if G
contains a subgraph ML that matches L. The set K := L ∩R, is called the context
of a production.

An example set of productions for abstract Entity Relationship syntax graphs is
shown in figure 2.4, which is taken from Rekers and Schürr (1997). Even though the
figure just shows a visual representation of the productions (and not their formal
notation), the intuitive character of graph grammars becomes clear.

The second class of grammars I want to mention are relation grammars and
relational grammars. These approaches rely basically on identifiable entities and
typed relations that may exist between these entities. The grammar allows for
derivation steps in these structures. Even though they are very similar to graph
grammars concerning expressiveness (Marriott & Meyer, 1998), they put a different
focus by not considering graphs as a whole, but emphasizing on the entities, the
latter being in certain relations to each other. This way, relation grammars are
targeted at a slightly wider range than graph grammars. It is, e.g., relatively easy
to express visual relations like ”A is x-centered to B”, or ”X is below Y”. The con-
crete inclusion mechanism for the relations in the grammar varies. Wittenburg and

32 CHAPTER 2. THEORETICAL FOUNDATIONS

Weitzmann (1998),e.g., rely on constraints and attributes. Ferrucci, Tortora, Tucci,
and Vitiello (1998), on the other hand, have terminal and non-terminal symbols for
relations: in their Symbol Relation grammar approach, they separate the symbol
productions from the relation productions. A derivation step is subdivided into two
phases, which distinguish between element rewriting and relation treatment: After
the application of a symbol rule, the parser looks for the corresponding relation
rules (the correspondence is explicit in the grammar), and applies them.

Logic Based Techniques

The previous part outlined how computational grammars can be used to define vi-
sual languages. One strength of that approach is that it principally allows for recog-
nizing and producing sentences of languages. A disadvantage is that most grammar
based techniques treat the visual information as attributes of specific elements, usu-
ally (for reasons of flexibility) with an unrestricted set of possible attribute names.
This implies that visual relationships, apart from element interconnections, can-
not be dealt with in much detail. Thus, geometric-based languages and hybrid
languages in the sense of Costagliola et al. (2002) are not really adequately covered.

Here, logic based techniques play an important role. These usually rely on spa-
tial logics which axiomatize different possible topological (geometric) relationships
between objects, and apply a certain reasoning mechanism which operates on the
basic relationships.

Two prominent examples for the sets of axioms are the Region Connection Calcu-
lus (RCC) presented by Randell, Cui, and Cohn (1992), and the Cardinal Direction
Framework (Ligozat, 1998).

The RCC logics bases on one primitive reflexive and symmetric relation C(x, y),
which holds if the topological regions x and y are connected in the sense that they
have at least one point in common. RCC uses this relation to define the following
eight basic relations, which are illustrated in figure 2.5:

• DC: disconnected

• EC: externally connected

• PO: properly overlaps

• TPP : tangential proper part

• TPP−1: have as tangential proper part

• NTPP : non-tangential proper part

• NTPP−1: have as tangential proper part

• EQ: equals

As visible, RCC does not use the notion of directions or orientations. Several
other approaches do, e.g. by using angles, qualitative orientations, or cardinal
directions. The latter has been investigated in depth by Ligozat (1998). His basic
relations as illustrated in figure 2.6 are very intuitive. Recent developments like, e.g.,
the SpaceML approach presented by Cristani and Cohn (2002), aim at integrating
different axiom sets in order to extend the expressiveness of the resulting relations.

Similar to the heterogeneity of the atomic relations sets, also the applied rea-
soning methods vary and cover a broad spectrum of established logic calculi. Of
course, issues around decidability and efficiency play an important role here. For
these reasons, we can frequently observe the use of a restricted first order predicate
logic as a foundation.

2.2. VISUAL LANGUAGE THEORY 33

Figure 2.5: The RCC basic relations

Figure 2.6: The basic relations of the Cardinal Direction Framework

34 CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.7: A picture logic rule

Some of the existing techniques make use of definite clauses, which have a quite
close connection to context-free grammars and allow for a straightforward imple-
mentation in Prolog. Here, an interesting example is the work of Meyer (1994) who
extends this idea by integrating visual expressions into logic programming. His ba-
sic idea is to introduce the notion of a picture term, which has visual constants and
visual variables. The unification mechanism of the logic programming framework
is extended to a picture unification, which allows for using picture terms wherever
normal terms can be used. Figure 2.7, taken from Marriott et al. (1998), shows
an example of such a rule, which nicely illustrates how the illusion of operational
semantics can be achieved with picture logics.

The approach of constraint logic programming integrates logic programming with
constraints in some given (usually mathematic) domain. It is also a suitable method
for visual language formalization, as it generically allows for, e.g., coordinate calcu-
lations. Furthermore, it is possible to use constraint logic programs to build parsers
for CMGs (cf. definition 2.6).

Some reasoning systems rely on variants of description logic, a theory which is
based on the idea of structured inheritance networks. Practically usable description
logic based approaches cover a subset of first order predicate logic and offer a com-
plete reasoning system, i.e. they are decidable. A prominent example for the use of
description logic is the work of Haarslev (1999). His ALCRP(D) formalism is do-
main independent in the sense that it allows for concept and role (binary relations)
definitions, and offers a complete reasoning service.

Algebraic Methods

Loosely speaking, the logic based approaches as presented in the previous part ex-
ploit visual relations to make meaning. Other more algebraically oriented methods
rely more on structural information, and try to describe complex visual structures
by defining atomic elements and composition functions.

Of course, also some logic or grammar oriented approaches use algebraic struc-
tures (e.g., the RCC basic relations). In addition, ”pure” algebraic techniques are
rare in the field of visual languages, as usually some procedural parts (e.g., for
structure recognition) are addressed. In this sense, there is no sharp distinction
between the different categories. However, there are some methods that indeed put
a strong emphasis on type theoretic concepts and structural relationships, which
justifies their classification as ”algebraic”.

In this area, the work of Wang and Zeevat (1998) is a good example. They
present a syntax based algebraic approach which allows for semantic reasoning about
pictures. The central purpose of their work is to define meaning of pictures in terms
of one domain, and then derive the meaning of pictures in another domain by using
an analogy relation. The basic concepts they provide are the following:

Definition 2.8 A graphical signature Σ is a quadruple (S,≤,F ,P), where:

• S is a set of graphical sorts to which graphical objects belong,

• ≤ defines a partial order on S and expresses subsort relations,

2.2. VISUAL LANGUAGE THEORY 35

• F are operations over graphical objects. Wang and Zeevat (1998) distin-
guish between constant functions, natural functions, artificial functions, and
attribute functions,

• P contains graphical predicates.

In addition to these syntactic specifications, graphical theories are used to specify
geometrical properties shared by all the pictures in the language:

Definition 2.9 A graphical theory over a graphical signature Σ is a set of for-
mulas over Σ which is closed and consistent under the consequence relation of the
underlying logical system.

Based on these concepts, Wang and Zeevat define partial homeomorphisms be-
tween graphical and domain signatures and thus establish connections between in-
terpretation of graphical structures and meaning in underlying application domain
signatures.

Another algebraic technique that does not primarily target visual structures,
but interaction with these structures, has been proposed by Dinesh and Üsküdarlı
(1998). They use a specification language to define visual objects, define the syntax
of a visual language that makes use of these atomic objects in a context-free gram-
mar, and describe language semantics through conditional equations. The rewrite
engine they use for parsing structures considers dynamic input and output in the
sense that it allows for ”holes” in terms. Once such a hole is encountered, the engine
stops and asks for further input. The framework is then expected to get this input
by asking the user for additional specifications. The repetition of this process thus
allows for interactive diagram construction.

2.2.3 Discussion

As presented in the previous subsections, there are a lot of constructive approaches
in visual language theory that aim at providing theoretical frameworks for visual lan-
guages together with algorithmic techniques that allow the handling of sentences in
these languages. All these approaches share a common problem: visual structures,
even restricted to graph structures, are inherently complex so that a large number
of ”interesting” questions are NP complete or even undecidable - a prominent ex-
ample relevant within this thesis is the membership problem (”does an expression
belong to a visual language?”), which has applications in the fields of model syntax
and also semantics checks. In visual language theory, the complexity problem is
usually ”solved” by restricting the scope of covered languages in a way that allows
for an efficient handling of the resulting set. Examples are the limitation of gram-
mar productions (Rekers & Schürr, 1997) or the restriction of attribute calculation
to value copying (Marriott & Meyer, 1998).

All these restrictions are in conflict with some of the core purposes within this
thesis, namely with the aim of building a framework that supports heterogeneous
and flexible graph structures. A restriction of the supported primitive elements
that goes beyond the restriction to graph structures is problematic, as it limits the
expressiveness of the whole approach. In addition, this limitation does not really
seem to be required within the purposes of this thesis. Considering the targeted
interactive and constructive usage of the modeling tool, it cannot be expected that
all intermediate steps in model construction always constitute a ”correct” model
in the classical sense that it is a member of some language of correct sentences,
and therefore can be accepted by some grammar. Due to this, the methodology
and technology within this thesis will have to support also structures which do only
fulfil minimal syntactic correctness constraints. Another reason for not relying on

36 CHAPTER 2. THEORETICAL FOUNDATIONS

a central method for ensuring correctness on a higher semantic level (e.g., using
grammar based formalisms) is that I explicitly intend to support heterogeneous
models, which consist of mixed interoperable structures. Here, a central definition of
correctness is hard to give, especially on the semantics level: under which conditions,
e.g., is a Petri Net that is annotated with a concept map, semantically correct?

Despite this general difference between the approaches in the area of visual
language theory and the particular aims within this thesis, some results are worth
considering. The formalization of visual structures as objects with attributes and
relations like, e.g., done in the approach of Wang and Zeevat (1998), is an important
result. It is not sufficient though, because it does not cover interactive structures
that go beyond object attributes by allowing operational features - which is what
is needed for modeling applications, but usually not considered in visual language
research.

The notion of constraints as contained in a lot of the mentioned approaches
is also considerable. Even though I do not plan to check heterogeneous graph
structures for correctness in a general sense, some method to guarantee at least a
minimal syntactic integrity will be needed in order to allow for an interpretation at
all.

Apart from these impacts from visual language research on the core work within
this thesis, most of the presented results have applications in related fields. The
mentioned logic formalisms and grammar based parsing mechanisms can play an
important role, e.g., when trying to decide if a specific graph structure is correct
in a higher, task-related, sense - an issue which is highly relevant within tutoring
applications.

2.3 Meta Modeling

As motivated in the introduction chapter, core parts of the implementations within
this thesis are targeted towards a flexible and interoperable modeling framework.
Taking this into account, existing techniques that generically describe modeling lan-
guages and their relations are of high importance. Here, a literature review yields
three different research directions: some approaches aim primarily at describing
modeling languages, others offer transformative techniques that allow for language
switches. Finally, a small number of papers address interoperability issues in inte-
grated models. The following subsections describe all three directions.

2.3.1 Descriptive Frameworks

All flexible modeling frameworks that are able to deal with multiple modeling lan-
guages usually employ some kind of metastructure that describes the different lan-
guages and, potentially, also their connections. These metastructures are often
used implicitly, only few authors explicitly declare their frameworks as e.g. meta
modeling environments (Lara & Vangheluwe, 2004).

Obviously, both the level of detail and also the focus of meta modeling techniques
can vary considerably, and a standardization of these frameworks is of course an
issue worth investigating, as it promises reusability and interoperability on the level
of both models and modeling languages. Yet, this is difficult due to the heterogeneity
of modeling languages and the critical question how to cope with things beyond
syntax: model semantics and dynamic functional issues are, e.g., necessary topics
to address in a full-scale solution.

Within this subsection, I want to outline two prominent descriptive meta mod-
eling techniques which are representative for the current state-of-art in this area.

2.3. META MODELING 37

Figure 2.8: The MOF architecture with example meta models

Meta Object Facility

The first example is the Meta Object Facility MOF (Meta-Object Facility Spec-
ification, n.d.; Distributed Systems Technology Centre, n.d.), which is the OMG
standard for defining, representing and managing metadata. Among other things,
the OMG MOF and associated specifications define the MOF Model as the MOF
standard abstract specification language for meta-models that define different kinds
of metadata. The specification includes an associated abstract mapping that relates
a meta model to the corresponding information model for metadata, i.e. it says what
a meta model means from the information perspective.

The meaning of these things become clear with the general conceptual layer
architecture that the MOF specification proposes. This consists of four layers: the
MOF Model itself, meta models, models, and data. Figure 2.8 shows these different
layers for the example of an instantiation that handles metadata representations of
UML models and CORBA IDL.

The top (M3) level of the framework consists of the standard MOF Model, i.e.
the standard abstract language for defining MOF meta-models. This is the fixed
point that unifies the MOF metadata architecture.

On the M2 level, the conceptual framework contains the meta models for the
metadata that is required by the application. In the example case, these are the
UML meta model and the specification of CORBA IDL. It is important to note that
the presence of these two meta models does not say anything about their relation
in the application: in the example, IDL specifications might be generated from
UML diagrams, or they might be created by the user and linked to UML diagrams.
Even the extreme case - an isolation between UML and CORBA models - is not
prohibited.

The M1 level of the architecture contains models expressed in conformity to the
meta models contained in level M2. In the example case, these are UML diagrams
and CORBA interface specifications of a system. In the MOF framework, models
on the M1 level would typically be produced by the user using tools in the software
development environment.

The lowest level M0 of the framework contains the software system. Depending
on the scope of the application and the example metamodels involved, one might
expect to find IDL and program language source files, and binaries.

The typical use of the MOF framework in a development process consists of the
following four steps (Distributed Systems Technology Centre, n.d.):

Informal Diagram Definition. The first step in developing a MOF based solu-
tion consists of defining the MOF meta-models for the metadata framework.

38 CHAPTER 2. THEORETICAL FOUNDATIONS

Table 2.2: The core concepts of MODL

Name Main Properties
Inheritance information, abstraction degree,Class
attributes with name, type, multiplicity and scope
Two ends, each with name, class type,Association
multiplicity, and aggregation type
Data type without object identity,DataType
several predefined primitive types are specified.
Other meta model elements defined withinPackage
the package, e.g. Classes, Associations, DataTypes
Name, constrained element, constraintConstraint
expression (usually in OCL), evaluation policy

Reference Referenced class type
Operation Parameters and raised exceptions
Exception Name and parameters
Constant Name and simple value

None (mechanism for tailoring andTag
extending the meta modeling language)

The developer will typically start by drawing an informal meta model diagram
(using a convenient modeling language like, e.g., UML).

Specification in MODL. In order to be useful within the MOF framework, the
informal specification must be transformed to a formal meta model definition
in the text based MODL language. As the format in the first step is unspec-
ified, this step will typically have to be done by hand. The MODL language
syntax, defined formally through a grammar, resembles the IDL syntax and
contains concepts that are closely related to modern object oriented program-
ming languages, as table 2.2 shows.

Repository inclusion. Having specified the meta model formally, the next step
in the MOF methodology is to generate a repository that can manage meta-
data conforming to the meta model. MOF also contains a specification of a
repository structure for meta models.

Application construction. The MOF method foresees the implementation of
tools that make use of the repositories as the final step. To simplify and stan-
dardize this, the formal MODL specification can be exploited, e.g. through
automatic IDL mappings that can serve as starting points for the implemen-
tations.

Domain-Specific Modeling

As outlined, the essence of the Meta Object Facility consists of a very general high
level framework for meta modeling and the text based language description lan-
guage MODL. Other meta modeling techniques take a more development oriented
perspective and aim primarily at facilitating the steps from modeling to system
construction. A good example for these approaches is Domain-Specific Modeling
(DSM) (Metacase, n.d.). The basic motivation that underlies this modeling suite
is that common modeling languages like UML contribute surprisingly little to the
process of accelerating and improving software development, because a solution for

2.3. META MODELING 39

Figure 2.9: Time setting modeled in DSM

a domain problem first has to be solved in the domain with little or no tool support,
then this solution has to be mapped to UML. From there, some code generation can
be done, however there still remains a lot of manual programming work (Metacase,
n.d.). The core idea of DSM is to reduce the resource-intensive and error-prone
mappings between representations, and to develop a solution for a domain problem
only once and in a domain specific language that the user can easily handle. From
this language, a direct translation to (nearly fully functional) program code is aimed
at. The advantages of this procedure, as argued by Tolvanen and Kelly (2004), are
the following:

• Having specifications on a significantly higher level of abstraction than tradi-
tional code or class diagrams means less work for developing the specifications.

• DSM reduces the need to learn new semantics on the user side - the con-
ceptualizations of the problem domain are usually known and conceived as
”natural”, in contrast to external notations like UML.

• Specifications in domain terminology are usually better understandable and
superior for memorizing, validating, and as a means of discussion.

Figure 2.9, taken from (Metacase, n.d.), shows an example for a model in DSM.
The model, which describes the process of setting a clock with two buttons, is
designed to be intuitively understandable for those people that have the appropriate
domain knowledge. In order to make use of DSM models in the intended way, three
steps are necessary (Metacase, n.d.):

1. a modeling language that fits the domain,

2. a tool for building models in that language, and

3. automatic code generation for models in the language

The first of these steps includes the definition of the following three elements:

Domain concepts. These are taken directly from the problem domain and are
given properties typical for the domain.

Notations. A graphical visualization for the domain concepts, typically developed
with end user participation.

Rules. The guarantee that all models are ”correct” in domain terms. The rules can
be of different kinds and relate, e.g., to associated concepts, or the layering of
models. The reuse of designs for rules is explicitly foreseen.

40 CHAPTER 2. THEORETICAL FOUNDATIONS

While the second step (the tool for building models in the supported language)
can be generically supported by metamodeling tools for DSM models like Metacase
(n.d.), the code generation is of course (together with the domain rule specification)
the most problematic of the three. Tolvanen and Kelly (2004) admit that for this
step a lot of manual programming work is needed. Yet, they argue that this work
usually has to be done only once for a domain - as typically a user shares the
same domain model for a lot of applications, this single manual step is not really a
disadvantage. The code generating components can be reused in the same way as
the domain concepts that they refer to.

As presented, it seems that DSM is no ”real” metamodeling language, as it does
not define an explicit format for the description of models. In fact, this nonexistence
(or: hiding) is done on purpose and with the aim of simplicity. Despite this, it makes
definitely sense to classify DSM as a metamodeling technique, as it is an approach
that indeed covers a number of modeling languages. The DSM metamodel is only
implicitly given and can be conceived as a combination of the hidden typology that
connects the user defined concepts and properties, the primitives that can be used
for defining notations and rules, the mechanisms that link concepts to notations,
parts of the code mapping, and the connection features for models.

2.3.2 Transformation Approaches

There are a number of research results that contain methodologies for combining
multiple modeling languages with the aim of transforming one model (specified
in a modeling language) to another model, which can either belong to the same
language, or to a different one.

Simple Attributed Graph Transformations

As a lot of modeling languages employ objects and relationships between these
objects as primitives, it is not surprising that also on the level of model trans-
formations, there are several approaches that explicitly focus on graph structure
transformations. As already noted in section 2.2.2, one possible solution are graph
grammars.

Lara and Vangheluwe (2004) make use of these grammars for attributed graphs
not only for transformations, but also to support the execution and optimization
of models. In their approach, model execution (”simulation”) is essentially the
modification of graph attributes according to a grammar, whereas optimization
steps perform structural changes in the graph structure with the aim of reducing
complexity and improving performance. They propose an implementation of a graph
grammar engine which allows for several execution modes (step-by-step, continuous,
and animated), and considers element-subtype relationships. The latter allows for
reusing transformation rules in different contexts.

Transformation approaches on graphs generally have to face that a lot of prob-
lems in the area of mappings between graphs are computationally hard, mostly at
least NP complete, so that efficient general-purpose algorithms seem out of reach.
One critical problem that belongs to this category is the determination whether
a given graph structure can be obtained from another one by the means of a set
of transformations. Here, a subproblem is the matching of two graphs. Cordella,
Foggia, Sansone, and Vento (1998) try to solve this problem using subgraph trans-
formations. Their work uses feasibility rules and gives inexact matchings that only
approximate a final solution. They make use of transformations in order to itera-
tively search for a matching. The basic types of transitions are split, merge, delete
branch, and insert branch.

2.3. META MODELING 41

Hypergraph Based Schema Transformations

A formalization of a transformation technique for the case of hypergraph based data
structures has been proposed by McBrien and Poulovassilis (1999). Their primary
notion is a schema, which is a structure that consists of a labeled, directed, and
nested (i.e. edges can connect both vertices and also other edges) hypergraph, and
a set of constraints, the latter being boolean valued queries over the hypergraph.
An instance of a schema is defined as follows:

Definition 2.10 For a schema S = 〈Nodes,Edges, Constraints〉, an instance I
is a set of sets satisfying the following:

• Each construct c ∈ Nodes∪Edges has an extent, denoted by ExtS,I , that can
be derived from I,

• Conversely, each set in I can be derived from the set of extents {ExtS,I(c)|c ∈
Nodes ∪ Edges},

• For each e ∈ Edges,ExtS,I(e) contains only values that appear within the
extents on the constructs linked by e (domain integrity),

• The value of every constraint c ∈ Constraints is true, the value of a query
q being given by q[c1/ExtS,I(c1), . . . , cn/ExtS,I(cn)] where c1, . . . , cn are the
constructs in Nodes ∪ Edges.

Finally, a model in the sense of McBrien and Poulovassilis (1999) is a triple
〈S, I, ExtS,I〉. Based on these formalized concepts, they define the following primi-
tive transformations on models:

• renaming nodes and edges,

• adding and removing constraints,

• adding and removing single nodes,

• adding and removing single edges

For the nodes and edge transformations, the approach uses queries to identify
the entities to be added or removed (in contrast to other techniques that rely on
unique identifications of elements).

Sequences of these primitive transformations are called composite transforma-
tions, these correspond to transitions between models within one modeling language.
Based on these, McBrien and Poulovassilis (1999) also analyze specific requirements
for mapping ”richer semantic modeling languages” and point out their ideas using
the example of UML and Entity Relationship models.

Primitive and composite transformations allow for intra-model mappings in the
sense that the syntax of the concrete modeling language limits the mappings. Be-
yond that, McBrien and Poulovassilis also aim at supporting inter-model transfor-
mations. Here, their basic idea relies on defining primitive add and delete trans-
formations, where the extent of a construct which belongs to a modeling language
M1 is defined in terms of the extents of constructs in some other modeling lan-
guage M2. Based on this, McBrien and Poulovassilis state that generic template
transformations which automatically translate between different languages are pos-
sible within their approach. They list the following two important criteria for such
generic inter-model transformations:

1. Ensure that every possible instance of a construct in M1 appears in the query
part of a transformation that adds a construct to M2.

42 CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.10: Structure of domain evolution tools

2. Ensure that every construct c of M1 appears in a transformation that deletes
c.

It is worth noting that McBrien and Poulovassilis treat the intermediary con-
structs that neither completely belong to M1 nor to M2 (but that definitely occur
in the process of inter-model transformations) as purely temporary objects: they
do not state how, e.g., partially ”translated” models (thus, mixed structures of M1

and M2), could be generically supported in their approach.

Higher Level Model Migration Techniques

Apart from the low level transformative approaches listed above, there are also some
research results which put the focus on higher level model mappings. These have
a natural relation to the meta modeling techniques as noted in subsection 2.3.1 in
that they use meta modeling frameworks as a base for the transformations.

The mechanism proposed by Celms, Kalnins, and Lace (2003) allows multiple
representations of a domain model in several modeling languages. Strictly speaking,
they do therefore not directly address model transformations but view transforma-
tions - yet, it can be argued that multiple representations already constitute a spe-
cific kind of model transformation, as each language may display or hide different
parts of the general domain model.

Celms et al. do not directly define mappings between different elements of lan-
guages, but take the MOF meta modeling framework (Meta-Object Facility Spec-
ification, n.d.) as a foundation and express both domain models and presentation
models using this framework. They make use of bijective mapping associations be-
tween these two types of models, which allows them to maintain multiple domain
model representations simultaneously, and to propagate changes in one representa-
tion to the others.

The work of Sprinkle and Karsai (2003) is in the area of domain-specific model-
ing languages (DSMLs). They address the problem of modeling language definitions
that change over time, and propose a model migration process to incorporate these
domain evolutions. In their approach, a DSML specific domain evolution tool han-
dles metamodel differences, different domain evolution tools are managed within a
domain evolution framework. Figure 2.10 shows the structure that the framework
imposes on supported model migration tools. The approach essentially relies on
Transform operators, which are the ingredients of any model migration algorithm.
Transform operators can have several types (rules, tests, and cases), some of which
may be sequenced. Any Transform operator relates to a set of legal items, which can
be patterns (used to identify matching input components), or consequences (objects
within the new DSML). In addition, a Transform operator also refers to a mapping
association, which can, e.g., be a replacement, an insertion, or a concatenation.

2.3. META MODELING 43

2.3.3 Formal Interoperability Approaches

In addition to the mentioned lines of research which describe modeling languages
in detail and that offer transformative mechanisms between models and modeling
languages, there are some approaches that put the emphasis on interoperability and
formal model integration. Obviously, existing state-of-art in this field is of high
importance within this thesis.

Typologies of Integration Approaches

The aim of model interoperability is relatively clear: the development of method-
ologies that connect models which are expressed in different (formal) languages.
These solutions are able to increase the reusability of models, as models can be put
in different contexts and still ”work”. They also facilitate modeling tasks through
an enhanced choice of means of expression. However, due to the vast heterogeneity
of modeling languages and the resulting complexity of the interoperability task, a
universal solution has not yet evolved and can not be expected for the next future.

Several authors give classifications that outline strategies for (partial) integration
solutions. The classification of Dolk and Kottemann (1993) describes two basic
categories:

Definitional Integration. Approaches in this category produce a single new mo-
del that combines a set of given models. Here, important conditions are that
the new model is represented with the languages of the input ones, and that
also the semantics of the resulting model corresponds to that of the original
ones.

Procedural Integration. These techniques are characterized by their property
that they leave the original models as they are, and add a superstructure
which is capable of coordinating the connections between the models.

In a way, definitional integration involves the logical linking of related model
representations, whereas procedural integration concerns the linking of processes to
form operators in an integrated model.

Dolk and Kottemann (1993) also consider organizational benefits that model
integration may offer, and analyze implementation related issues for integrated
modeling systems. The list already presented on page 19 contains the major re-
quirements they identify. For each of these requirements, Dolk and Kottemann
refer to relevant research results. However, they state that no current implemen-
tation fulfils these criteria, and the only constructive point in their paper is the
proposition of a feature list for a hypothetical Communicating Structured Modeling
Language (CSML), which they characterize as similar to a discrete event simulation
programming language, but with hooks that allow for a dynamic inclusion of model
schemas, solvers, and relational data. According to them, the minimum system
features are these:

• basic structured programming constructs of sequence, selection, and iteration,

• demons,

• embedded Structured Modeling Language statements for model definition,

• parallel execution of processes,

• transformation operators to solver data structures (in the context of struc-
tured modeling techniques),

44 CHAPTER 2. THEORETICAL FOUNDATIONS

• embedded SQL statements for data manipulation (their approach is focused
on relational database applications)

Another analysis of principal possibilities for model integration has been done
by Wang, Yeo, and Poh (1998). They focus on the area of structured modeling and
take an object oriented perspective on model integration. Based on a classification
that considers homogeneity degrees between model schemas, their analysis results
in the following different types of model integration:

Amalgamation. This homogeneous case describes models of the same schema
being integrated: the interpretation mechanism (i.e. the solver, for the case
of structured modeling) for the resulting model can be the same as for the
input models.

Combination. This case also represents an integration of models that belong to a
joint schema. Different to the amalgamation case, here the resulting model is
expressed in another schema, thus a new interpretation mechanism is needed.

Concatenation. If heterogeneous model schemes are integrated, the resulting mo-
del is called a concatenated model. Wang et al. (1998) propose the interpreta-
tion for the integrated model to be done by a process that uses the interpreters
of the original models.

Embedding. If the integrated model schemas are heterogeneous but one is a sub-
set of the other, then the solver of the larger schema can be used and the
integration process is called an embedding.

Along these types, Wang et al. (1998) discuss also implementation issues. How-
ever, these are limited in scope since the modeling language is restricted to struc-
tured modeling, and the integration approaches are, in addition, specific to the
domain of distribution systems.

Mapping Based Techniques

A significant number of attempts for model interoperability uses mappings between
different models as a primary means. In the typology of Dolk and Kottemann
(1993), these fall into the category of procedural integration. Two contrary ap-
proaches to interconnect heterogeneous models have emerged here: either with or
without a connecting superstructure. In the sequel, I describe representative exam-
ples for both categories.

Of course, general frameworks for the integration of models without any kind
of mediating control component are hard to build, as the communication between
models is not directly controllable in this architecture. Wang and Liu (2003) analyze
the different interconnection options between sets of models, and derive certain
conditions which have to hold in order to be able to build combined models. They
summarize their approach this way:

”A complete model management must assist in the selection, linking, and
execution of models. That needs a general framework for formalization
of models. By input and output standardization and model rules, it may
be done to link different models together to solve a complicated problem.”
(page 36)

Indeed, the essence of their approach is very simple: they understand a model
as a black box that consists of a set of input parameters and one output parameter.
Based on this, they define a model combination relation that expresses which model

2.3. META MODELING 45

output parameters can serve as input for other models, and characterize a complete
model combination relation by the criterion that for any input parameter (in) of a
model, there is at least one model with an output parameter (out) so that 〈in, out〉
is contained in the combination relation.

Based on these definitions, Wang and Liu (2003) define a composite model
MM = (MI, RI) for a set of models M, a combination relation R, and an expected
joint output O through the following criteria:

1. MI ⊆ M ∧RI ⊆ R

2. ∃1mt ∈ MI : out(mt) = O ∧ (∀m ∈ MI : 〈mt,m〉 6∈ RI)

3. ∀mi ∈ MI\{mt}∃mj ∈ MI : 〈mi,mj〉 ∈ RI

4. ∀mi ∈ MI∀in ∈ m(IN)∃1mj ∈ MI : 〈mj ,mi(in)〉 ∈ RI

The conditions two to four are similar to a pipes & filters approach. They
express that there is a terminal model in MI whose output is O, that any output
of a non-terminal model is the input for some other model, and that each input
for a model is provided by only one other model. Wang and Liu show that the
completeness of a combination model relation is equivalent to these four criteria.
Within the proof, they present an algorithm which builds a composite model for a
complete combination model set.

Despite these constructive parts, the work of Wang and Liu belongs to the
more theoretical contributions in the area of model interoperability, as they explore
options for connecting models, but do not express any way for concrete implemen-
tation. This, of course, is easier if a superstructure is available, which any models
can interface to.

The approach of McBrien and Poulovassilis (1999) is a good example for work in
this direction. As explained already in section 2.3.2, they propose a transformative
technique for hypergraph structures. Based on these inter-model transformations,
they introduce the concept of inter-model edges, linking structures between objects
that belong to different modeling languages. They characterize this technique as

”[...] particularly powerful when a data model contains semi-structured
data which we wish to view and associate with data in a structured data
model. For example, we may want to associate a URL held as an at-
tribute in a UML model, with the web page resource in the WWW model
that the URL references.” (page 345)

McBrien and Poulovassilis show an example for a mixed model that results when
integrating an ER (Entity Relationship) model or a web pages model with a UML
representation. Figure 2.11, taken from this example, illustrates the linking of two
models with an inter-model edge, table 2.3 contains the underlying representation
in the hypergraph data model. An interesting aspect is that the hypergraph data
structures used by McBrien and Poulovassilis are expressive enough to allow for the
specification of models as well as inter-model constructs. The limits of their ap-
proach are, however, in the lack of expressing both dynamic aspects, and semantics
beyond constraint checking.

Structured Modeling

In contrast to the majority of interoperability approaches which essentially focus on
building some kind of explicit connection between different modeling languages, the
technique of structured modeling (developed in the 1980s) is inherently interopera-
ble to some degree, since its design is very open and it separates definitional concepts

46 CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.11: The association of models via inter-model edges

Table 2.3: Representation of an inter-model edge in the HDM Scheme 〈r, c, a〉

Edge 〈
¯
, www : r, uml : a〉

Links 〈www : r〉, 〈uml : a〉
〈
¯
, www : r, uml : a〉 = {〈r, a〉|∃z, s, us, pw, h, pt, up.

〈〈s, us, pw, h, pt, up〉, r〉 ∈
Cons 〈www :identity, www :url, www :resource〉∧

a = s◦’://’◦us◦’:’◦pw◦’@’◦h◦’:’◦pt◦’/’◦up∧
〈z, a〉 ∈ 〈

¯
, uml : c, uml : a〉}

from instantiations and algorithmic parts very clearly. Structured modeling aims
at providing a systematic way of thinking about models and their implementations,
and it is intended to serve as a foundation for generic computer based modeling
environments (Geoffrion, 1989a).

The principal approach of structured modeling is based on the idea that every
model consists of a collection of attributed entities which can be related to each
other in several ways. One basic aim within structured modeling is to offer a flexible
definitional system for entities and their relations that allows the use of structured
modeling in various contexts. The underlying principles of the structured modeling
definitional system according to Geoffrion (1989a) are the following:

Correlation. Definitions of entities in structured modeling allow references to
other entity definitions. Thus, correlation of things can be expressed easily.

Acyclicity. The definitional interdependencies of elements in structured modeling
are always acyclic, which facilitates algorithmic aspects dramatically.

Classification. Structured modeling provides five basic classes (see below), every
defined entity belongs to exactly one of these classes.

Grouping. Similar definitions can be partitioned into groups, which allows the
reduction of task complexity for the user.

Hierarchy. Groups of definitions can be organized hierarchically, which adds struc-
ture to models and further reduces complexity.

The elementary classes of structured modeling that implement these principles
are:

Primitive Entities. These are the smallest distinctly identifiable entities.

2.3. META MODELING 47

NUTRi /pe/
MIN (NUTRi) /a/ : Real+
MATERIALm /pe/
UCOST (MATERIALm) /a/
ANALYSIS (NUTRi,MATERIALm) /a/ : Real+
Q(MATERIALm)/va/ : Real+
NLEVEL (ANALYSISi,Q) /f/ ; @SUMm(ANALYSISim*Qm)
T:NLEVEL (NLEVELi,MINi) /t/ ;NLEVELi>=MINi
TOTCOST (UCOST,Q) /f/ : @SUMm(UCOSTm*Qm)

Figure 2.12: Example of a model definition in SML

Compound Entities. Tuples of other (primitive or compound) entities.

Attributes. Tuples of entity elements together with a value in a specific range. A
value can also be explicitly not set, indicating an incomplete model.

Functions. Similar to attributes, functions are tuples of entity elements together
with a value in a specific range. Function values can depend on other involved
valued elements, the association of values is done through rules.

Tests. Test elements are similar to function elements, but just allow for a boolean
result value.

By means of functions and tests, structured models can be computationally
active in the sense that mathematical expressions can be embedded and dynamically
applied. However, it is worth noting that structured modeling only foresees abstract
rules - the provision of an implementation for specific rule expressions is left open.
This is done on purpose to avoid the restriction of the application area.

Well-defined entity sets without definitional gaps (i.e., references to entities that
do not belong to the set) are called closed elemental structures. On top of these,
generic structures and modular structures are defined. These serve partitioning and
ordering purposes and thus contribute to the grouping and hierarchy characteristics.
They complete the definition of a model instance in the sense of Geoffrion (1989a).

Model schemes are defined as specific sets of model instances which satisfy cer-
tain isomorphism characteristics with respect to elements, partitions and orderings.
A trivial case of model instances that belong to a common model scheme results
from attribute value variation.

The definition of model schemes can be done in SML (Structured Modeling
Language). Here, the formal definition of a genus (which essentially is a group
of definitions) includes the name of the genus, a statement about the dependen-
cies, a type statement, the data type definition for attributes, and a mathematical
expression for functions or tests. Figure 2.12 taken from Geoffrion (1987) illus-
trates an SML definition for a feedmix model. The primitive entities are lists of
nutrients (NUTRi) and materials (MATERIALm), attributes are the minimum daily
requirements per nutrient (MIN), the unit cost per material (UCOST), an analysis of
nutrient-material combinations (ANALYSIS), and a quantity of chosen material (Q).
The functions included in the model give the nutrition level (NLEVEL) and the total
costs (TOTCOST), and a test determines whether the chosen material combination is
sufficient (T:NLEVEL).

Using this framework of structured modeling and SML as a definition lan-
guage, Geoffrion (1989b) analyzes different techniques of combining models or even
modeling languages. Based on a hierarchy that includes model instances, classes,
paradigms and traditions, he lists ten possible types of model integration. In his

48 CHAPTER 2. THEORETICAL FOUNDATIONS

analysis, he claims that a significant portion of these ten types are either not
very meaningful (e.g., a join of two model instances that belong to different model
classes), or unrealistic, like the integration of whole modeling traditions. As a con-
sequence, he focuses on joining different model classes, and joining model instances
that belong to the same class.

Within this scope, Geoffrion describes both definitional and procedural inte-
gration strategies. Yet, although he is able to present a method for definitional
integration for SML models, he states that a complete automation seems out of
reach: in the general case, both syntax and semantics of the integrated model seem
to be problematic. For the procedural integration of structured models, Dolk and
Kottemann (1993) discuss the roles of the different associated solver components
and propose an elementary model interconnection language that controls the solvers.

2.3.4 Discussion

Most of the approaches presented in this section contain valuable parts that are
worth considering in the implementations within this thesis. In particular, the
descriptive metamodeling frameworks as presented in subsection 2.3.1 cover an area
that is of interest within this thesis: the provision of a superstructure that is able
to describe and contain heterogeneous modeling languages.

Advantages of the MOF framework include its clear categorization which is,
in addition, well suited for an object oriented implementation, and the central
consideration of model repositories throughout the approach. Problematic points
in the context of MOF are that it aims at a very general level and consequently
cannot handle details of model semantics. This is not surprising, since even the
UML (which is only one of the languages covered by MOF) is criticized for not
providing any sharp model semantics definition (Harel & Rumpe, 2004). This lack
of preciseness is a serious drawback which restricts the direct usability of MOF for
the implementations within this thesis.

The technique of Domain-Specific Modeling is very appealing, since it allows for
defining custom modeling representations, and promises the generation of highly
usable program code without confronting end users with unnecessarily complicated
intermediate (UML) notations. Used in the methodology promoted by Tolvanen and
Kelly (2004), DSM seems to be a good and powerful mechanism that effectively
meets business needs. Problematic issues are that model interoperability is not
addressed at all, and seems to be difficult to achieve with the element-wise manual
code translation technique. Also, the process of interactive model construction,
which is an important factor in this thesis, is not really in the focus of the model-
code mapping of DSM. Finally, the heterogeneity criteria for the targeted modeling
framework in this thesis are not conform with the core DSM assumption that one
domain per client is sufficient, and that therefore the manual coding steps are
unproblematic because they are not frequently needed.

Reviewing MOF and DSM in an integrated manner, a joint consequence is that
the concepts that both approaches make use of to describe models are well worth
considering. Both encourage the use of object oriented principles for meta modeling.
The ways of handling model semantics and operational concerns are either too
general (in the case of MOF), or too specific to be easily usable for non-programmers
(DSM). A suitable approach for the aims of this thesis will have to be somewhere
in between these two extremes.

The transformative techniques as outlined in subsection 2.3.2 provide a formal
means to deal with model structures that change over time, and thus have possible
usages for describing modeling processes. In addition, transformation approaches
can allow for switching between different semantically interlinked representations.
This is likely to be be an essential feature for some of the modeling applications

2.3. META MODELING 49

that are targeted within this thesis. Thus, a compatibility with the transformation
techniques is desirable. However, while important system functions could be facil-
itated by the use of a transformation based engine, the system core cannot: the
basic philosophy of these techniques is automatic matching and transformation of
model structures. This does not match the target of supporting interactive mod-
eling processes in which arbitrary heterogeneous structures - even ”wrong” ones
which would usually not be the result of some well defined transformation step - are
principally acceptable. The work of Lara and Vangheluwe (2004) is a good example
for this argument. The flexibility of their mapping technique is extraordinary, but
it is unclear in how far (even partially) ”ill” structures could be simulated in their
approach.

The presented work of McBrien and Poulovassilis (1999) offers a good formaliza-
tion of model transformations, and a reasonable encapsulation of graph structures
with constraints that is worth considering in the implementations within this the-
sis. They also offer a flexible approach for connecting heterogeneous models via
joining edge elements and thus reach a certain level of semantic model interoper-
ability. Drawbacks of their structures are, however, that dynamic elements and
simulation functionality are not supported. In addition, the approach of reach-
ing interoperability through using inter-model edges is inherently limited: neither
direct connections of elements from different modeling languages, nor connecting
elements (rather than edges) are supported. Of course, the enormous flexibility of
the underlying hypergraph data structure can compensate for some of these limits.

Besides these transformation oriented techniques, also the work in the area of for-
mal model interoperability as presented in subsection 2.3.3 is of importance within
this thesis. As already discussed in the introduction, the classifications and analysis
done by Dolk and Kottemann (1993) are of value as ”criteria lists”. Dolk and Kot-
temann (1993) are also among the few authors who identify necessary components
of integrated modelings systems and link these to object oriented implementations.
However, they are quite focused on databases and structured modeling, and do not
offer any implementation that meets their criteria.

The model integration work presented by Wang and Liu (2003) is very interesting
as they generically cover all models which accept input parameters and deliver
output results. The major restriction of their approach is that they deliberately
treat models as black boxes, which disallows for fine granular insight into models.
This, however, is among the requirements for the implementations within this thesis,
as constructive processes dealing with partial models and model connections are
targeted to be supported. Furthermore, Wang and Liu (2003) do not provide any
mechanisms how to interconnect models that could theoretically be integrated.

The technique of structured modeling (Geoffrion, 1989a) shows possible ways
for model interoperability. Similar to the work of McBrien and Poulovassilis (1999),
structured modeling attempts to find suitable representations for interrelated do-
main concepts and their semantics. One add-on of structured modeling consists of
the fact that the approach also allows for including external algorithms (solvers)
that operate on the data structures. The SML notation does not meet current
standards for interchangeable data formats (e.g., XML), but it is a good example
of specifying semantically enriched model definitions in a way that is not hardwired
to a concrete modeling environment.

Structured modeling, however, has three inherent disadvantages:

• It allows only for acyclic relationships between entities. This obviously simpli-
fies algorithmic treatment, especially on the side of the solvers, but drastically
reduces the set of supported entity structures from graphs to trees.

• The notion of a structured model includes algorithmic aspects that work on
models, but only in an abstract sense. Neither is there a general approach for

50 CHAPTER 2. THEORETICAL FOUNDATIONS

interpreting or simulating models, nor does a generic solver framework exist
(Wang & Zeevat, 1998). Both could significantly facilitate the implementation
of (even interoperable) solvers.

• SML does not support dynamic rules, a technique that might be necessary for
certain realistic simulations.

Some of these limitations of structured modeling have been overcome in exten-
sions of structured modeling. The work of Lenard (1993), e.g., includes the notions
of actions and transactions and therefore allows for simulating certain discrete pro-
cesses. However, none of the currently existing modifications to structured modeling
retains or even extends the interoperability of the original approach and at the same
time avoids significant parts of its limitations.

2.4 Summary and Conclusions

Subsections 2.1.3, 2.2.3 and 2.3.4 already discussed the theory presented in this
chapter. This final section of the chapter shortly reviews these discussions with
respect to relevance of specific theoretical fields or contributions to the aims of this
thesis.

The most important aspects of graph theory lie in the formal roots and basic
terminology that this field offers: the notions of graphs, nodes, and edges will
directly be built upon in the definition of visual typed graphs is section 4.1. Higher
order results of graph theory (like, e.g., algorithms or complexity findings) will only
indirectly have an impact on the framework level that this thesis aims at - however,
they might be important within particular modeling languages, e.g., for calculating
model semantics.

Visual language theory has two very important contribution areas that will be
reused: the formalization of visual structures (in particular graph based ones) being
composed of objects and attributes that represent visual layout information, and
the notion of constraints as contained in a number of theoretical approaches. These
can serve well the need of expressing syntactical rules within specific graph based
modeling languages (cf. section 4.2). In contrast to these areas, the aspect of lan-
guage parsing (word membership problem) typically solved through grammars or
logic based formalisms in visual language theory only has a limited direct applica-
bility in this thesis: in an interactive modeling system, the user typically takes the
role of a ”production system”, and particularly educational applications will also
need to tolerate ”incorrect” models created by the users. Of course, a higher-order
model checking mechanism which, e.g., verifies a model against a known set of cor-
rect solutions, could make use of graph grammars or other process formalisms from
the field of visual language theory.

Although the descriptive meta modeling approaches presented in this chapter
are very heterogeneous, the object oriented approach adopted in all of them is a
common point that is relevant for the framework of collaboratively usable modeling
languages to be presented in chapter 4. The existing theory in the field of model
interoperability (and integrated interpretation) shows two things that are relevant
for this thesis: first, there is currently no established uniform solution or standard
for model interoperability (even restricted to graph based structures) which would
have to be adhered to. Second, there are indeed a number of single approaches that
attempt to achieve interoperability in heterogeneous models. These concepts will
serve as references for the interpretation of visual typed graphs in (cf. sections 4.6
and 4.7). Similar to the graph grammars discussed in the context of visual language
theory, the transformation oriented meta modeling approaches only have an indirect

2.4. SUMMARY AND CONCLUSIONS 51

applicability in this thesis, as the direct focus is not on automatic model processing,
but on an interactive system.

52 CHAPTER 2. THEORETICAL FOUNDATIONS

Chapter 3

A Review of Graph Based
Modeling Tools

The previous chapter discussed the currently existing theoretical approaches that
are relevant for the aims of this thesis. This chapter supplements this by reviewing
and comparing the state-of-art systems and applications which are closely related
to the targeted collaborative and interoperable modeling framework.

3.1 Criteria

This section discusses the criteria used for the selection of systems to be included
in the comparison (requirements), and the criteria used within the comparison.

3.1.1 System Requirements

This thesis proposes a method and, built upon this, an implementation for collabo-
rative modeling with graph based representations, emphasizing on interoperability
and the support of multiple heterogeneous visual languages. Such a narrow focus is
of course not reasonable as a requirements list for a system comparison - as section
3.3 shows, there are currently no systems which exactly fulfill these criteria. On the
other hand, too unfocused requirements (e.g., the consideration of all graph based
modeling tools, or all interoperable collaborative tools) would lead to a review of a
very large amount of systems which are only loosely related to the core aspects of
this thesis.

Consequently, the choice of required criteria is an important design decision.
Aiming at a reasonable amount and focus of the tools to be included in the system-
atic review, I propose the following four criteria as necessary requirements:

Modeling tools. This criterion is related to the intended purpose of the tool:
with respect to the focus of this thesis, only tools designed primarily for
modeling are included in the comparison. However, the context of modeling
(e.g., educational vs. general-purpose modeling tools) is not used as a separate
criterion for selecting the tools for the review.

Graph based representations. As this thesis deals with graph based represen-
tations (cf. section 1.4), only tools which essentially rely on this kind of
representation are considered in the review.

Multiple representations. Apart from the representation type, also the flexible
support of multiple (graph based) representations is an explicit target of this

53

54 CHAPTER 3. GRAPH BASED MODELING TOOLS

thesis. For this reason, only tools which offer a certain kind of flexibility in
terms of representations they offer are included in the survey.

Interactive usage. Finally, the focus of this thesis is to allow for an interactive
usage of the modeling environment. Thus, to restrict the number of tools in-
cluded in the detailed review, only those which explicitly foresee an interactive
usage mode are included.

These criteria are largely independent of each other (though the criterion of
graph based representations can of course be seen in close connection to the multiple
representations) and serve well the purpose of filtering out systems which are only
loosely related to the scope of this thesis. Prominent examples of systems or system
types which fulfil three of the four criteria (and are therefore worth mentioning,
though not described in detail) are mentioned briefly in the following.

Interactive systems which rely (at least to a large extent) on multiple and graph
based representations but do not focus on modeling include most visual program-
ming languages, the AgentSheets system (Repenning, 1994) designed for pro-
gramming and simulating multi-agent systems, the SimQuest environment (Joolin-
gen, King, & Jong, 1997), which is oriented towards simulations rather than mod-
eling, and graph based hypermedia suites like, e.g., XCHIPS (Wang et al., 2000).

Examples for flexible and interactive modeling tools that do not emphasize on
graph based representations include modeling frameworks like Modelica (Tiller,
2001) or Brahms (Sierhuis, 2001). These two applications essentially rely on a
largely textual representation format and are very closely related to programming
languages, the latter oriented towards agent programming. Further examples in
this category are the Science Learning Space presented by Koedinger, Suthers,
and Forbus (1999) and the microworlds in the E-Slate system (Kynigos, 2002):
both approaches address well tool interoperability issues, but do not focus on graph
representations exclusively. E.g., in the case of E-Slate, the microworlds have
graphical representations, including some with graph based ones, but this is not in
the core of the developments.

There is a wide number of interactive modeling tools which rely on graph based
representations, but do not offer multiple representational notations. This includes
all environments that allow the direct manipulation of graph based modeling lan-
guages like, e.g., Petri Nets, Entity Relationship diagrams, or System Dynamics.
There are even a number of collaborative applications in this field: here, examples
include:

• COLER (Constantino-Gonzáles & Suthers, 2001), a collaborative Entity-Re-
lationship editor,

• the CLE environment (Lauer, Ueberall, Horvath, Matthes, & Drobnik, 2003)
with its shared conceptual graphs,

• the C-Chene energy chain modeling graphs (Baker & Lund, 1997), and

• even some special tools which offer graph based collaborative representations
for handheld devices (Luchini, Quintana, & Soloway, 2003).

Finally, modeling tools that support multiple graph based representations but
are not designed primarily for an interactive usage can be found in the field of visual
languages (cf. section 2.2). Here, typical implementations are the Visual Language
Compiler-Compiler VLCC (Costagliola et al., 2002) or the AToM3 metamodeling
framework. Both tools rely on graph grammars and focus on the automated trans-
formation of graph structures rather than on interactive editing and manipulation
(cf. discussion in subsection 2.2.3). However, it is worth noting that AToM3 even

3.1. CRITERIA 55

allows for running simulations (i.e., model executions in a narrower sense) based on
graph grammar specifications.

Collaboration support is not included in the list of requirements, although it is
a central aim of this thesis. Apart from the aspect that collaboration support is
typically not independent of the criterion of interactive usage, there are only few
tools which offer collaboration support features in addition to the other required
criteria (cf. section 3.3). Thus, taking collaboration support as a required criterion
would have reduced the list of systematically compared tools dramatically.

3.1.2 Comparison Criteria

With respect to the aims of this thesis, the review of the currently existing sys-
tems and technologies for collaborative and interactive modeling with heterogeneous
graph based representations is guided by the following four criteria:

Extensibility

This first criterion deals with the question in how far the compared systems are not
only capable of handling multiple representations (which is a requirement), but in
how far additional representational notations can be externally defined and used
within the system. If this is possible at all, the following three aspects play a role
for determining the degree to which the criterion is fulfilled:

• Which technologies are used for the extension mechanism?

• How easy and well documented is the mechanism?

• Are the custom system extensions functionally limited in some sense (com-
pared to ”built-in” ones)?

Interoperability

This second criterion is closely related to the interoperability issues raised in section
1.5. In particular, the following two questions are used to determine the degree of
interoperability:

Syntax. Can elements from different representational notations be ”mixed”, result-
ing in heterogeneous graph based models? Are there any mechanisms (e.g.,
constraints) to control the types of structures that the users can build?

Semantics. If the system offers an internal semantic representation of the graph
based models, in how far is this semantics retained also for heterogeneous
”mixed” models?

A complete fulfilment of this criteria is given in the case of syntactic and se-
mantic interoperability being supported by the tool, including control mechanisms
which allow the specification of syntax rules and semantic mappings across repre-
sentational notations.

Operational semantics / Model simulation

The third criterion is related to modeling with formal languages that can be simu-
lated or ”run”. Here, the following three questions determine the degree to which
the criterion is fulfilled:

• Are active structures and model simulations possible in the system?

56 CHAPTER 3. GRAPH BASED MODELING TOOLS

• How flexible is the system concerning simulations: are different algorithms (or
simulation types) supported?

• Are the simulation algorithms externalized and encapsulated in a way which
allows them to be reused? How are the technical interfaces that enable this
functionality structured?

Collaboration support

The fourth criterion in the comparison is related to the collaboration support that
the systems offer. Here, two different aspects will be considered:

Synchronous level. Are there mechanisms which allow the synchronous co-
creation of models? Are these directed towards co-located or remote scenar-
ios? How fine-granular (or: customizable) are the synchronous collaboration
support mechanisms, and what are their technical foundations?

Asynchronous level. Is asynchronous collaborative work supported, e.g. through
tailored archives, retrieval functions, collaboration partner recommendation
services, or version management and notification services?

Of course, both collaboration support levels can also be addressed in a limited
manner through tool independent technologies, e.g. using NetMeeting (NetMeeting
Resource Kit, n.d.) and BSCW (BSCW Homepage, n.d.) systems. Yet, the tool
review will only rely on tool-provided mechanisms that go beyond these generic
approaches.

3.2 Graph Based Modeling Tools

The following subsections of this section contain (in alphabetical order) the tool
reviews. Each subsection briefly describes relevant points concerning history, avail-
ability and purpose of the corresponding system, and characterizes it in terms of
the comparison criteria listed before. Where appropriate, technical details of the
tools are given.

3.2.1 Belvedere

Originally designed to help support problem-based collaborative learning scenarios,
the Belvedere system is targeted towards the support of collaborative argumenta-
tion and inquiry processes. The system has been under continuous development for
more than a decade (Suthers, Weiner, Connelly, & Paolucci, 1995), and currently
serves, e.g., as a means for analyzing representational affordances in collaborative
contexts. A version of Belvedere is available at Sourceforge.net.

The focus of Belvedere is not exclusively on graph based representations. In
fact, Belvedere supports other formats (like, e.g., tables, or threads). Thus, the
required criteria of graph based and multiple representations are only fulfilled in the
sense that the environment does allow for several representations, including graph
based ones, but is not primarily designed for different graph based representations
used synchronously. In addition, the criterion of modeling as primary system pur-
pose is not completely met, considering the aim of Belvedere as a tool for collab-
orative inquiry. Yet, as Belvedere allows constructing and reflecting on diagrams
of one’s ideas, using representations such as evidence maps and concept maps, the
thematic proximity to qualitative modeling becomes clear. As Belvedere is one of
the few available systems that offer interoperability and collaboration support, the

3.2. GRAPH BASED MODELING TOOLS 57

Figure 3.1: References between threaded discussions and graph structures in
Belvedere

inclusion in the review (despite the fact that the required criteria are only partially
met) is justified.

Extensibility is not in the focus of the Belvedere system at first sight: the
tool does not offer to the user an inclusion of externally defined representational
notations. However, current Belvedere versions (Suthers & Dwyer, 2004) can be
parameterized with XML files that contain specifications of the representational
primitives. The flexible software architecture builds good base for system exten-
sions. Yet, the extension functionality is currently hidden and not externalized in
a way that would allow ”ordinary” users to realize and make use of the extension
functionality.

Belvedere offers interoperability in the sense that references which connect
different representations (e.g., threaded discussion and graph) are possible. These
references consider the semantic types of the linked entities. However, there is no
syntax constraint mechanism to restrict the set of allowed structures. Figure 3.1
illustrates this with a recent Belvedere version used in a study about collaborative
representations: the forum posting (lower left corner) refers to an element in the
graph (highlighted hypothesis).

Being designed towards argumentation and inquiry support rather than formal
modeling, Belvedere does not offer any simulation or model execution functions.
Collaboration support, however, is a strong point of the tool: from the very early
versions on, Belvedere came with mechanisms to synchronize the representations
created by the collaborators. The current version comes with a very flexible under-
lying communication API, based on nested message handler components and oper-
ational transformation techniques (Sun & Ellis, 1989) to ensure consistency. Due
to the latter and the use of a dedicated communication server, current Belvedere
versions are capable of supporting also asynchronous usage scenarios, in which edit

58 CHAPTER 3. GRAPH BASED MODELING TOOLS

Figure 3.2: External definition of a relation primitive int the Cardboard system

events are transmitted with controllable delays.
Based on the Belvedere system (or integrating it), a number of specifically

targeted applications have been developed in the past years. These include the
COLER system (Constantino-Gonzáles & Suthers, 2001), which makes use of the
Belvedere architecture and offers a tutor for the construction of Entity relation-
ship diagrams, and the Science Learning Space (Koedinger et al., 1999), which
integrates:

• simulation components in which experiments are run and data is collected,

• Belvedere as a representation construction tools in which data is analyzed
and conceptual models are expressed and evaluated, and

• tutor agents that provide assistance.

In the Science Learning Space, these system components communicate via the
MOO communication protocol.

3.2.2 Cardboard

Similar to Belvedere, the Cardboard system (Mühlenbrock, Tewissen, & Hoppe,
1997; Hoppe, Gaßner, Mühlenbrock, & Tewissen, 2000), developed at the University
of Duisburg, is not specifically designed for modeling tasks, but aims more general
at the support of collaborative problem solving and learning tasks which involve
the use of shared external representations. The Cardboard tool is not maintained
any more: in a sense, the Cool Modes environment presented in this thesis (cf.
chapter 7) can be considered the successor of the Cardboard.

The Cardboard environment has a framework character in that it is generically
extensible with visual language specifications. These specifications can be made
externally in text files, which contain parameters of so-called content and connector
cards. Figure 3.2, taken from Gaßner (2003), shows an example definition of a
connector card together with the effect of this definition in the user interface.

A weak point of Cardboard is interoperability between different visual lan-
guages: upon creation, workspaces have to be parameterized with a specific visual
language. Mixtures of elements from different languages are not supported.

The Cardboard system has been used in the areas of quantitative and quali-
tative modeling (Gaßner, Tewissen, Mühlenbrock, Loesch, & Hoppe, 1998). Here,
semantic enrichment and certain operational features have been added to the envi-
ronment through the external Prolog based DALIS component (Mühlenbrock et al.,

3.2. GRAPH BASED MODELING TOOLS 59

1997). Examples include domain knowledge bases for terms in algebraic relations.
Though the DALIS interfaces were used for analysis and intelligent support func-
tions primarily, they are theoretically also suitable for the implementation of (logic
programming based) simulation or ”model execution” functionalities. Apart from
this, the Cardboard system does not include generic internal interfaces for model
simulation.

Concerning collaboration support, the Cardboard application offers private
and shared workspaces to the users, the latter enabled through an early C++ ver-
sion of the MatchMaker library (Tewissen, Baloian, Hoppe, & Reimberg, 2000),
which relies on the distribution of user interface events to coupled applications.
Asynchronous usage scenarios or finer granular synchronization functions are not
offered by the Cardboard tool. Based on the Cardboard/DALIS/MatchMaker
tool combination, a number of further applications in the area of collaboration
support have been implemented. This includes the collaboration analysis work of
Mühlenbrock (2001), and the work of Gaßner (2003), who has used the Cardboard
to support phases in group discussions by means of graph transformations.

3.2.3 Co-Lab

The Co-Lab environment (Skarmeta, Joolingen, Martinez, Celdrán, & Mora, 2002)
is the software outcome of the European research project ”Co-Lab: Collaborative
Laboratories for Europe” (Co-Lab project homepage, n.d.). This project, which
lasted from 2001 to 2004, focused on supporting collaborative inquiry learning in
natural sciences at the upper secondary school level and the first years in university.
To reach these aims, the Co-Lab environment provides students with a range of
integrated experimentation options (including simulations and remote experiments
with web cams), data visualization tools, communication facilities, and modeling
tools. Technically, the Co-Lab environment relies on Java. It is designed as a com-
pletely web based system which does not require any specific software installations
on the client machines.

Due to the proximity of the Co-Lab project to the aims within this thesis, an
inclusion of the Co-Lab environment in this review makes sense, even though the
system does not exclusively rely on graph based representations, and offers only
one graph based modeling language (System Dynamics) - extensions of the Co-
Lab environment with other modeling tools are not foreseen.

Similar to Belvedere, the Co-Lab system is highly interoperable in the sense
that references between the different representations (tables, experiments, models,
etc.) are generically supported. Due to the quantitative nature of the models
that the Co-Lab system offers, syntactic integrity constraints are necessary and
available.

Given the aims of the Co-Lab project, it is obvious that simulation and model
execution are central points in the Co-Lab system. On a general level, this crite-
rion is therefore completely fulfilled - especially taking into account the degree of
interactivity that the system offers. However, concerning the specific criterion of
simulating graph based models, the Co-Lab environment is restricted in that it
exclusively focuses on the System Dynamics approach, not offering any alternative
algorithms or modeling techniques.

One dedicated aim of the Co-Lab project is collaboration support. Therefore, it
is not surprising that the environment has a number of strengths in this respect:
The Co-Lab system offers various options that allow students to work together
and share information. In terms of synchronous collaboration support, Co-Lab
provides (among other features) shared workspaces to collaborate while creating
and simulating System Dynamics models. Here, a strict floor control mechanism
is employed, granting active model manipulation rights only to one user at a time.

60 CHAPTER 3. GRAPH BASED MODELING TOOLS

Figure 3.3: Synchronized predator-prey models in the Co-Lab environment

This situation is illustrated in figure 3.3. Here, two shared models are visible, with a
traffic light indicating the floor. On the level of asynchronous collaboration support,
the Co-Lab environment offers broker services to bring together interested learners,
and searchable archives that contain the results of user’s work.

3.2.4 Daidalos

The Daidalos system (Tsintsifas, 2002) has been created within a PhD thesis.
The system is a part of the DATsys (Diagrammatic Assessment Teaching System)
environment, which is designed for diagram based computer based assessment. Cur-
rently, Daidalos is not publicly available.

Daidalos is the meta-diagram editor of the framework, and can be used to
model graphically diagram elements and their relationships as well as associated
domain data models. It even allows the specification of tools to manipulate the
diagram elements. As such, the criterion of extensibility is fulfilled: Daidalos
can be seen as a visual editor for modeling languages, embedded in the DATsys
framework. A wide variety of diagram types has been created with Daidalos,
including e.g. Entity Relationship diagrams, Mind Maps, Petri Nets, Chemical
Diagrams, and Analog Circuit Diagrams (DATsys Homepage, n.d.).

There is no explicit notion of syntax constraints in the Daidalos tool. However,
the DATsys framework allows (by means of the embedded Ariadne component)

3.2. GRAPH BASED MODELING TOOLS 61

the task-dependent specification of primitives that the user has access to. Therefore,
the criterion of syntactic interoperability is (at least minimally) met. As DATsys
and Daidalos address diagrams rather than models, there is neither an explicit
concept of semantics, nor any means of model simulation. Yet, a distinctive aspect
of Daidalos as embedded in DATsys is the integration with the Ariadne compo-
nent, allowing for exercise specification and automatic assessment based on marking
algorithms for the user-constructed diagrams. These algorithms can be seen as ex-
ternally defined specifically targeted simulations. In addition, the Daidalos soft-
ware architecture is suitable for including external simulation algorithms through
used Command patterns (Gamma, Helm, Johnson, & Vlissides, 1995) - however,
in Daidalos this pattern is used only for visual diagram changes, as no explicit
notion of semantics is available.

Collaboration support is not addressed by Daidalos directly. However, the
DATsys framework contains various archives with corresponding retrieval and sub-
mission functions (all designed towards the targeted use in educational scenarios),
so that a basic support for asynchronous co-operation is available, even though the
focus of the environment is not set on this.

3.2.5 Dome

The DOME (Domain Modeling Environment) system (DOME specification, 1999)
is an extensible collection of integrated model editing, metamodeling, and anal-
ysis tools following the domain-specific modeling method (cf. subsection 2.3.1).
DOME is distributed by Honeywell and freely available (DOME Homepage, n.d.).
Technically, DOME is based on Visual Works, and thus does not rely on current
state-of-art technologies.

Similar to the other DSM-oriented tools in this review (GME and Metaedit+),
DOME is designed primarily for model-based software development. However,
DOME differs essentially from these tools in two aspects: first, DOME comes with
a built-in scripting language (Alter) and a visual data flow oriented programming
language (Projector). These two languages allow the creation of program code
translations for models (a crucial point in the DSM method) smoothly embedded
into DOME. Second, DOME is not exclusively designed for synthesizing executable
software from models, but also allows for other ways of ”running” models.

Similar to the other DSM implementations, DOME fulfills the extensibility crite-
rion. It comes with the embedded ProtoDOME tool, which allows the visual speci-
fication of modeling languages, including visual parameters of the representation as
well as element attributes and their associations to Alter/Projector code. Language
definitions can be stored externally in text files (using a proprietary format), which
include the interpretable programming code and the specification parameters of the
notations.

DOME offers a very limited notion of syntax constraints which essentially re-
lies on the multiplicity of associations (cf. figure 3.4). Interoperability between
languages is addressed in a restricted way: there is a ”Shelf” component, which
allows the reuse of single element primitives in other contexts. Furthermore, mod-
els can be composed of sub-models, i.e. hierarchical relations between models are
allowed. The type of two models in a hierarchical relation does not have to be the
same. However, DOME does not allow for modeling language interoperability in a
broader sense: mixed representations, consisting of elements coming from different
languages, are not generically supported, and there is no explicit notion of modeling
language interoperability. Of course, it can be argued that the integrated program-
ming languages are capable of serving interoperability purposes - however, there is
no guiding framework for this embedded in DOME.

As already stated, a strong point of DOME is its flexibility in terms of simulation

62 CHAPTER 3. GRAPH BASED MODELING TOOLS

Figure 3.4: Language specification and connection constraints in DOME

support. The environment is (despite its foundations in DSM) not restricted to
code generation, but allows for a wide variety of model executions - the built-in
ones include, e.g., the simulation of Petri Nets by firing transitions. In contrast to
MetaEdit+ and GME, DOME models can be interactively simulated, integrating
the model construction with its simulation. This flexibility is reached through the
interpretation mode of the embedded programming languages Alter and Projector.

A weak point of DOME concerning the criteria used for this system comparison
is collaboration support. Here, no functionality is offered.

3.2.6 GME

The ”Generic Modeling Environment” GME (Ledeczi et al., 2001) is a freely avail-
able metamodeling environment developed at Vanderbilt University. It is loosely
related to the domain-specific modeling technique (cf. subsection 2.3.1), and is
primarily a toolkit for model based program code synthesis.

In difference to MetaEdit+ and Dome (cf. subsections 3.2.5 and 3.2.7), GME
adopts a modified DSM approach in the sense that a fixed number of high-level
abstract and generic primitives (models, atoms, sets, references, and connections)
is provided, from which models can be constructed (cf. figure 3.5). This is done
in order to address the cost efficiency and reusability problems of DSM - it can be
argued that the approach adopted by GME offers an intermediate level between
UML and DSM in the sense that code generation is generically supported, a certain
flexibility concerning representational primitives is provided, and re-use of models
is partially possible.

As GME is primarily a metamodeling environment, the criterion of extensibil-
ity is met almost by definition: the primary goals of GME are the specification of
modeling languages and the specification of translations for models into executable
program code. However, one could argue that through the comparatively prescrip-
tive categorization of primitives (as opposed to other metamodeling frameworks),

3.2. GRAPH BASED MODELING TOOLS 63

Figure 3.5: Modeling concepts in the GME environment

expressiveness and flexibility of the system are slightly restricted. These primitives
and their relation are shown in figure 3.5 taken from Ledeczi et al. (2001). The
figure illustrates the comparatively large amount of generic concepts, compared to
”classical” DSM tools.

GME offers constraints to specify the set of syntactically correct models. As
these constraints may also (by means of OCL) relate to attribute values, interop-
erability is addressed also concerning model semantics. However, GME does not
contain any functions specifically directed towards the support of mixed hetero-
geneous models. Of course, on the program code level, these translations can be
defined - yet, GME does not provide any libraries for this task.

As already stated, GME allows the synthesis of program code based on models
constructed by the users. This can be seen as the model simulation functionality
offered within GME. As GME contains interfaces to a variety of programming lan-
guages (e.g., C++, Visual Basic, and Java), a certain flexibility is available here.
Yet, other ways of model simulation (apart from code generation) are not supported,
which leads to an only partial fulfilment of the simulation criterion.

Finally, GME does not contain any built-in features designed to support collab-
oration.

3.2.7 MetaEdit+

MetaEdit+ is a metamodeling tool which adopts the domain-specific modeling
approach (cf. subsection 2.3.1). It is commercially distributed by the Finnish Meta-
Case company (Metacase, n.d.). The inclusion of MetaEdit+ in this comparison
was a borderline case, as the system is not primarily focused on graph based repre-
sentations: domain-specific modeling in general and MetaEdit+ in particular also
allow for other representational choices. Yet, MetaEdit+ relies on objects and
their relationships primarily, and uses a graph representation as one of the built-in
notations.

In analogy to the other metamodeling environments in this survey, MetaEdit+

64 CHAPTER 3. GRAPH BASED MODELING TOOLS

Figure 3.6: Examples for model execution options in MetaEdit+

fulfills the extensibility criterion - the DSM approach even relies on the user speci-
fying ”his” modeling language.

A strong point of MetaEdit+ is its public API, which allows an easy access
of the tool from other applications via Web Services. Furthermore, MetaEdit+
completely relies on XML representations for models, and includes database connec-
tivity. On a general level, all these functions contribute to interoperability. Yet, in a
more special sense of syntactic and semantic interoperability as discussed in subsec-
tion 3.1.2, MetaEdit+ lacks certain features: the system does provide the option
of defining syntactic constraints (rules which restrict the connection of certain ele-
ment types). Yet, semantic interoperability between elements of different languages
is difficult to achieve in the domain-specific modeling approach, as this essentially
relies on tightly interrelated and ”known” components with fixed code transforma-
tion rules. Here, the integration of external ”unknown” components (which might
have code translations that emerged from different contexts) is problematic.

Similar to GME (cf. previous subsection), MetaEdit+ allows the transforma-
tion of models into code, which can be considered as one type of model execution
or simulation. Due to the DSM approach, the programming language to which the
models are mapped is quite flexible (as the code translation for each primitive has
to be explicitly specified only once). This is illustrated in figure 3.6, which shows
possible code translations and other model executions in MetaEdit+.

MetaEdit+ is one of the few existing metamodeling tools which offer some kind
of collaboration support: the core part of the tool distribution includes a shareable
object repository with notification services, sub-model relations, and access right
management, yet without commenting or version management. As such, the crite-
rion of asynchronous collaboration support is partially met (yet, MetaEdit+ does
not offer any functions for synchronous collaboration support).

3.2. GRAPH BASED MODELING TOOLS 65

3.2.8 ModelIt

The ModelIt system (ModelIt Homepage, n.d.), distributed by GoKnow (a demo
version is freely available), is a visual modeling and simulation tool which is designed
specifically for educational usage scenarios. ModelIt has been in use and continu-
ous development for more than a decade (Soloway et al., 1997), current versions of
the system are written in Java.

The main aim of ModelIt is to support students in building, testing, and eval-
uating models without requiring them to know the underlying calculus driving these
models. Yet, ModelIt has only one fixed built-in calculus (simulation based on
difference equations). As such, the decision to include ModelIt in this review is
a critical case due to the only partial fulfilment of the criterion of multiple rep-
resentations. The decision to include the tool in the review is based on the fact
that, though ModelIt only offers one set of abstract primitives, the visualization
of these is very flexible, leading to a variety of visual representations which have
internal data models of the same type.

This restriction of expressiveness has an impact on the extensibility of the sys-
tem: ModelIt allows the specification of new concepts and relationships visually
through dialogs. Yet, the common frame set by the fixed calculus cannot be ex-
ceeded. Therefore (compared to other tools in this survey), the extension quality
of ModelIt is only on a basic level.

A positive aspect of the common data models for primitives and generic calculus
in ModelIt is that ”mixed” models are unproblematic. It is possible to intercon-
nect arbitrary components - ModelIt is always able to conduct a simulation of the
resulting structure. Thus, the level of interoperability is very high, only reduced by
the aspect that ModelIt does not foresee any kind of control elements to restrict
the set of syntactically correct models.

As already stated, ModelIt supports simulation of models using the built-
in calculus which cannot be exchanged. This lack of flexibility leads to an only
basic fulfilment of the simulation criterion. Furthermore, ModelIt is not designed
towards collaborative usage.

3.2.9 ModellingSpace

The ModellingSpace software (Avouris, Margaritis, Komis, Saez, & Melendez,
2003; Margaritis, Fidas, Avouris, & Komis, 2003), a successor of the ModelsCre-
ator tool, is an outcome of the European research project ”ModellingSpace” (Mod-
ellingSpace project homepage, n.d.) which lasted from 2001 to 2004. Similar to Co-
Lab, ModellingSpace aims at supporting students in collaborative modeling tasks.
Differences to Co-Lab are the focus of ModellingSpace on modeling in integrated
real-time and asynchronous collaboration scenarios, and on the analysis of collab-
orative modeling processes. The Java based ModellingSpace software is freely
available. However, it is not further developed any more. Its successor Synergo
(BSCW Homepage, n.d.) does not allow for active models in the sense that a
simulation can be run - instead, Synergo emphasizes on collaboration support.

ModellingSpace models use graph representations, the latter consisting of
typed objects (called entities) and associations (called relations). The entity con-
cept is kept very flexible in the software architecture: there is an abstract entity
superclass which encapsulates name, description and visual representation of the
entity, and is capable of handling an arbitrary number of typed attributes. Enti-
ties can have states based on attribute values, and the visual representation (i.e.,
the image) of the entity may depend on its state (Avouris et al., 2003; Avouris,
2004). ModellingSpace has a built-in editor that allows a user to easily define
entities (cf. figure 3.7) and thus extend the system with custom entity libraries. A

66 CHAPTER 3. GRAPH BASED MODELING TOOLS

Figure 3.7: The entity editor of ModellingSpace

similar mechanism for relations is missing, though. The fixed set of relation cat-
egories (qualitative, semi-quantitative, and quantitative) cannot be extended, and
new relation types cannot be added to the categories.

Interoperability is a strength of ModellingSpace: the system has a built-in
mechanism for transferring entity definitions from one application to another one
during the collaboration process (Margaritis et al., 2003). Neither in the entity
editor nor on the software architecture level, ModellingSpace foresees advanced
mechanisms to restrict the set of syntactically correct models. Only the built-in
quantitative relations have some implicit conditions attached: e.g., it is not possible
to relate qualitative entities to each other using quantitative relations, and certain
self references are prevented (cf. figure 3.8). Using this small set of conditions, the
ModellingSpace system ensures that only the set of structures that can be created
with the primitives are valid models.

ModellingSpace has a built-in simulation function which is enabled if there is
at least one semi-quantitative entity in the model. Similar to ModelIt, the simula-
tion engine is fixed: only a simulation based on differential equations is supported.
Therefore, despite the smooth integration of the simulation functionality into the
system, the criterion of simulation is only minimally fulfilled.

Collaboration, however, is very well supported in ModellingSpace. The sys-
tem relies on a replicated peer-to-peer architecture with lightweight model sharing
mechanisms for synchronous collaboration (Margaritis et al., 2003). The users can
choose between floor control and an uncontrolled mode, and also relay servers to
facilitate synchronous collaboration are available. In addition to the peer-to-peer
functionality, ModellingSpace offers model repository servers and special ”com-
munity servers”. These dedicated applications are used for awareness purposes,
asynchronous message exchange, group and session management, and as a means

3.2. GRAPH BASED MODELING TOOLS 67

Figure 3.8: The ModellingSpace interface with a feedback message about a relation
condition

that allows users to find collaboration partners.

3.2.10 MULTIGRAPH

Compared to most of the other tools in this survey, the MULTIGRAPH architecture
and system implementation (Sztipanovits et al., 1995) is a relatively old approach
which is not maintained any more. MULTIGRAPH is designed for building complex
embedded systems based on a model-integrated approach. The underlying models,
which can be of heterogeneous types, use graphs as conceptual data structures.

The MULTIGRAPH architecture consists of several components, including graph-
ical model builders, model databases, and model interpreters. Model views (used
in the graphical model builders) and interpreters constitute domain modeling lan-
guages, which can be dynamically added to the architecture. However, Sztipanovits
et al. (1995) admit that writing a model interpreter is a complicated task which re-
quires in-depth knowledge of the system internals. Therefore, the MULTIGRAPH
approach fulfills the extensibility criterion only partially.

MULTIGRAPH allows for hierarchic composition of models: models can contain
sub-models of the same or different types. In addition, models can be interconnected
through explicitly defined ”module interfaces” which control outward visibility of
models. By means of these two functions, the MULTIGRAPH system reaches a cer-
tain degree of interoperability between models of different types. The architecture
also allows for an integration of model interpretation results. Yet, MULTIGRAPH
does not foresee a real mixture of elements from different modeling languages: het-
erogeneous model graphs consisting of primitives from different languages are not
generically allowed.

With its multiple model interpreters, the MULTIGRAPH system is suitable
for ”executing” models flexibly. Yet, the purpose of the system is exclusively on
code synthesis (in the context of embedded systems) based on domain models: the

68 CHAPTER 3. GRAPH BASED MODELING TOOLS

flexibility is given in terms of target operating systems. Similar to GME, other ways
of model simulation are not available in MULTIGRAPH. Therefore, the fulfilment
of the corresponding criterion is only partial.

Although designed as a distributed system based on CORBA, the MULTI-
GRAPH architecture and system implementation do not address collaborative usage
at all: the distribution serves system level interoperability purposes only.

3.2.11 Ptolemy

The Ptolemy software (Hylands et al., 2003) is developed by an informal group of
researchers at the University of Berkeley. The software has a history of more than 15
years, with early versions written in Lisp and C++. The current version, Ptolemy
II, is based on Java and available in open source form (Ptolemy project homepage,
n.d.). Ptolemy aims at supporting heterogeneous modeling, simulation, and the
design of concurrent systems. Here, the focus is set on the generation of executable
code based on model specifications - however, compared to other systems with sim-
ilar target in this review (DOME, GME, and MetaEdit+), a primary objective in
the design of Ptolemy is to allow for interoperability. Ptolemy does not exclu-
sively rely on graph based representations - the system only operates on abstract
components that do not have a visual representation attached. However, the visual
editor Vergil, which is delivered with Ptolemy, adds graph structures as default
representational notation to the Ptolemy suite.

Models in Ptolemy are composed of actors as primitive elements. Actors have
associated ports, which define the incoming and outgoing interface of an actor. Ports
can be connected with relations, which can be conceived as channels though which
data flows. The well documented architectural design of Ptolemy is very flexible
concerning actors and their underlying concepts of data types and expressions: it
is possible (and foreseen!) to extend Ptolemy with customized actors. However,
due to the complexity of the system this requires advanced programming skills
and detailed information about some system internals: even in the technical system
description, the ”cardinal sin” of copying and pasting program code instead of using
inheritance mechanisms is recommended for reasons of simplicity (Brooks et al.,
2003, page 174). A metamodeling extension of Ptolemy, which would facilitate
the specification of actors, is planned.

Ptolemy uses a rigid type system for the data that can be sent across ports,
and a correspondingly strict interface specification for actors. Based on this, syn-
tactic interoperability is reached: the system controls the fulfilment of these syntax
conditions while the user is constructing models. In addition, Ptolemy allows for
a hierarchical composition of models. Figure 3.9, taken from (Hylands et al., 2003),
shows how Ptolemy models are composed of the mentioned primitives.

Based on this syntactic interoperability, Ptolemy allows for lending semantics
to models through different models of computation, which

”[...] form design patterns of component interaction, in the sense that
Gamma, et. al. describe design patterns in object oriented languages.”
(Hylands et al., 2003, page 8)

Ptolemy comes with a number of built-in ”domains”, which encapsulate mod-
els of computation. These include, e.g., discrete event models, finite state machines,
process networks, and continuous time models. These domains serve as a means to
flexibly simulate or execute Ptolemy models under different higher-level concur-
rency perspectives. In addition, actors are generally independent of domains. This
adds a further degree of flexibility to the system, as models are domain polymorphic
(i.e., they can be used in different interaction models). The inclusion of new do-
mains (i.e., simulation engines) into Ptolemy, is possible, but a complex task due

3.2. GRAPH BASED MODELING TOOLS 69

Figure 3.9: The basic model concepts in Ptolemy

to the complexity of the system. Similar to the case of the actors, a metamodeling
add-on is planned here.

Although a rudimentary support for distributed usage of Ptolemy exists in the
software (several interfaces for remote method invocations), Ptolemy currently
does not foresee a collaborative usage.

3.2.12 Visio

Visio is a part of the well-known commercial Microsoft Office Suite (Microsoft
Office, n.d.). The tool is designed for the creation of diagrams in business and
technical contexts. In particular, Visio aims at facilitating the representation of
ideas, processes, and systems. Visio fulfills all the requirements for inclusion in
this review - yet, it does not exclusively focus on graph structures but also supports
other forms of visual representations.

The primitives used to create diagrams in Visio are called ”shapes”, which are
organized in libraries that represent ”drawing types”. Shapes can be defined in a
visual editor that is very expressive in terms of defining the visual appearance of
shapes - if Visio is used in the Microsoft Windows tablet edition, also a definition of
shapes using handwriting is supported. Beyond the visual appearance of shapes, the
developer version of Visio also allows for advanced shape specifications using, e.g.,
ActiveX and .NET technologies. Thus, Visio completely fulfills the extensibility
criterion - however, advanced programming skills are required to handle the options
available in the developer version.

Since shapes are the basic primitive of Visio, the system does not offer any
encapsulation of visual languages as such: the drawing type libraries which contain
the shape masters merely serve as container objects and have no functionality at-
tached. As a consequence, Visio does not offer any kind of language interoperability
apart from the fact that shapes can be arbitrarily moved between different contain-
ers. A basic form of syntactic interoperability, however, is available in the sense
that shapes from different containers can be arbitrarily connected: apart from the
options in the developer edition, Visio does not offer any simple generic mechanism
for defining syntax rules.

Visio is designed primarily as a tool for creating diagrams. Therefore, the focus

70 CHAPTER 3. GRAPH BASED MODELING TOOLS

of the system is set on visual elements, not on simulation functionality. Due to
this, the tool does not provide any generic framework for ”executing” diagrams. In
the developer version, however, a lot of programming languages (including ActiveX,
.NET, and Visual Basic for Applications) can be used, and current Visio versions
also have interfaces based on web services technologies. With all this, the construc-
tion of shapes or libraries of shapes with simulation functionality is indeed possible
- yet, the support that Visio as a framework adds to this is only marginal.

Like all the other applications in the Microsoft Office Suite, Visio fully supports
the NetMeeting technology (NetMeeting Resource Kit, n.d.) for sharing applica-
tion views. In addition to this, Visio also neatly integrates with the Microsoft
SharePoint server technology (Microsoft Windows Server, 2004) which is designed
to support collaboration. It provides shared document spaces with the option of
editing and commenting on other’s documents, generic communication tools (e.g.,
chats), and presence awareness functionality. Of course, the collaboration support
that the SharePoint server integration adds to Visio is not specifically designed for
the needs of collaboratively used graph based representations.

3.3 Discussion

The previous section contained structured descriptions of the twelve modeling tools
included in this review. Despite the relatively strict requirements list, the review
contains a variety of differently targeted tools. Some (Belvedere, Cardboard,
Co-Lab, Daidalos, ModelIt, and ModellingSpace) have educational pur-
poses, others like DOME, GME, MetaEdit+, MULTIGRAPH, Ptolemy, and
Visio are targeted more towards different professional usage scenarios.

Though of course, an implicit usage of some basic theoretic concepts (e.g., from
graph theory) can be found across all tools, the relation between the tools and
technologies presented in this chapter and the theoretic approaches discussed in
chapter 2 is surprisingly weak. Only the DSM approach (cf. subsection 2.3.1) is
represented though three tools: DOME, GME, and MetaEdit+. There are no
other theoretic approaches (e.g., from the fields of model interoperability or model
transformation) with associated implementations that meet the requirements for
inclusion in this review. For the case of visual language based tools, this has been
discussed in section 3.1.1: here, the lack of interactive usage (which is usually the
effect of the graph grammar engines employed in these tools) is the required criterion
that is often not met.

As an attempt to systematically compare the tools along the criteria list pre-
sented in subsection 3.1.2, table 3.1 gives a summary of the modeling tool descrip-
tions. The assessment symbols used in the table express the degree to which the
tools fulfil the criteria. They have the following meanings:

+ Completely fulfilled
(+) Partially fulfilled
◦ Basically prepared but not elaborated
- Not fulfilled

The criteria used for the comparison are high-level and only partially oper-
ationalized, and the borders between the categories of fulfillment are not sharp.
Though this implies a certain interpretation concerning the assignment of assess-
ment symbols, it takes into account both the complexity of the criteria and the
possible variations in their fulfillment. In addition, it leads to a much better focus
of the comparison table.

Already a simple row-wise analysis of table 3.1 immediately reveals several
things. First, there is no single application which fulfills all four criteria at least

3.3. DISCUSSION 71

Table 3.1: Comparison of graph based modeling tools

Exten- Inter- Operational Collaboration
sibility operability Semantics Support

sync: +
Belvedere (+) (+) -

async: ◦
sync: (+)

Cardboard + - ◦
async: -

Co-Lab - + ◦ +
sync: -

Daidalos + ◦ ◦
async: ◦

DOME + (+) + -
GME + (+) (+) -

sync: -
MetaEdit+ + ◦ (+)

async: (+)
ModelIt ◦ (+) ◦ -

ModellingSpace (+) (+) ◦ +
MULTIGRAPH (+) (+) (+) -

Ptolemy (+) + + -
sync: ◦

Visio + ◦ ◦
async: (+)

partially ((+) symbol). The tools with the most positive assessments (weighing
all criteria equally) are DOME, ModellingSpace, and Ptolemy. Interestingly,
these three environments come from very different domains: DOME is an older
metamodeling environment that integrates interpreted programming languages to
make up for the disadvantages of the DSM method, ModellingSpace is an ed-
ucationally oriented system with focus on collaboration support, and Ptolemy
can be considered as an experimental system which is designed towards model in-
teroperability. DOME and Ptolemy lack collaboration support features, whereas
ModellingSpace has certain limitations concerning the representable structures
and their simulation.

A first column-wise analysis yields that the criterion of extensibility is by far
the one that is best fulfilled. This may be due to the decision of selecting only tools
which operate on multiple representations for this review. Often, the step between
multiple and externally defined representations is not too big. The criterion of inter-
operability is slightly better fulfilled than the simulation/operational semantics one,
and the criterion of collaboration support (both synchronous and asynchronous) is
by far the least met one. Only two environments (Co-Lab and ModellingSpace)
have very good support for both synchronous and asynchronous scenarios. One
observable pattern is the correlation of the system purpose to the fulfilment of the
criterion: apart from ModelIt, all educationally oriented tools in the review of-
fer some collaboration support functions. For the professionally oriented tools, the
image is different: here, only Visio and MetaEdit+ offer some (limited) collab-
oration support functionality. A similar pattern can be observed for the criterion
of operational semantics/simulation: none of the systems that gets at least a (+)
assessment is an educational one. This may be due to the fact that an educational
purpose is already a specific system purpose, which may lead to a lower degree of
flexibility in model simulation compared to multipurpose tools.

An analysis of criterion pairs reveals that the criteria in this review are largely
independent. There are only two exceptions to this: there is no non-extensible
system which is capable of flexibly simulating models (this may be due to the
fact that a high degree of flexibility is only required in extensible systems), and
the criteria of collaboration support and operational semantics seem to be mutually
exclusive: there is no single system in the review which fulfills both. As stated above,

72 CHAPTER 3. GRAPH BASED MODELING TOOLS

this also correlates with the purposes of the systems (educational vs. professional).
Using a 3-out-of-4 columns analysis approach, some other characteristic appli-

cation patterns become visible: in this review, there are no tools which meet all
criteria but extensibility. This is largely due to the fact that almost all systems are
extensible. MetaEdit+ is the only environment which has its only weak criterion
in interoperability. The applications with good results in all categories except for
simulation (Belvedere and ModellingSpace) can be characterized as flexible
”shared representation” tools. These tools have strengths in other areas than sim-
ulation: e.g., Belvedere is capable of bridging between different representational
forms (also different from graph based ones), and ModellingSpace has internal
features for video editing, which allows for an easy specification of attribute depen-
dent image representations for conceptual objects. Finally, the non-collaborative
applications which meet all the other review criteria are professional systems which
focus on model interoperability: DOME and GME as metamodeling tools, and the
model-integrating systems MULTIGRAPH and Ptolemy.

Apart from these table analysis, two qualitative observations concerning the
tools in the review can be made:

• Some educationally oriented tools (e.g., ModelIt and ModellingSpace)
only allow for syntactically correct structures that can be simulated. This
leads to a very easy usage of these tools, as virtually no errors can be made.
Yet, this characteristic goes along with a lack of flexibility concerning simu-
lation flexibility. Compared to this, other environments, primarily the DSM
based tools and Ptolemy, are very flexible concerning simulation/model ex-
ecution types - however, their use is often quite complicated and sometimes
even requires programming skills.

• The degree of collaboration support greatly varies among the tools in the re-
view. For the specific case of synchronous collaboration support, all the tools
which offer this (Belvedere, Cardboard, Co-Lab, and ModellingSpace)
rely on shared workspaces techniques. However, none of these systems focuses
on finer granular synchronization support mechanisms below the whole model
as shared primitive. The graph structure of the models and its potential for
synchronization purposes is usually not further exploited, although the com-
munication architectures of these systems would theoretically allow for this
step.

3.4 Challenges

This chapter, and in particular the discussion in the previous section, shows that
there is currently no system which fulfils all the four main criteria used for the re-
view. Yet, as argued in the introduction, such a tool might be very helpful for various
application areas, in particular in educational contexts. As such, the development
of a suitable conceptual approach and a corresponding system implementation are
challenges worth pursuing.

A particular outcome of the detail discussion in section 3.3 is that there is
an open challenge in finding a way of integrating the following two aspects, both
conceptually and technically:

• synchronous collaboration support for modeling tasks that involve rich and
active structures that can be simulated and ”run”, and

• an extensible framework that allows for various kinds of interoperability be-
tween graph based modeling languages

3.4. CHALLENGES 73

The next chapters of this thesis show how, based on current technology, these
challenges can be met, also taking into account the more fine-granular criteria al-
ready presented in section 1.5. Interoperable and synchronously usable graph based
models are conceptually treated in chapter 4 - based on these results, a flexible sys-
tem architecture which retains expressiveness and operational semantics (i.e., com-
putational power) for the supported structures, is discussed in chapter 6. Finally,
collaboration support functions and the extensible Cool Modes framework (as a
reference implementation of the architecture) are shown in chapter 7.

74 CHAPTER 3. GRAPH BASED MODELING TOOLS

Chapter 4

The Reference Frame
Approach

The general aims for the implementations within this thesis have already been
described in detail within the previous chapters, in particular within the sections
1.3 and 1.4. Very briefly summarized, these are the development of (1) a conceptual
method to support collaborative modeling with graph representations, and (2) a
flexible and interoperable framework which implements this method.

I consider it reasonable to split the presentation of my approach into three parts
that incrementally base on each other and that vary in their degree of abstraction.
The first part, presented in the sequel of this chapter, is on a conceptual level and
contains basic definitions and formalisms, abstract methodological issues, and the-
oretical perspectives. The second part, described in chapter 6, contains an abstract
high-level implementation approach and a discussion of architectural and algorith-
mic aspects related to the implementation of the developed conceptual framework.
Finally, the third part presents an example system implementation that puts the
abstractions into practice.

Taken together, these three parts illustrate the adopted methodology which
consists of a conceptualization of models and modeling in graph representations
that is consequently taken up and driven forward towards a flexible computational
approach. An implementation of this approach by a framework that explicitly takes
into account the specific needs of collaborative usage concludes the line of thought
and development.

The criteria and concrete aims as worked out in previous chapters of this the-
sis, in particular in section 1.5, relate to different levels of abstraction and thus to
different parts of the description. It makes, e.g., sense to handle usability issues
on the level of a concrete application, whereas general flexibility and expressive-
ness concerns are better answered in more abstract parts. Therefore, the following
chapters (except for chapter 5) integrate discussions about the fulfilment of the cri-
teria at appropriate places in the text. In addition, each of the chapters concludes
with some summary remarks about the achievements of the respective chapter with
respect to the aims and challenges of this thesis.

4.1 Typed Graphs and Layouts

Among the basic concepts to deal with when aiming at the development of a method-
ology for collaborative modeling with graph representations are, of course, graphs
with their nodes and edges (cf. section 2.1). The second important area is model-
ing, and in particular modeling language formalizations as discussed in section 2.3

75

76 CHAPTER 4. THE REFERENCE FRAME APPROACH

- these typically make use of classification schemes to distinguish between different
object types. This motivates the following first definitions:

Definition 4.1 Let N be a set of elements called node types, and let N be a set
of nodes. Then a mapping dom : N 7→ N is called a node type mapping. The
image of dom, written dom(N), is called node domain of N. Edge type mappings
(i.e., mappings from edges to edge types) and edge domains (images of edge type
mappings) are defined in analogy.

For certain concepts developed in later parts of this thesis, it will be helpful to
allow types to be specializations of other types. This is expressed in the following
definition:

Definition 4.2 Let N be a set of node types. Then a reflexive, antisymmetric and
transitive relation σ ⊆ N ×N is called node subtype relation on N if (N1, N2) ∈ σ
expresses that all nodes of type N1 are also of type N2. Edge subtype relations are
defined in analogy as transitive relations between edge types.

The concept of type mappings for nodes and edges models type relationships. If
a type mapping for a set of nodes and edges is available, then this can be transferred
to the graph structure level as follows.

Definition 4.3 Let N be a set of node types, and let E be a set of edge types. Let
G=(N,E) be a graph, and let domN : N 7→ N and domE : E 7→ E be node type and
edge type mappings. Then G is called a typed graph over (N ,E).

Leaving out subtype relations (which can be understood as nodes or edges having
several types at the same time), the type mappings obviously induce an equivalence
relation on a typed graph, with the equivalence sets being defined by the types
contained in N and E . The notion of typed graphs is the syntactical definition that
builds the foundation for all the advanced concepts and approaches to be presented
in the sequel. Therefore, the following observation is important: typed graphs do
not restrict syntactic interoperability. The following proposition shows that it is
possible to mix structures of different types arbitrarily without leaving the general
context of typed graphs - in a certain sense, a closeness property.

Proposition 4.1 Given an index set I and (for each i ∈ I) node type sets Ni and
edge type sets Ei. If G=(N,E) is a graph with N =

⋃
i∈I Ni and E =

⋃
i∈I Ei so

that for each i ∈ I the following holds:

• Ni ⊇ dom(Ni) and

• Ei ⊇ dom(Ei),

then G is a typed graph over (
⋃

i∈I Ni,
⋃

i∈I Ei).

Proof. We have to show that the node and edge domains of G are subsets of⋃
i∈I Ni resp.

⋃
i∈I Ei. This is easy to see: according to the prerequisites in the

proposition, Ni ⊇ dom(Ni) for each i ∈ I, and therefore
⋃

i∈I Ni ⊇
⋃

i∈I dom(Ni).
On the other hand, we know that

⋃
i∈I dom(Ni) = dom(

⋃
i∈I Ni) = dom(N). The

proof for the edge domains is analogous.

The concept of typed graphs offers the syntactic base for further considerations
and is a suitable means to represent abstract graph structures that consist of entities
of different types. The following definitions introduce a means to consider visual
representations of typed graphs. Within this thesis, this is of course an essential
aspect, as the intended applications will deal with visual graph representations.

4.1. TYPED GRAPHS AND LAYOUTS 77

Definition 4.4 Given two sets VN and VE, called visual node attributes and visual
edge attributes, then a pair L=(λN , λE) of mappings with λN : N 7→ VN and
λE : E 7→ VE is called a layout of a Graph G=(N,E).

Definition 4.5 Given a typed graph G=(N,E) over (N ,E) and a layout L of G,
then 〈G,N , E , L〉 is called a visual typed graph over (N ,E). In short, I will refer
to G as a visual typed graph if the other parameters are unambiguous.

This definition of a layout for a graph is abstract in the sense that it does not
prescribe concrete sets VN and VE . This design choice was made in order to take
into account the variety of different description frameworks for visual parameters as
discussed in section 2.2. In particular, the openness of the layout definition allows
connections to the logic based and algebraic techniques presented in that section.
For some implementation parts within this thesis, however, concrete and explicit
definitions of VN and VE will be necessary (cf. subsection 6.1.2).

In definition 4.4, the visual attributes of a graph are not defined in dependence
of particular node or edge types. This would obviously be an alternative. The
chosen approach was motivated primarily by two arguments:

1. In the concrete applications implemented within this thesis, the layout at-
tributes are not mere theoretical constructs, but have practical usages for
displaying graph representations. Here, mixed and potentially unrelated at-
tributes may lead to significant rendering problems, unless transformation
functions are given.

2. Heterogeneous and type dependent node and edge attributes are enabled by
their semantics (cf. section 4.3). In this sense, the taken approach does not
prevent the inclusion of type-dependent attributes that relate to the visual
representation of elements.

Together with figure 4.1, the following example illustrates the concept of typed
visual graphs.

Example 4.1 A graph G=(N,E) with N = {n1, n2, n3} and E = {e1, e2}, with type
sets N = {circle, rectangle}, E = {line}, and type mappings domN and domE con-
stitutes a typed graph. Consider the following example definition for the mappings:

domN (n1) = circle, domN (n2) = rectangle, domN (n3) = rectangle

domE(e1) = line, domE(e2) = line

”Natural” visual attributes for planar representation of nodes are the lower left
and upper right corner of the rectangle that outlines the node. Accordingly, let
VN = IR2 × IR2. The edges are characterized by their starting and end point and a
curvature measure, which is expressed in VE = IR2 × IR2 × IR. The following example
values for the layout mappings in L=(λN , λE) complete the definition of 〈G,N , E , L〉
as a visual typed graph.

λN (n1) = ((0, 0), (10, 10))
λN (n2) = ((10, 20), (30, 40))
λN (n3) = ((20, 0), (30, 10))
λE(e1) = ((5, 10), (10, 30), 0))
λE(e1) = ((30, 5), (30, 30), 3))

78 CHAPTER 4. THE REFERENCE FRAME APPROACH

Figure 4.1: Representation of the visual typed graph of example 4.1

In addition to showing a concrete case of a typed visual graph that uses the
definitions, example 4.1 reveals three characteristics of the chosen layout approach.

• Visual attributes have to be interpreted in order to obtain a visual repre-
sentation: syntax and values of the layout mapping are not sufficient. The
definitions do not contain any formal description of, e.g., a ”circle” or the
concept of ”curvature”. Thus, in order to generate concrete visual represen-
tations, an interpretation of the data is necessary.

• The example clearly illustrates that visual edge attributes may depend on the
nodes that an edge connects, or on their visual attributes. In the particular
example, the positions of the start and end point of an edge are obviously
related to the corresponding node, though not completely determined by it.
Despite being worth considering, this dependency between visual node and
edge attributes is not problematic in general: on the theoretic level, edges are
even defined on the base of nodes (cf. definition 2.1), and practical implemen-
tations will easily allow for interrelated visual attributes, as will be shown in
the next chapters of this thesis.

• It is obvious that the relation between visual graph representations and visual
typed graphs is not unambiguous. In the present case, alternative definitions
of node type sets (e.g., only one very general type) and visual attributes
(e.g., an attribute that determines a geometric shape of a node) can lead
to identical visual representations. In general, the approach offers design
choices between the pieces of visual information that are indirectly represented
through types, and the ones that are made explicit by means of attributes.
Given that for the targeted application area, a unique mapping between visual
graph representations and visual typed graphs is not a necessity, I consider the
mentioned ambiguity (that could also be denoted flexibility) of the conceptual
base more a strength than a weakness of the approach.

4.2 Integrity Constraints

The previous section introduced the notion of typed graphs. As stated, this notion
enables syntactic interoperability in the sense that it does not put any restrictions
on the covered structures: any graph together with suitable domain mappings for
nodes and edges is a typed graph.

4.2. INTEGRITY CONSTRAINTS 79

Figure 4.2: A syntactically correct calculation tree (left) and two incorrect graphs
(center and right)

While the openness of this definition is a key for supporting mixed and hetero-
geneous models (cf. next sections of this chapter), it lacks one central feature: a lot
of modeling languages define certain constraints that have to hold in order to call
a graph based representation a valid model. These constraints are typically needed
as a basic prerequisite in order to allow the computation of formal semantics, or
(on a more application oriented level) conduct simulations of models. Two simple
examples illustrate this:

Example 4.2 Conceived as a graph based structure, a Petri Net (Petri, 1962) con-
sists of two node types: places and transitions. There is a formal Petri Net seman-
tics that defines the ”firing” of transitions and thus enables the simulation of a Petri
Net - however, all formal semantics relies on the prerequisite that neither places nor
transitions must be connected to an element of the same type, i.e., a bipartite graph
is required.

Example 4.3 Known from compiler theory, a simple calculation tree can be built
with node types that represent arithmetic operations, and a ”number” type. The left
part of figure 4.2 shows a simple calculation tree with value 11. Obviously, the set
of meaningful structures (in the sense that a value can be computed) is restricted by
some constraints:

• A node of type ”number” must not have outgoing edges, as there is no reason-
able calculation rule for this (cf. center part of figure 4.2).

• A node of type ”+” or ”×” must have at least one outgoing edge (though this
could be relaxed by the reasonable assumption of default value 1 resp. 0).

• A node of type ”-” or ”/” must have exactly two outgoing edges (Similar to
the point above, this could be solved by specific default mechanisms).

• Cycles are not allowed, as they would lead to infinite calculation sequences (cf.
right part of figure 4.2).

The examples 4.2 and 4.3 pointed out that both the abstract graph structure
(e.g., forbidden cycles) and the types of nodes and edges can serve as parameters
within constraints. Yet, they were of a relatively simple type. Obviously, more
complex kinds of constraints in specific graph based modeling languages are imag-
inable, so that on a syntactical level, a general definition of a constraint mapping
makes sense:

Definition 4.6 A constraint mapping is a predicate c which determines the syn-
tactic correctness of a visual typed graph by assigning it a boolean value. In the case
of c(〈G,N , E , L〉) evaluating to true, c holds and the visual typed graph G is called
conform with c.

80 CHAPTER 4. THE REFERENCE FRAME APPROACH

The syntax predicates can be thought of as ”markers” which identify ”correct”
visual typed graphs according to some constraint criterion. Note that definition
4.6 does neither specify a concrete representation for constraint mappings nor a
concrete calculus to evaluate the constraint predicates. This is left to concrete
implementations of the Reference Frame approach - one concrete implementation
example based on rules is shown in chapter 6.

As motivated by the above examples, constraint mappings will typically relate
to the abstract graph structure and eventually consider node and edge types. Def-
inition 4.6 does, however, also allow for syntactic integrity conditions that take
into account the layout of the graph, and thus its visual representation. This de-
sign choice was made in order to be able to cover the variety of visual formalisms
(e.g. Randell et al. (1992), Ligozat (1998), or Wang and Zeevat (1998)) within the
formalism of the presented approach.

The proposed definition of constraint mappings does not separate generic con-
straints (which are applicable to arbitrary graphs irrelevant of their type and layout)
from ones that are specific for certain node or edge domains. An alternative ap-
proach would consist of including constraint definitions with domain definitions.
This approach would be more explicit in relating node and edge types to their
inherent constraints, but would not support the desired interoperability between
expressions with mixed domains. Section 4.5 shows how this conflict can be solved.

There are two aspects that the given notion of constraint mappings does not
address. First, it does not even try to consider the semantics of visual typed graphs
(cf. section 4.3). This, indeed, is a very interesting field (cf. chapter 9), as it leads
to deciding whether a certain expression is ”correct” also from a higher, potentially
task-oriented, level (Herrmann, Hoppe, & Pinkwart, 2003). Yet, these questions
exceed the scope of this thesis, and in particular also the purpose of the constraint
predicates - restricted to the syntactic correctness, there are efficient implementa-
tions (as will be shown in the following chapters), which is not the case for general
semantics oriented checks. The second issue not covered with the proposed concept
of constraint mappings is its implementation. A generic interoperable framework
will have to guarantee that, given an arbitrary set of constraint mappings, all the
predicates are fulfilled at any point in time. As will be shown later in this chapter,
this is a potential source of problems.

4.3 Expression Semantics

The concepts elaborated in the previous parts of this chapter provide a framework
for graph structures that consist of laid-out differently typed entities, restricted
through constraint mappings. The emphasis was put on flexibility and expressive-
ness. One aspect not considered up to here is the meaning of constructs. In the
context of computational modeling, this meaning of structures is of course an im-
portant issue (cf. section 1.4 for the general interrelations between meaning and
modeling). Therefore, it makes sense to include a place for expressing the meaning
of visual typed graphs in the proposed conceptual framework.

In computer science, and particularly in theory oriented fields like, e.g., compiler
theory, the term usually associated with meaning of expressions is semantics. Harel
and Rumpe (2004) have recently analyzed the variety of different usages of the term
semantics in current literature. They have opposed to this the original formal roots
of computational semantics. I decided to adopt their approach due to its clarity,
computational accessibility, and generality:

Definition 4.7 Let G be a set of visual typed graphs. Then a couple (D,Ip), con-
sisting of a semantic domain D and a semantic mapping Ip : G 7→ D is called a

4.3. EXPRESSION SEMANTICS 81

graph semantics for G. For a concrete visual typed graph G ∈ G, the image Ip(G) of
the semantic mapping function is also called semantics of G in short, if ambiguities
are impossible.

Similar to the definition of constraint mappings, the notion of graph semantics
is independent of node and edge domains. At first sight, this approach may ap-
pear unusual, as typically the semantics of graph based representations (if defined
at all) are tightly bound to a modeling language and its primitives. Yet, the cho-
sen approach of (at least partially) decoupling semantics from concrete node and
edge domains is an essential factor for reaching semantic interoperability, as will be
discussed in sections 4.5 and 4.6.

The abstract definition of graph semantics does not include any link to possible
implementations. Obviously, both semantic domains and semantic mappings may
be quite complex for expressive modeling languages. Examples which demonstrate
this complexity are the formal semantics of State Chart diagrams (Harel & Naamad,
1996) with its mappings to program code, or the semantics of Entity Relationship
diagrams (Chen, 1976) which maps to database structures.

Though being defined on a high level of abstraction and independent of concrete
implementations, semantic mappings may have several structural properties that
have a clear impact on the possible implementations. In the following, four of these
properties are shortly described, and an example for a concrete semantic mapping
is given.

Decomposability. In a number of cases, it is possible to define graph semantics
based on the semantics of the single nodes and edges. In these cases, semantic
domains and mappings for node and/or edge types are available, and Ip(G)
can conceived as a function defined over terms like Ip(n) and Ip(e), which
represent the semantics of single nodes and edges.

Regional bounds and effects. In the case of decomposable semantics, where sin-
gle nodes and edges have a specific semantics, the semantic mapping functions
for nodes and edges will usually not be context-free in the sense that a partic-
ular node or edge of a graph is mapped to the same element of the semantic
domain irrespective of its neighbors in the graph. For this reason, the corre-
sponding semantic mappings will be denoted with Ip(nG) and Ip(eG) in the
sequel of this thesis, with G being a visual typed graph, n a node of G and
e an edge of G. In this context, an interesting characteristic property of a
semantic mapping is whether the subgraph that has an impact on a node (or
edge) semantics can be regionally bound. This property has an immediate
impact on synchronization contexts (cf. next subsection). In some modeling
languages, the immediate neighborhood of a node plays a key role for these
regional bounds (cf. example 4.4).

Stepwise computational complexity. The notion of the semantic mapping for
visual typed graphs does not include any notion of computational complexity.
Of course, any implementation of a specific mapping will have to deal with
potential problems in this field. Given the intended application of an interac-
tive environment which allows users to add and remove nodes and edges, an
important characteristic property is the delta of computational complexity,
which can be formulated as: Knowing Ip(G), how complex is the calculation
of Ip(G′) with G’ resulting from G by adding/removing one node or edge? For
decomposable semantics, this complexity will usually be tightly related to the
complexity of single node or edge semantics.

Levels of dependence and independence. The notion of visual typed graphs,

82 CHAPTER 4. THE REFERENCE FRAME APPROACH

upon which the semantic mapping is defined, is quite rich. In particular, it
includes the following information:

• the layout of the typed graph (spatial information),

• the underlying abstract graph (structural information),

• the contained node types (object type information), and

• the involved edge types (connection type information)

Typically, a concrete semantic mapping will not use all this information, but
only selected parts. The spectrum of really needed types of information hav-
ing an impact on Ip(G) is an interesting structural property of a semantic
mapping.

Example 4.4 shows a concrete semantic mapping for the case of calculation trees,
which are known from compiler construction.

Example 4.4 In a calculation tree (cf. figure 4.2), edges do not have a specific
formal semantics (except from their role in defining child relations). The semantic
domain D for all node types is IR. The semantic mapping for a node n is defined
as follows, with C(n) denoting the set of children of n, c1(n) and c2(n) denoting
the first and second child of n in the tree, and val(n) standing for the value of a
number node:

Ip(n) :=

val(n) if n is of type ”number”∑
m∈C(n)

Ip(m) if n is of type ”+”

Ip(c1(n))− Ip(c2(n)) if n is of type ”-”∏
m∈C(n)

Ip(m) if n is of type ”×”

Ip(c1(n))/Ip(c2(n)) if n is of type ”/”

The semantics of the corresponding visual typed graph G (i.e., the whole calcu-
lation tree) can be identified with the semantics of the root element of the tree:

Ip(G) := Ip(n),with n being the root node of G

In terms of the structural properties outlined before, the calculation net example
can be described as follows:

• The semantic mapping is decomposable and has a trivial edge semantics.

• The semantics of a node depends on the semantics of its children. Therefore,
the subgraph that has an immediate impact on the semantics of a node is
composed of this node’s children. Of course this leads to a recursion, so
that the subgraph that indirectly has an impact on the node semantics is the
subtree whose root is that node.

• Adding an element to a calculation tree can in the worst case cause the se-
mantics of nearly all others to change (this is exactly when the tree is a
degenerated list, and the new node is added as a second child to the last
”inner” node). The complexity of a single addition or multiplication can be
assumed as constant, so that the (non-recursive) calculation of a local node
semantics is linear in the number of nodes. Together, this results in a worst
case of O(N2), with N the number of nodes in the visual typed graph.

• The semantic mapping depends on the abstract graph structure and the node
types, but not on the visual layout and the edge types.

4.4. SYNCHRONIZATION REQUIREMENTS 83

An aspect worth noting is that our notion of semantics does explicitly refer to
visual typed graphs. As such, it is possible to include the layout of a typed graph, i.e.
spatial information, in the calculation of graph semantics. Compared to a number
of existing approaches like, e.g., suggested by McBrien and Poulovassilis (1999) or
Lara and Vangheluwe (2004), which explicitly focus on the abstract graph structure,
this significantly extends the scope of covered languages. In the terminology of
Costagliola et al. (2002), the definition of graph semantics as proposed in this section
is suitable for the class of hybrid languages. Applications that make extensive use
of these layout considerations for graph semantics will be shown in subsection 8.1.2.

With the availability of formal semantics, visual typed graphs are significantly
extended: as shown in example 4.4, the possibility of attaching interpretation func-
tions to expressions is the key that allows for automatic calculations and simulations.
This augments the concept of visual typed graphs towards formal representations
of models which additionally take into account representational parameters. All
the frameworks that aim at supporting formal modeling languages contain some
mechanism similar to the graph semantics as defined above. Three examples which
make this explicit are the solver components in SML (Geoffrion, 1989a), the extents
that encapsulate semantic states of objects in the work of McBrien and Poulovassilis
(1999), and the graph attributes in the work of Lara and Vangheluwe (2004).

The notion of formal graph semantics as introduced in this section is of course
only applicable to a subset of the graph based representational languages that are
targeted within this thesis. As stated in the introduction (section 1.4), I explicitly
intend to support languages with lower degrees of formality, such as UML, causal
feedback diagrams, QOC, or concept maps. In these languages, the definition of
a general computation rule determining the formal semantics of an expression is
often not possible, although the expressions may have a well-defined and human-
understandable ”meaning”.

Two missing pieces in the area of graph semantics have not been dealt with in this
section. The first one is the way in which semantic information is attached to typed
visual graphs (i.e., how the values of the Ip functions are stored), the second one
relates to more operational aspects: beyond the availability of semantics, a modeling
and simulation framework will require triggering mechanisms which initiate the
calculation processes and thus allow for making the graph structures really active
and interactive. Chapter 6 proposes solutions to these questions.

4.4 Synchronization Requirements

One of the distinguishing factors between the present work and comparable ap-
proaches in the domains of metamodeling and visual languages is that I specifically
intend to allow for collaborative usage scenarios with flexibly shared representa-
tions. Though typically the concrete support for these mechanisms will be done
on the concrete implementation level, there are two factors that can be considered
already on the level of the formal conceptual level.

One of these factors is that modeling activities often consist of several phases,
which may potentially be repeating and have no predefined order (Löhner et al.,
2003). Phases are associated with activities and usage modes: two typical phases
are, e.g., the editing and modification of a model vs. its interactive simulation.
In synchronous collaborative scenarios, problems may occur if the co-users do not
agree on a single joint usage mode. This would of course not be a problem to be
solved by the computer in face-to-face situations, but in distance ones it has to be
considered. Thus, it may be reasonable to foresee an indication of the current usage
mode together with expressions in visual modeling languages. The implementation
of this idea will be shown in chapter 7.

84 CHAPTER 4. THE REFERENCE FRAME APPROACH

Figure 4.3: The problems of partial synchronization

Another important issue about shared graph structures is the possible discrep-
ancy between flexibility of synchronization, and coherence or closure requirements
of models. The logical consequence of aiming at maximum degree of flexibility in
sharing graph structures is to allow for a synchronization of arbitrary substructures,
i.e. subgraphs, to the extreme case of having only single nodes synchronized. These
partially shared structures have interesting application areas and allow for flexi-
ble work modes. An example for this is the following: with partially synchronized
graphs, it is possible for users to privately work on the construction of a model, and
to publish only selected parts of it, e.g., a subgraph that contains some explicitly
marked result elements. Insight into the way that these results were elaborated does
not necessarily have to be granted. The private results can then be re-used in a va-
riety of ways, e.g. to collect and compare results of different users, as demonstrated
in the domain of mathematics by Kuhn, Hoppe, Lingnau, and Fendrich (2004), or
even to build new models that rely on the results of the previous ones.

While this degree of flexibility may sound attractive, there are also situations in
which partially shared models may be problematic. Apart from the general question
how edges could be coupled without also sharing the nodes that this edge connects
(this exceeds the notion of graphs and this is not dealt with in the present work),
a critical point is that partially sharing models may lead to significant differences
between the semantics of the shared model parts. This is due to the fact that the
semantic mapping function is, in general, not context-free (cf. previous section). It
is not only the general graph semantics that varies, but also that of single nodes
which are contained in both of the partially shared models. Figure 4.3 illustrates
this problem with the example domain of Petri Nets. The two workspaces are
partially synchronized and differ only in the presence of one single place (p1) and
its connection to the transition t1. This causes the semantics of t1 to change, and
in particular also affects the semantics of the whole graph: the left net is dead,
whereas the right one is non-terminating.

As argued, any general attempt to retain a common semantics between only par-
tially shared (and therefore non-identical) models has to face the following problem:
either one single shared semantics is preserved in the system and the result is a mis-
match between local representation and system-internal semantics, or the semantics
is only related to the respective local models. In the latter case, the problem is (as
shown in figure 4.3) the non-existence of a common result.

One possible strategy to deal with this problem is to restrict the degree of
flexibility concerning sharing entities. If the semantic mapping Ip(n) of a node n
does not depend on other entities, then it is reasonable to allow this node to be
coupled independently of any other elements in the model graph. Otherwise, the
(recursively determined) set of needed model elements has to be included in the set

4.4. SYNCHRONIZATION REQUIREMENTS 85

of shared elements upon trying to share n:

Definition 4.8 Let G=(N,E) be a visual typed graph with a semantics Ip(G), and
let n ∈ N be a node of G. If n has an associated semantic value (i.e., the semantic
mapping Ip(nG) of n in G is defined), then a synchronization context of n in G, de-
noted by Sync(nG), is a subgraph of G containing n so that Ip(nG) = Ip(nSync(nG)).
A function S : N 7→ P(G) so that each node is mapped to a corresponding syn-
chronization context is called synchronization context mapping. A function S :
N × G 7→ P(G) which accepts a node and a graph (containing that node) as input
and returns a subgraph which is a synchronization context of the node in the graph
is called a generic synchronization context mapping.

Definition 4.9 A synchronization context Sync(nG) is called minimal if no real
subgraph of Sync(nG) fulfills the synchronization context condition for n in G.

Proposition 4.2 Let G=(N,E) be a visual typed graph with a semantics Ip(G), and
let n ∈ N be a node of G with defined semantic mapping Ip(nG). Then a minimal
synchronization context of n in G exists but is, in general, not unique.

Proof. A trivial synchronization context of n in G is obviously G itself, so that
the existence is shown. The fact that Sync(nG) is in general not unique can be
shown with a counterexample: a calculation tree consisting of the root node n1 of
type ”×”, and three child nodes n2, n3, n4 of n1 that are all of type ”number” with
Ip(n2) = Ip(n3) = 0 and Ip(n4) = 1. Here, two different minimal synchronization
contexts of n1 in G are spanned by the node sets N1 = {n1, n2} and N2 = {n1, n3}.

The proof of proposition 4.2 shows that the minimal synchronization context
of a node in a graph can even depend on the values of semantic attributes. This
means that upon a change in semantics (e.g., caused by a model simulation step),
the minimal synchronization context may change. Using synchronization contexts
as foundations for partially coupled models, this has to be taken into account: in
collaborative work contexts, a non-minimal but stable synchronization context may
be superior to a theoretically optimal but frequently changing one.

For a number of modeling languages, minimal synchronization contexts can be
defined easily, as the following example illustrates for the case of Petri Nets (cf.
figure 7.3 in the implementation part of this thesis for an XML representation that
contains non-minimal synchronization context specifications):

Example 4.5 Petri Nets are visual typed graphs that have the node type set N =
{place, transition}. For a visual typed graph G=(N,E), a minimal synchronization
context mapping S is as follows (for reasons of simplicity, only the nodes that span
the synchronization context graph are given):

S(n) :=

{
{n} if type(n) = ”place”
{n} ∪ {m ∈ G : (m, n) ∈ E ∨ (n, m) ∈ E} else

This expresses that places can be synchronized node-wise, whereas the activa-
tion state and therefore the semantics of transitions depends on their input and
output places, and thus on their complete neighborhood. Of course, the proposed
synchronization context mapping (by definition) ensures consistent semantics only
node-wise. In this example case, the activation state per synchronized transition
and the tokens per synchronized place are guaranteed to be identical. However, the
general model (i.e., Petri Net) semantics can still vary between partially shared
models if only partial node sets are synchronized: e.g., one partially shared net can
be dead, whereas the other is alive. Of course, another synchronization mapping
(which synchronizes the whole connectivity component of the graph) can solve this
problem.

86 CHAPTER 4. THE REFERENCE FRAME APPROACH

A strict consideration of synchronization contexts solves the dilemma between
coupling flexibility versus coherence of models. If minimal synchronization contexts
are used, the solution can even be theoretically optimal in the sense that no ”seman-
tically unnecessary” elements are synchronized. Yet, even apart from the dynamics
of the minimal synchronization contexts, one problem remains: there is no generic
calculation algorithm for a minimal synchronization contexts. Especially in the case
of modeling languages with non-formal semantics (like, e.g., concept maps), it is a
priori unclear what such an algorithm should calculate. In chapter 6, some algo-
rithmic approaches to solve at least the technical challenges will be discussed. Parts
of the evaluation in chapter 8 describe usage situations that benefit from partial
synchronization (involving synchronization contexts).

4.5 Reference Frames

The previous sections in this chapter have presented a number of ingredients needed
for a methodology that supports collaborative modeling with graph based represen-
tations. In particular, I have identified a number of sets (e.g., node and edge types,
or semantic domains), and a list of mappings (e.g., constraints, semantic mappings,
or synchronization context mappings). All of them are important within a con-
ceptual framework for collaborative modeling, and in some sense the elements are
strongly related to each other: typically, all the concepts have to be combined in
order to express the characteristics of a certain modeling language. E.g., a specific
constraint mapping usually belongs to a particular set of node and edge types, and
a graph semantics may in turn rely on syntactic integrity constraints.

For this reason, a central concept that bundles together all the ingredients makes
sense. This can be conceived as the formalized abstraction of a visual modeling
language itself, in contrast to the previous definitions which covered specific aspects
of modeling languages. The fact that the central concept serves basically as a
frame that allows the contained elements to reference each other motivates its name
”reference frame”:

Definition 4.10 Let N denote a set of node types and E a set of edge types, and let
VN and VE be visual node and edge attributes. For a set C of constraint mappings, a
semantic domain D, a semantic mapping Ip, and a generic synchronization context
mapping S, the tuple R = 〈N , E , VN , VE , C,D, Ip,S〉 is called a Basic Reference
Frame. For a given Basic Reference Frame R, N (R) is an abbreviated notation for
the contained node type set, analogous notations will be used for the other concepts
(edge types, constraint mappings, etc.).

The definition of Basic Reference Frames as given above is open with respect
to the interrelations between the contained elements N , E , VN , VE , C, D, Ip, and S.
This is done on purpose, both in order not to restrict the scope of Basic Reference
Frames unnecessarily, and also because (due to the large scope of modeling lan-
guages covered by the concept of Basic Reference Frames) a generic formula that
expresses how these elements relate to each other cannot be given in the degree
of exactness and detail that is needed within a formal definition. However, some
general level relations between the elements are the following:

• The constraint mapping set C operates on visual typed graphs and is defined
over the general abstract graph structure, visual attributes, and the types
in (N ,E). C enforces the syntactic correctness of visual typed graphs with
respect to the modeling language expressed by R.

• The semantics of the modeling language is expressed by the couple (D,Ip). Ip
maps the set of syntactically correct visual typed graphs (as specified by C)

4.5. REFERENCE FRAMES 87

to D. In the specification of Ip, both node and edge types (contained in N
and E) and visual attributes may serve as input parameters.

• Wherever syntax or semantics refer to the visual layout of typed graphs, they
do so by means of the attributes contained in VN and VE .

• The generic synchronization context mapping S is defined for (at least) the
node types of N .

In this integrated manner, a Basic Reference Frame can serve as a means to
enable co-construction (through the provision of element types, layout parameters,
and synchronization context mappings) and interpretation (via syntax constraints
and semantics) of expressions in visual modeling languages, as will be shown in
chapters 6 and 7.

From a theoretical point of view, a Reference Frame can be conceived as the
framework for a generating system for concrete visual typed graphs: the only lacking
aspect is a component which instantiates graphs and handles the type mappings.
This functionality could be gained through several techniques, e.g. by means of
grammars. This shows the thematic proximity to approaches in the field of visual
language theory (cf. section 2.2) - however, as this thesis is aimed towards an
interactive usage of the final system, a generator component in the Reference Frame
concept is not foreseen: the user is expected to create and modify the visual typed
graphs.

One question worth discussing is the domain of the mappings contained in a
Reference Frame R. As mentioned above, the mappings (C, Ip,S) can depend on
type information contained in (N (R), E(R)) - yet, the domains of the mappings are
visual typed graphs of arbitrary types - e.g., a constraint could simply disallow any
kind of circle in a graph. Obviously, an alternative would be a focus on exactly those
structures that can be generated with elements from N (R) and E(R). However,
there are a number of reasons that speak against this alternative:

Generic Interpretation. The chosen approach principally enables interpretation
and constraint mappings defined only over abstract graph structures and vi-
sual attributes, without taking into account node or edge type information.
This allows e.g., for generic graph algorithms (cf. subsection 2.1.2) or specific
layout analysis mechanisms to be formulated easily in terms of Basic Reference
Frames.

Closeness of Languages. With the presented constraint mechanism, the ability
to refer to elements that are external to a specific language is the key to eas-
ily express the closeness of that language. Therefore, the option of including
entities that are beyond the scope of a certain Basic Reference Frame in con-
straint predicates or interpretations is an important means. It allows, e.g.,
the expression of the rule ”A node in a calculation tree must not be connected
to ANY element outside this domain”.

Interoperability. The openness concerning the exact scope of C, Ip, and S may
contribute to interoperability between Reference Frames, as it principally al-
lows a Basic Reference Frame to contain mappings that address elements
contained in other Basic Reference Frames.

Considering the theory review as given in chapter 2, the Reference Frame ap-
proach as presented can be conceived as a mixture between a metamodeling ap-
proach and a visual language specification format rather than a model integra-
tion technique: for the latter, an explicit formalism for shared semantics would be
needed. However, chapter 6 shows that the formal framework can support semantic

88 CHAPTER 4. THE REFERENCE FRAME APPROACH

interoperability between languages. Section 4.7 contains a further discussion of the
approach and its relations to relevant theoretical fields.

Based on the concept of Basic Reference Frames, the following parts of this
section describe several approaches how to enable interoperability between Refer-
ence Frames. Here, a first helpful criterion is whether two Basic Reference Frames
contain the same node or edge types:

Definition 4.11 A set S of Basic Reference Frames is called unambiguous if no
node or edge type is contained in more than one of the Basic Reference Frames:

• ∀R1,R2 ∈ S : (n ∈ N (R1) ∧ n ∈ N (R2)) ⇒ R1 = R2

• ∀R1,R2 ∈ S : (e ∈ E(R1) ∧ e ∈ E(R2)) ⇒ R1 = R2

At first sight, this criterion seems to severely restrict interoperability between
Reference Frames, since an unambiguous set of Reference Frames does not allow
the sharing of any primitives. Yet, unambiguous Reference Frame sets do also have
some advantages which justify their special treatment:

Unique mapping. Unambiguity allows for a deterministic way of relating element
types to Basic Reference Frames. A number of functions on the implementa-
tion level like, e.g., the calculation of synchronization contexts, rely on this
bijective relation.

Avoidance of conflicts. Interoperability between two Reference Frames is hard
to achieve if these contain node or edge types with the same identification,
but with different meaning associated to them. Even on the theoretical level,
the arising ambiguities of such an approach are obvious. On an implementa-
tion level, conflicting node or edge type definitions (which would translate to
conflicting class definitions) are even harder to solve.

Despite these advantages, the isolation that unambiguous Basic Reference Frame
sets induce is in conflict with the intention of interoperability. In the following, I
introduce two methods that make up for this. Instead of allowing for element types
to be contained in multiple Basic Reference Frames and thereby offering implicit
interoperability, I make use of explicit relations which declare the use of external
elements.

4.5.1 Import Relations

One simple approach that allows for interoperability between Reference Frames,
and that at the same time retains the bijective relation between Basic Reference
Frames and their defined node and edge types is the use of type imports operators.
This allows Reference Frames to explicitly refer to externally defined node or edge
types and thus re-use them apart from their original contexts.

Definition 4.12 Let N and N ′ denote sets of node types and E and E ′ sets of edge
types with N ∩N ′ = ∅ and E ∩ E ′ = ∅, and let VN and VE be visual node and edge
attributes. For a set C of constraint mappings, a semantic domain D, a semantic
mapping Ip, and a generic synchronization context mapping S, the structure

〈N , E , VN , VE , C,D, Ip,S〉↙〈N ′,E′〉

is called an Interoperable Reference Frame that imports N ′ and E ′.
A multiple application of the import operator is permitted, and is defined by:

(R↙〈N ′,E′〉)
↙〈N′′,E′′〉

:= R↙〈N ′∪N ′′,E′∪E′′〉

4.5. REFERENCE FRAMES 89

For Interoperable Reference Frames, the same remarks about the interrelations
of elements as given for Basic Reference Frames (cf. definition 4.10) apply: the only
exception to this is that the constraints and semantics mappings may make use of
the type information provided by the imported types N ′ and E ′, and their subtypes
as contained in definition 4.2.

Any Basic Reference Frame can of course also be conceived as an Interoperable
Reference Frame with empty import sets. For this reason, the general term Ref-
erence Frame will be used as an integrative notion which covers both Basic and
Interoperable Reference Frames.

Definition 4.12 allows the expression of Reference Frames that know more node
and edge types than they define themselves, without introducing ambiguities. If
a set of Basic Reference Frames is unambiguous, the import operation is always
well-defined in the sense that imported and defined elements are disjunct:

Proposition 4.3 Let S=
⋃

i∈I Ri be a unambiguous set of Basic Reference Frames.
Then with any R̂ ∈ S, N ′ ⊆

⋃
i∈I N (Ri) \ N (R̂), and E ′ ⊆

⋃
i∈I E(Ri) \ E(R̂), the

Interoperable Reference Frame R′ := R̂↙〈N ′,E′〉 is well-defined.

Proof. Due to the unambiguity property of S, N (R̂)∩N (Ri) = ∅ for all Ri ∈ S\R̂.
Consequently, we have

⋃
i∈I N (Ri) \N (R̂) = ∅, and therefore also, by definition of

N ′, the required relation N ′ ∩N (R̂) = ∅. The same holds for the edge types.

Though unambiguous sets of Basic Reference Frames offer the option of arbitrary
imports without destroying the unambiguity criterion, one important question is
under which conditions these imports do actually make sense, considering that
Reference Frames are abstractions of modeling languages, and thus potentially ”self-
contained” in some sense. In formal notation, this is the following question: if R
is a Basic Reference Frame (and thus the elements of R only defined in terms of
the types N (R) and E(R)), does then an Interoperable Reference Frame R↙〈N ′,E′〉

make sense? This can be dealt with on the level of the elements that constitute an
Interoperable Reference Frame.

• The node and edge attributes VN and VE are defined independent of specific
Reference Frames anyway, so that an import of node or edge types is not of
relevance for the layout mappings.

• The constraint mappings set C, the semantics (D,Ip), and the generic syn-
chronization context mapping S are more problematic. In general, it is not
guaranteed that C (which was originally designed for a smaller scope) pre-
serves syntactic correctness of visual typed graphs over extended sets of node
types. As a consequence, a coherent semantics cannot be expected. Finally,
S will usually not be able to generate a suitable synchronization context for
the imported element types.

These drawbacks are serious, but could be expected: a simple element import
of elements from one modeling language into another one can in most cases not be
possible without any add-on work. There are, however, some situations in which
a simple type import does indeed make sense. If no constraints are necessary to
preserve syntactic consistency (neither because of R nor because of the imported
types), no formal semantics of the imported elements is available (e.g. in their
origin Basic Reference Frame), and a trivial synchronization context (e.g., single
node sharing allowed) for the imported types is reasonable, then the type import
is generally unproblematic. Here, an example is the import of ”generic” elements
into specialized modeling languages. E.g., if a Basic Reference Frame R describes a
formal modeling language and another one, R′, contains a set of ”comment” nodes

90 CHAPTER 4. THE REFERENCE FRAME APPROACH

and edges used to simply put in arbitrary text, then the import of some of the
comment elements into R is usually possible without problems and results in an
Interoperable Reference Frame which offers not only the elements for the construc-
tion of formal models, but also offers the imported means for comments. Advanced
and more intelligent approaches are of course imaginable (e.g., the consideration
of the synchronization context mappings defined in the ”original” Reference Frame
that defines the imported types), but are not possible within the ”import” mecha-
nism. The next subsection presents an example of a more advanced approach which
allows the modification of synchronization contexts along with the import of node
and edge types.

Apart from the examples presented in this subsection, which illustrate how Basic
Reference Frames can serve as foundations for reasonable Interoperable Reference
Frames, also scenarios with inherently interoperable Reference Frames (i.e., not
based on a corresponding Basic Reference Frame) are imaginable. Here, examples
include the explicit import of generic visualizer components for specific data types
(e.g., tables for arrays of numbers) into an Interoperable Reference Frame with the
aim of allowing the display of model states without having to define the displays
themselves. In subsection 6.3.2, a detailed example for this (the inclusion of function
plotters within a System Dynamics Reference Frame) is illustrated. This section also
addresses some other implementation related aspects. E.g., the type import leads
to requirements concerning the encapsulation of components: the ”importable”
elements (node and edge types) should be designed with suitable interfaces that
allow for reuse also technically (e.g., concerning access rights).

4.5.2 Is-a Relations

The previous subsection described a first conceptual way of establishing connections
between Basic Reference Frames. The import relation basically enables a Basic
Reference Frame to know other node and edge types. As outlined, already this
very lightweight relation is usable in a considerable number of cases. However, the
type import does not allow for expressing direct dependencies and interrelations
between Reference Frames. The mechanism as defined in the following addresses
this problem: syntactically based on the type import, it enables the formulation of
a Reference Frame which extends another one and adds functionality to it.

Definition 4.13 Let R = 〈N , E , VN , VE , C, D, Ip,S〉↙〈N∗,E∗〉 and
R′ = 〈N ′, E ′, V ′

N , V ′
E , C ′, D′, Ip′,S ′〉↙〈N ′∗,E′∗〉 be Reference Frames. Then R′ is

called an extension of R, expressed by the notation R′
↖R, if the following relations

hold:

• N ∪N ∗ ⊆ N ′∗ (i.e., R′ imports all the node types defined or imported by R)

• E ∪ E∗ ⊆ E ′∗ (R′ imports all the edge types defined or imported by R)

• VN ⊆ V ′
N

• VE ⊆ V ′
E

• C ⊆ C ′ (i.e., C ′ contains at least all the mappings contained in C)

• There is a set DE so that D′ = D ×DE

• domain(Ip) ⊆ domain(Ip′)

According to this definition, a Reference Frame R′
↖R does not only import

the primitives (node and edge types) of R, but also retains the visual attributes,
the set of constraint mappings, and the domain of the semantic mapping. R′ is

4.5. REFERENCE FRAMES 91

allowed to extend all these sets. The semantic domain of R′ is also an extension of
the one of R. The formal notation of the cross product models better (compared
to a superset relation) the additional semantic attributes that R′ can define: these
constitute DE . The chosen approach expresses that the semantic domain defined by
R′ fully retains the original set D and thereby allows the original semantic mapping
to be included as a part of the extended mapping Ip′, but at the same time new
attributes are possible independently of the original ones. Of course, a Reference
Frame extension without really changing the semantic domain is possible: here, a
trivial extension set DE (consisting, e.g, of one neutral element) can be used.

It does not make sense to include a specific requirement about the synchroniza-
tion context mapping into the above definition, as these mappings rely on the types
defined by the Reference Frames. These, however, are usually disjunct (at least for
unambiguous Reference Frame sets, cf. definition 4.11).

Though a Reference Frame that extends another one clearly takes the extended
one as a base for its own components, definition 4.13 does not guarantee preserva-
tion of syntax or semantics of visual typed graphs. For the case of the constraint
mappings, this is expressed through the subset relation between the set defined by
the base Reference Frame and the set defined by the extension Reference Frame. An
immediate consequence of this is that the set of ”correct” expressions can be reduced
(but not widened!) through the extension. The semantic mapping may even com-
pletely change. This openness of the extension mechanism generally makes sense,
as some examples will illustrate later. It does, however, also allow for inconsistent
sets of constraint mappings sets, as the next proposition outlines:

Proposition 4.4 If R, R′ and R′′ are Reference Frames with R′
↖R and R′′

↖R,
then the conformity of a visual typed graph with respect to C(R′) does not imply
conformity with respect to C(R′′), and vice versa.

Proof. Consider the example case of C(R′) = C(R) and C(R′′) = C(R) ∪ {c} so
that there is at least one visual typed graph G which is conform with C(R) but
not with c. Then G is correct in terms of C(R′) (and in terms of C(R)), but not in
terms of C(R′′).

As shown, the extension mechanism of Reference Frames may lead to a diffusion
of the overall term ”syntactic correctness”: inconsistencies are not prevented. In the
simplest case (one Reference Frame extending another one), these inconsistencies
might easily be overcome by defining the constraint mappings set of the base Refer-
ence Frame as ”prior” to its extensions. However, the case presented in proposition
4.4 (R′ and R′′ are independent extensions that are in conflict with each other)
underlines the basic problem: Based upon multiple Reference Frames, it is difficult
for a framework to define a global notion of ”syntactic correctness” that fully takes
into account all definitions and constraints. As illustrated, this can even be the case
for closely related Reference Frames. A simple merge of the constraint mappings
sets, resulting in a perhaps too narrow set of ”correct” visual typed graphs, seems
to be the only feasible solution for these situations.

One aspect worth mentioning is that the extension mechanism for Reference
Frames relies on the fact that the syntax constraints of the base are retained in
the extension. This does not allow for declaring ”specialized” Reference Frames
which allow more than their origin. Typically, this approach meets well practical
requirements: a modeling language defines certain syntactic rules, and a subtype
of the language will usually retain these. The relation between UML2 allowing
generally more than UML1 (and, in addition, assigning a different semantics to
elements that included also in UML1) is a counterexample here - yet, one might
argue whether in this case, UML2 can still be called a specialization of UML1, or
whether UML1 and UML2 are simply different languages.

92 CHAPTER 4. THE REFERENCE FRAME APPROACH

In contrast to the above observations that are related to extended Reference
Frames modifying the integrity constraints sets of their base concerning the basic
element types, a number of realistic extensions of modeling languages are likely to
preserve syntax and semantics of their foundations. These extensions are charac-
terized in the following definitions:

Definition 4.14 If R and R′ are Reference Frames so that R′
↖R, then the ex-

tension is called syntactically consistent if R′ preserves the syntax of R, i.e. if all
visual typed graphs which consist only of node and edge types defined in R and that
are syntactically correct in terms of C(R) are also correct in terms of C(R′).

Definition 4.15 If R and R′ are Reference Frames so that R′
↖R, then the ex-

tension is called semantically consistent if it is syntactically consistent, and if R′

in addition preserves the semantics of R, i.e. if for a visual typed graph G that is
syntactically correct according to C(R′), the semantics should be retained:

Ip(R′)(G) = (Ip(R)(G), d) for some d ∈ DE , if D(R′) = D(R)×DE

The following proposition shows that under certain conditions, the syntactic
integrity constraints of the base Reference Frame are the same as the ones of the
extended Reference Frame.

Proposition 4.5 If R and R′ are Reference Frames so that the extension R′
↖R

is syntactically consistent, then for visual typed graphs which consist only of node
and edge types defined in R, syntactic correctness in terms of C(R) is equivalent to
syntactic correctness in terms of C(R′).

Proof. An immediate consequence of R′ extending R is that C(R) ⊆ C(R′).
Therefore, the syntactic correctness in terms of C(R′) generally implies correctness
in terms of C(R). For the specific case of visual typed graphs which consist only
of node and edge types defined in R, the specific characteristics of syntactically
consistent extensions (according to definition 4.14) show the other direction.

An obvious result of proposition 4.5 is that inconsistent constraint mapping
sets as constructed in the proof of proposition 4.4 can not occur for syntactically
consistent Reference Frame extensions. However, the general problem remains,
though restricted to a special class of visual typed graphs.

Definition 4.16 A visual typed graph 〈G,N , E , L〉 is called heterogeneous with re-
spect to a set {R1,R2, . . . ,Rn} of Reference Frames if there is no i ∈ {1, . . . , n}
with N ⊆ N (Ri) and E ⊆ E(Ri).

Proposition 4.6 Proposition 4.4 also holds if the extensions are syntactically con-
sistent.

Proof. Let n be a node type not contained in N (R) but imported into both R′

and R′′. Let G be a visual typed graph which contains nodes of type n. Consider
the example case of C(R′) = C(R) = ∅, and C(R′′) = {c} with G not conform with
c. Then G is correct in terms of C(R′) (and in terms of C(R)), but not in terms of
C(R′′).

The proof of the previous proposition needed external elements to construct an
inconsistent set of constraint mappings. With elements coming from the original
set of primitive entities as defined in the base Reference Frame, such a construction

4.6. REFERENCE FRAME BASED INTERPRETATION 93

is not possible. Furthermore, the proof needed the property that a heterogeneous
visual typed graph is correct in terms of the basic Reference Frame R (as the
extensions R′ and R′′ can only narrow notion of syntactic correctness, not widen
it). This correctness of the heterogeneous structure, however, can be prevented with
appropriate integrity constraint mappings in C(R) (cf. section 4.2). This offers a
means to describe ”encapsulated” languages which protect their notion of syntactic
correctness, provided only consistent extensions are used.

The extension mechanism for Reference Frames as presented in this subsection
is far more expressive than the inclusion principle shown in the previous subsec-
tion. There are a number of Reference Frame extensions that are reasonable for
various causes. Obviously, the basic motivation for is-a relations between modeling
languages is the reuse of functionality. On the application level, two more specific
use cases for the extension mechanism are the following:

The use of generic libraries. Reference Frame extensions allow the access to
generic node and edge type libraries - in contrast to simple imports of these
types, the whole context (syntactic constraints, semantics, etc.) of these node
and edge types can be considered.

Iterative adding of functionality. For several reasons, the function of defining
a Reference Frame in several iterative steps might be desired: the option of
offering ”core” modeling languages that are very intuitive but only have a
a restricted functionality, and ”advanced” fully expressive versions of these
languages may be attractive from both usability and also educational reasons.

Examples for the first category that go beyond node and edge type imports
include the re-use of generic graph algorithms that are implemented as semantic
mappings, or the definition of certain logging and tracking functions, e.g. for in-
teraction analysis or user feedback, within generic Reference Frames that can then
even be defined with empty node and edge type sets, the functionality being a side
effect of the interpretation mapping function. These generic Reference Frames can
then serve as a base for other Reference Frames that are compatible with this kind
of logging or tracking.

A concrete example for the second category (iterative adding of functionality)
from the domain of stochastics is shown in figure 6.4 in chapter 6.

4.6 Reference Frame Based Interpretation

The previous section described the concept of a Reference Frame as a formal ab-
straction of a modeling language that makes use of a graph based representation.
A Reference Frame can contain specific syntactic integrity constraints, and has a
semantic mapping associated. Thus, it is able to interpret visual typed graphs that
consist of (at least) ”his” node and edge types. However, the question of interpre-
tation has not been fully addressed up to now:

• What does interpretation of a visual typed graphs by multiple Reference
Frames mean?

• How can syntax and semantics of heterogeneous visual typed graphs be de-
fined?

Obviously, both questions are important to address with respect to the desired
interoperability. However, this section of the thesis does not show how an inter-
pretation of heterogeneous visual typed graphs by multiple Reference Frames can
practically be done (this will be done in the next chapters). Instead, I want to

94 CHAPTER 4. THE REFERENCE FRAME APPROACH

prepare the implementation parts with some theoretical remarks that outline what
interpretation under the mentioned constraints may be. A first version of these
conceptual approaches has already been published (Pinkwart, 2003).

Concerning syntax, there is not much choice. According to the definitions 4.6
and 4.10, a visual typed graph G is syntactically correct with respect to a Reference
Frame R if all the constraint mappings in C(R) deliver true for G. The domain
of the semantic mapping of R consists only of those visual typed graphs that are
syntactically correct concerning C(R). To allow for an interpretation of a visual
typed graph G by multiple Reference Frames R1,R2, . . . ,Rn at all, G will necessar-
ily have to be conform with all the constraint mappings contained in

⋃n
i=1 C(Ri).

A trivial consequence of this is that syntactic correctness concerning one Reference
Frame R does not guarantee correctness concerning a set of Reference Frames, even
if the set contains R and G consists only of node and edge types contained in N (R)
and E(R).

While the syntactic aspects can be treated generically as shown above (with
the identified drawbacks), the case is much more unclear and harder for the seman-
tics of visual typed graph. For a syntactically correct (concerning Reference Frames
R1,R2, . . . ,Rn) visual typed graph G, each Reference Frame has its own interpreta-
tion of G, namely the image of the semantic mapping Ip(R)(G). A straightforward
approach for the definition of an interpretation based on R1,R2, . . . ,Rn would
therefore be the use of the cross product, with the integrated semantic mapping
having the image D(R1)×D(R2)× . . .×D(Rn). The semantics of a visual typed
graph would then be a tuple that consists of the individual interpretations done by
the participating Reference Frames. This, however, has three disadvantages.

• Such a solution does not take into account interoperability between Refer-
ence Frames at all: the abstraction does not foresee interrelations between
semantics.

• The pure cross product notation does not represent the finest possible granu-
larity, as it does not take into account the specific relations between Reference
Frames and heterogeneous visual typed graphs.

• The straightforward approach causes the semantics of a visual typed graph to
change if a Reference Frame is added to the set of ”interpreters”, even if the
added Reference Frame does not have anything to do with the graph.

These reasons motivate another approach, the implementation of which will be
shown in chapter 6. The approach makes use of an interpretation scheme which log-
ically splits a heterogeneous visual typed graph into several subgraphs, and foresees
interpretations of these subgraphs by sets of Reference Frames.

4.6.1 Substructures of Visual Typed Graphs

The conceptual approaches presented in the following three subsections use visual
typed graphs (cf. definition 4.5) as the primary subject of interpretation. The case
of multiple graphs that are in some kind of relation to each other is not treated. The
only exception to this is that synchronized graph instances are generically covered
by means of the synchronization contexts - the inclusion of these is presented in the
following chapters of this thesis.

Apart from visual typed graphs as basic data structures to be interpreted, an-
other assumption made in the following is that this visual typed graph 〈G,N , E , L〉
is interpreted by a set R of Reference Frames which fulfils the unambiguity crite-
rion expressed in definition 4.11. With the import and is-a relations as presented in
section 4.5 (and other imaginable ones, based on the concept of Reference Frames),
this does not limit the scope of the following approach too much.

4.6. REFERENCE FRAME BASED INTERPRETATION 95

Definition 4.17 Let R↙〈N ′,E′〉 be a Reference Frame. Then the union N (R) ∪
E(R) is called Defines(R).

If a Reference Frame R is contained in an unambiguous set of Reference Frames
R, Defines(R) characterizes the element types that R contributes to the types
contained in R, and there is a mapping between types and defining structures: If
x is an arbitrary node or edge type contained in N or E , then the unambiguity
property of R ensures that there is at most one Reference Frame R ∈ R which
defines x, i.e. where x ∈ Defines(R).

The Defines set can thus be used for expressing to which Reference Frame
(out of a set of available ones) a certain node or edge type ”belongs”. This relation
will be important in the implementation parts. However, it does not cover the
interoperability mechanisms between Reference Frames, in particular the import
and is-a relations. To incorporate this, the introduction of a second concept is
necessary:

Definition 4.18 If R↙〈N ′,E′〉 is a Reference Frame, then the union Defines(R)
∪N ′ ∪ E ′ is called Knows(R).

As defined, the set Knows(R) includes all the node and edge types that a
Reference Frame imports and thus, loosely speaking, the types that it has detailed
information about and can semantically access.

By definition, we have the relation Defines(R) ⊆ Knows(R), with equality
only if R does not import any types. Another immediate conclusion from definitions
4.13 and 4.18 is that for a Reference Frame extensionR′

↖R, the relation Knows(R)
⊆ Knows(R′) holds.

Now, let us consider a visual typed graph 〈G,N , E , L〉 and a Reference Frame R.
Then the largest substructure of G to which R has detailed access in the sense that
all the contained (node or edge) types are imported or defined by R is obviously
determined by the set Knows(R):

Definition 4.19 Let 〈G,N , E , L〉 be a visual typed graph, and R a Reference Frame.
Then G|R denotes the largest subgraph of G whose node and edge domains are sub-
sets of Knows(R). This subgraph is called induced by R.

Here, the subgraph relation between G and G|R instead of a subset relation is
used, as otherwise the problem of ”dangling” edges could occur: if an edge type is
in the Knows set, but not the type of an adjacent node, an inclusion of the edge
into G|R would destroy the graph structure. The proposed approach avoids this
problem, but therefore potentially includes slightly too small substructures of G
into G|R.

An immediate result of definition 4.19 is that there is no direct relation between
a node or edge in a graph, and the Reference Frames knowing this node/edge, as
the following proposition illustrates:

Proposition 4.7 Let 〈G,N , E , L〉 be a visual typed graph, and let S be a set of
Reference Frames. If ϕ denotes the mapping between a node n of G and the set of
Reference Frames whose induced subgraph of G contains n (thus ϕ being a mapping
from N(G) to P(R)), then the following relationships hold:

1. ϕ may map a node to the empty set

2. In the general case, ϕ maps all nodes to sets with one or zero elements only
if R is unambiguous and no Reference Frame in S imports an element that is
defined or imported by another Reference Frame in S.

96 CHAPTER 4. THE REFERENCE FRAME APPROACH

3. In general, ϕ is not injective.

4. ϕ is usually not surjective. It is not even guaranteed that each Reference
Frame of S is contained in one of the sets of image(ϕ))

Proof.

1. If n is a node of a type that is not contained in the Knows set of any Reference
Frame contained in S, then n will not appear in any of the induced subgraphs.
Consequently, ϕ(n) = ∅.

2. If S is unambiguous, the Defines sets are disjoint. Under the condition as
expressed above, also the imported sets are disjoint from each other and from
the Defines sets, so that finally also the Knows sets are disjoint. Con-
sequently, no node can be contained in two subgraphs that are induced by
Reference Frames in S.

3. In fact, ϕ is almost never injective: if, e.g., G contains two nodes n1 and n2

of the same type, then obviously ϕ(n1) = ϕ(n2).

4. If S contains a Reference Frame R with Knows(R) not containing any of the
types contained in G, then R will not be contained in any of the images that
ϕ produces. In particular, a concrete counterexample is an empty graph G
and a non-empty set S. Here, {S} /∈ image(ϕ).

The previous proposition outlined that, given a visual typed graph, it is not triv-
ial to determine the ”semantically near” subgraph with respect to the interpretation
mechanism and scope of a Reference Frame. These problems are caused by the pos-
sibility of importing elements and make an implementation challenging: a central
”management” component could of course manage the relations between nodes and
edges contained in a visual typed graph on the one hand and Reference Frames on
the other hand (by simply considering the Knows and Defines sets), but further
interpretation functions can not be delegated to such a central component.

Together with chapter 6, the next two subsections show how a solution can be
based on different interpretation types and their aggregation.

4.6.2 Interpretation Types

As defined in section 4.5, each Reference Frame R can principally interpret any
visual typed graph, irrespective of whether the Reference Frame really relates to
the graph and its types. Formally speaking, Ip(R) is not limited to structures
of types contained in Knows(R). However, as motivated in the annotations to
definition 4.10, the mapping Ip can (usually) not depend on types not accessible to
R. To solve this conflict of keeping the interpretation mapping general enough to
ensure semantic interoperability, and at the same time making it expressive enough
for structures of known types, I define two subtypes of interpretation:

Generic Interpretation. An interpretation of a visual typed graph 〈G,N , E , L〉
by a Reference Frame R is called generic, if the interpretation mapping relies
only on the abstract graph structure of G and its layout L. In this case, the
interpretation is denoted with Ipgen(R)(〈G,N , E , L〉)

Domain Specific Interpretation. If an interpretation of a visual typed graph
〈G,N , E , L〉 by a Reference FrameRmakes use of the typesN and E , then this
interpretation is called domain specific. Such an interpretation is expressed
as Ipdom(R)(〈G,N , E , L〉).

4.6. REFERENCE FRAME BASED INTERPRETATION 97

Proposition 4.8 Given a heterogeneous visual typed graph G, then G|R is the
largest subgraph of G for which a domain specific interpretation by a Reference
Frame R is possible.

Proof. G|R consists only of nodes and edges whose type is contained in Knows(R).
As an immediate consequence, R can make use of the types for interpretation, and
can therefore conduct a domain specific interpretation of G|R. The fact that G|R is
the largest subgraph of G with this characteristic is due to the maximality condition
in definition 4.19.

The two types of interpretation (generic and domain specific) will serve as a
means of distinction in the following, and they will have natural correspondences
in the implementation parts. Proposition 4.8 outlined that the maximum scope
for a domain specific interpretation can easily be determined: it is the subgraph
that a Reference Frame induces on a visual typed graph. Examples for domain
specific interpretation are easy to find (cf. example 4.4). They include most of
the algorithms used within modeling languages. The following example contains
three different generic interpretations of visual typed graphs and demonstrates that
already a generic interpretation can indeed be very useful in the target domain of
collaborative modeling.

Example 4.6 Examples for generic interpretation mappings include the following:

• All the mappings that operate on abstract graph structures can be seen as
generic interpretations. This includes trivial ones (like, e.g., the counting
of nodes and edges that a graph contains) as well as advanced complex graph
algorithms. One imaginable generic interpretation where the semantic domain
is the set of visual typed graphs is, e.g., the calculation of a spanning tree.

• A generic interpretation may also access layout information. This allows
the implementation of puzzle-style layout checks as generic interpretations, as
well as routines which search for nodes being contained in others in the spatial
arrangement.

• A layout may contain visual node and edge attributes that are not only related
to the spatial arrangement of elements, but also to the person that created them
(e.g., for awareness mechanisms). A generic interpretation that operates on
these attributes can, e.g., calculate usage statistics of a visual typed graph,
and can thus build the base for feedback mechanisms that are based on these
calculations.

4.6.3 The Integration of Multiple Interpretations

The two previous subsections introduced the notions of induced subgraphs that
result from filtering visual typed graphs by Reference Frames, and two kinds of
interpretation (generic and domain specific) that a Reference Frame can conduct on
a visual typed graph. I have also motivated that subgraphs as induced by Reference
Frames are exactly the structures that allow for domain-specific interpretation by
the corresponding Reference Frame.

This subsection now adds one more ingredient: the interpretation of a visual
typed graph by multiple Reference Frames. As this will involve both generic and
domain specific interpretations, a small preparation is necessary:

If 〈G,N , E , L〉 is a visual typed graph that is interpreted by a Reference Frame
R with interpretation mapping Ip(R), then (using the terms as introduced in sub-
section 4.6.2), the interpretation is:

98 CHAPTER 4. THE REFERENCE FRAME APPROACH

Ip(R)(〈G,N , E , L〉) = Ipgen(R)(〈G,N , E , L〉)⊗ Ipdom(R)(〈G|R,N , E , L〉)

As stated in the previous subsection, the generic interpretation does not make
use of the type information associated to nodes and edges. Therefore, N and E
can be replaced with anonymous variables (or even the empty set) at the respective
location in the formula to emphasize the independency of Ipgen from N and E , and
the result is:

Ip(R)(〈G,N , E , L〉) = Ipgen(R)(〈G,
¯
,
¯
, L〉)⊗ Ipdom(R)(〈G|R,N , E , L〉)

Now, this result can be extended towards multiple Reference Frames. If a set
R = {R1,R2, . . .} of Reference Frames and a visual typed graph 〈G,N , E , L〉 are
given, then an interpretation of the visual typed graph by the set can be defined as
the aggregation of the different interpretations as conducted by the single Reference
Frames:

Ip(〈G,N , E , L〉) :=
⊗
R∈R

Ip(R)(〈G,N , E , L〉)

As shown above, the left part of the relation can be expressed in further detail
and results in:

Ip(〈G,N , E , L〉) =
⊗
R∈R

(
Ipgen(R)(〈G,

¯
,
¯
, L〉)⊗ Ipdom(R)(〈G|R,N , E , L〉)

)
An aspect not mentioned up to now is the exact meaning of the aggregation

operator ⊗ in the formulas above. This was done on purpose, as the shown relations
are independent of the concrete way this operator works. Basically, the following
two different principles for the implementation of ⊗ can be distinguished:

Separation. A first approach is to keep different interpretations of a visual typed
graph separate from each other. Here, the aggregation result can be repre-
sented as a tuple:

Ip1(〈G,N , E, L〉)⊗ Ip2(〈G,N , E, L〉) := 〈Ip1(〈G,N , E, L〉), Ip2(〈G,N , E, L〉)〉

Integration. Another approach is to allow the different aggregated interpretations
to be really integrated and combined in some way, including the acceptance
of side effects. In this case, a suitable notation format makes use of a merging
function µ:

Ip1(〈G,N , E, L〉)⊗ Ip2(〈G,N , E, L〉) := µ(Ip1(〈G,N , E, L〉), Ip2(〈G,N , E, L〉))

Although the separative approach is formally a specific case of the more general
integrative approach (with µ mapping the unchanged interpretation results to a
tuple), it makes sense to distinguish the two outlined cases: for practical implemen-
tations, there are major differences between the two cases.

The first assigns each Reference Frame ”his” component in the interpretation
result tuple. Through this one-to-one mapping, a Reference Frame is the unique
source for a part of the general interpretation outcome. Furthermore, the first
definition of the aggregation is closed in the sense that it does not make use of any
further functions (like the µ in the second one), and this way allows for a (relatively)
straightforward implementation. However, the strict separation of interpretation
results is not a contribution to semantic interoperability.

The second approach better addresses this requirement. With the additional
merging function, it allows access to interpretation results across Reference Frames.
The following two examples illustrate this:

4.6. REFERENCE FRAME BASED INTERPRETATION 99

• It is possible to base the interpretation of a visual typed graph by Reference
Frame R2 on the interpretation that another Reference Frame R1 did. This
enables advanced re-use of results: R1 can, e.g., be associated to a model-
ing language, with the interpretation done by R1 representing calculations
required by this language. Reference Frame R2 could then, e.g., be a model
analyzer that checks the model for some kind of correctness (according to
some task, or other criteria). This obviously requires (or induces) an order
among the interpretations - formally, IpR2 here operates on IpR1(G), not on
G directly. Disadvantages and inherent problem of this are discussed in the
following. However, an advantage is that external interpretations (which do
not necessarily have to accept visual typed graphs as input) can be integrated.
In addition, as long as an implementation of the Reference Frame approach
ensures that the results of the semantic mapping are stored associated to
the graph that is interpreted, the parameter type problem can not occur in
practice.

• The case listed above involves one Reference Frame that takes up the interpre-
tation that another one conducted as input. Another form of interoperability
that goes even beyond this unidirectional re-use is illustrated in figure 4.4.
Here, a Petri Net (on the left side) interacts with a System Dynamics network
(on the right side). The general interpretation includes the two single model
interpretations in two respects: the number of tokens in the ”amount” place
serves as an input for the rate in the System Dynamics net, and vice versa the
capacity of the amount place is controlled by the result stock in the System
Dynamics net. This shown type of integration obviously requires a non-trivial
merging function µ.

Another advantage of the integrative way of interpretation is its high degree of
flexibility and expressiveness: the calculi that are used for the interpretation func-
tions Ip and the merging function µ are the only means that limit the expressiveness
of the integrated interpretation. If µ is implemented in the same language as the
original single interpretations, a loss of expressiveness will therefore not occur.

There are, however, also a number of drawbacks of an integrated interpretation
approach as opposed to the separated variant.

• The integrated version obviously adds a further degree of complexity.

• Unless µ is commutative, the order of the aggregated interpretations of a
visual typed graph has an impact on the overall interpretation result. This
might be critical, as there is no simple way of deciding the order in which
to apply the interpretation mappings multiple Reference Frames on a visual
typed graph. Even node-wise, this is not evident: of course, the (unique)
Reference Frame which defines the node type could get a priority, but how
could a (reasonable!) order among the others be determined, given that even
multiple imports and extensions are possible?

• Under the premise of semantic interoperability, conflicts between interpreta-
tions are possible and inevitable. As any Reference Frame may interpret any
visual typed graph, problematic situations like the following two might occur:

– A Reference Frame R1 is designed to ensure, e.g., a tree structure of
graphs, and, in the case of detecting a cycle, mirrors back these cycles
as errors to the user (via an implementation of the Reference Frame
that displays the result of the interpretation on the screen). Another
Reference Frame R2 offers the nodes and edge types used for Petri Nets.

100 CHAPTER 4. THE REFERENCE FRAME APPROACH

Figure 4.4: Illustration of integrative model interpretation: Petri Nets and System
Dynamics

4.7. INTEROPERABILITY ISSUES AND DESIGN AIMS MET 101

An interpretation of a visual typed graph by these Reference Frames
would result in undesired cycle restrictions for Petri Nets.

– It is possible to define Reference Frames which take elements out of their
context and define a semantics that is inconsistent with the ”original”
one as specified by the Reference Frame that defined these elements. The
integration in figure 4.4 shows a potential situation where this problem
may occur: if the integration between the modeling languages is not de-
fined consistent with the original semantics, the merge function might
override the activation rule for transitions in Petri Nets and, e.g., de-
clare the ”take” transition active if the initial stock contains at least
2 elements. This hypothetical definition would then indeed violate the
semantics of the Petri Net part of the graph.

• It depends on µ (and, of course, on the single interpretation mappings), if the
overall integrated interpretation exists in the sense that it is computable.

These negative points of the integrated approach have to be taken into con-
sideration seriously. On the other hand, the separative approach does not allow
for semantic interoperability at all. In addition, the localization of problems going
along with inconsistent semantics is facilitated through the following observation:
splitting the domain specific interpretation Ipdom of a Reference Frame into a core
semantics and an interoperability semantics is easily possible in the approach - the
core semantics is related to the part of G|R that consists of types contained in
Defines(R) only, and the interoperability semantics is related to the rest of G|R.
This separates ”real” modeling language semantics from ”added” interoperability.
Using this approach, only the interoperability semantics is a candidate for potential
problems concerning semantic consistency.

Generally speaking, it is not surprising that no simple and generic easy way of
integrating multiple interpretations of heterogeneous models exists. An integration
of modeling languages (or, even being more restrictive, their semantics), is often
difficult already for the specific case of two concretely given languages. A generic
integration solution for all graph based visual languages therefore is unrealistic,
as existing research results confirm (cf. section 2.3): either the approaches are
only conceptual and not suitable for implementation, or the expressiveness of the
technique is quite low. The approach as presented in this chapter aims at an inter-
mediary level of detail which does not reduce the number of covered languages, and
which is designed to serve as a formal foundation for implementation purposes -
the latter not only reduced to the interpretation of visual typed graphs, but in par-
ticular also to the computational representation of modeling languages (Reference
Frames) as such.

4.7 Interoperability Issues and Design Aims Met

This chapter proposed a conceptual formal framework whose foundations are the
notions of visual typed graphs and heterogeneous models. Here, an important input
is the field of graph theory: in the abstract base structure, a heterogeneous model
is a mathematical graph. This design decision allows arbitrary graph algorithms
to work also on the specific structure of heterogeneous models. Compared to ex-
isting modeling techniques like MOF (Meta-Object Facility Specification, n.d.) or
DSM (Metacase, n.d.), my approach explicitly focuses on graphs and typed visual
structures, and therefore is more specific and operational. However, there are some
common points with MODL (cf. table 2.2), in particular the inclusion of data types,
associations, and syntax constraints, and - on a higher level - the design towards an
object oriented implementation.

102 CHAPTER 4. THE REFERENCE FRAME APPROACH

The concept of a Reference Frame (which is the formal equivalent of a ”modeling
language”) encapsulates all the components that are needed to manipulate and han-
dle visual typed graphs in collaborative contexts: in particular, a Reference Frame
can define types of nodes and edges, syntactic and semantic properties, synchroniza-
tion features, and relations to other Reference Frames (via different mechanisms,
two of which have been explored in more detail). In some aspects, my formalization
is similar to the work of Wang and Zeevat (1998): their graphical sorts, operations,
and predicates have equivalents in the Reference Frame definition. Yet, their work is
designed for graphical (in the sense of visual and geometrical) objects only, whereas
my approach focuses on graph based structures - the interpretation of these may be
completely independent of visual parameters.

Similar to a number of approaches in the field of visual language theory (Mar-
riott & Meyer, 1998; Haarslev, 1999), the Reference Frame approach makes use
of constraint predicates in order to flexibly express syntactical requirements. The
concepts of syntax and semantics of Reference Frames, the latter relying on the
definition of Harel and Rumpe (2004), allow for an implementation using graph
grammars , as done by, e.g., Rekers and Schürr (1997) or Kaul (1982), or other
transformation oriented techniques like proposed by, e.g., Lara and Vangheluwe
(2004), or Cordella et al. (1998). However, the approach is open in the sense that
it does not exclusively require or integrate a specific mechanism (at least not on
the conceptual level). This design choice was made with respect to the intended
flexibility of the system: a prescription of a particular interpretation method for
all supported modeling languages is very likely to reduce the set of languages that
are supported. Concerning the relations between Reference Frames, I have avoided
the development of a general ”add” or ”merge” mechanism. According to Geof-
frion (1989b), these merges will seldom be reasonable, so that a general mechanism
does not make sense. Instead, the proposed approach offers some means of inter-
operability between Reference Frames, allows for a fine degree of control, does not
suggest that an arbitrary merge of modeling languages is unproblematic, and still
retains a lot of expressiveness (since an ”add” can easily be emulated by imports
and extensions).

Based on the concepts of visual typed graphs and Reference Frames, this chapter
introduced an abstract interpretation method that integrates multiple interpreta-
tions of a visual typed graph by a set of Reference Frames, explicitly allowing every
Reference Frame to interpret every visual typed graph. With two different types of
interpretation (generic and domain specific), the approach takes into account the
degree of semantic access that a Reference Frame has to certain structures. Impor-
tant inputs for my approach are, again, graph theory (in particular the notion of
induced subgraphs), and the concept of formal model semantics (Harel & Rumpe,
2004). In the terminology of Dolk and Kottemann (1993), my interoperability ap-
proach allows for both definitional integration and procedural integration, as both
the import of types across Reference Frames is supported, and also the interpre-
tations can be mixed. Compared to the work of Geoffrion (1989b) in the field of
integrated interpretations using structured modeling, the Reference Frame approach
has the advantage of not being restricted to cycle-free structures. One point I share
with the argumentation of Geoffrion is that a completely automatic integration of
modeling languages (or their interpretation mechanisms) is out of reach. Also in
my approach, a non-trivial integration requires either the specification of a merging
function, or the adaptation of a Reference Frame in order to incorporate external
elements.

Two levels of interoperability have been explicitly considered in various parts
within this chapter: syntactic and semantic interoperability.

The core function of syntactic interoperability is provided with the very basic
definition of typed graphs: in these structures, it is possible to connect arbitrary

4.7. INTEROPERABILITY ISSUES AND DESIGN AIMS MET 103

types of nodes with any types of edges. This builds the foundation which allows
for heterogeneous models. The design choice for layouts of typed graphs is another
contribution to syntactic interoperability. Layouts are independent of types, and
therefore allow not only to build heterogeneous models logically, but also to display
them in an integrated manner. This is facilitated through shared layout informa-
tion. Finally, another aspect of syntactic interoperability results from the scope of
constraint mappings: the latter can access structures across domain bounds. With
this, a systematic way of describing syntactic relations between modeling languages
is enabled.

Also semantic interoperability is supported by several design choices in the for-
mal framework.

• The notion of semantics is kept very open and flexible, and it is externalized.
This allows the separation of interpretation from concrete representations,
and therefore a possible re-use of semantics across Reference Frames.

• The data structure of visual typed graphs (and heterogeneous models, which
are defined as visual typed graphs that contain types defined by different
Reference Frames) enables not only syntactic interoperability, but also serves
as a generic underlying structure which is suited for multiple interpretations.
In a way, these heterogenous models thereby represent the mixed semantics.

• The interpretation function of a Reference Frame is principally not restricted
to the set of nodes and edges that this Reference Frame ”knows”: in gen-
eral, each Reference Frame is able to interpret all visual typed graphs. This
does not seem to make much sense understanding a Reference Frame as an
encapsulation of a modeling technique only - however, the concept is expres-
sive enough also for further usages that rely on this enhanced scope for the
interpretation mapping. Subsection 8.1.4 illustrates some examples.

• Through the import and is-a mechanisms, a Reference Frame interoperability
is even explicitly foreseen. These approaches, which will have natural trans-
lations on the implementation level (cf. subsection 6.3.2), allow Reference
Frames to have overlapping Knows sets. In my approach, the latter is the
key that allows for really mixed (and not just ”coexistent”) interpretations.

• The conceptual framework allows for an integrated formulation and formal
notation of heterogeneous model structures and their integrated interpretation
by multiple Reference Frames.

There are a number of existing solutions for semantic interoperability that can
be compared to my approach. The work of Wang and Liu (2003) treats models
as black boxes and merely considers their outer interfaces. In contrast to this, my
approach offers a higher degree of insight into the models, and also more flexi-
ble ways to interconnect models. This holds also when comparing the Reference
Frame approach to the semantic interoperability issues presented by McBrien and
Poulovassilis (1999). The only means of connection between modeling languages
that they foresee are inter-model edges. Though they are able to provide an in-
depth specification of these edge types, they do not offer any further methods of
integration (and, in addition, do not address formal model interpretation at all).
Finally, a distinctive aspect between my work and the structured modeling tech-
nique (Geoffrion, 1989a) with respect to semantic interoperability is that structured
modeling puts greater restrictions on the types of supported models, and that no
mixed or merged interpretation is foreseen in structured modeling. A common point
between my approach and the work of Geoffrion, however, is that similar to SML,
all the formal and conceptual approaches in this chapter have been developed with

104 CHAPTER 4. THE REFERENCE FRAME APPROACH

a view towards implementation. The next chapters of this thesis describe a system
architecture which puts into practice the Reference Frame approach.

Chapter 5

Existing Technology

The previous chapter of this thesis presented the conceptual Reference Frame ap-
proach to support collaborative modeling with heterogeneous graph based repre-
sentations. It makes sense to build the software implementation of this approach
upon two components: a library for graphs, and a communication technology (to
technically support collaboration).

Therefore, this chapter reviews the currently existing state-of-art in these fields.
For either of the two components, this is done in two steps: first, a preparation
is done by identifying criteria (based on the theoretical results from the previous
chapter, and specific requirements related to goals of this thesis) that can be used to
distinguish between different technologies. In a second step, the currently available
technology is shortly presented and evaluated using the criteria list.

5.1 Criteria for Graph Representations

The first reasonable ”ingredient” for a modeling framework which relies on graph
based representations is of course a library for graphs and their visualizations. The
following subsections contain the criteria relevant for the choice of technology. The
selection of criteria is guided by three sources of information: the theoretical results
from chapter 2, the specifications and design goals from the introduction, and also
general aspects of computer science and software engineering.

5.1.1 Supported Structures

In section 2.1, the most important mathematical concepts in the field of graph
theory have been mentioned. These were used within the concept of typed graphs
(cf. section 4.1). Of course, the scope of a graph framework in this respect is an
important criterion. In particular, the following questions are relevant:

• What is the broadest covered structure: graphs (consisting of nodes and con-
necting edges), or even more complex ones like hypergraphs?

• Are directed and/or indirected edges possible?

• Are multiple edges and/or loops supported?

5.1.2 Visual Representations

Apart from the structural relations that the graph library supports, also the possible
representations of nodes and edges are of course an important criterion, because
reaching the aim of supporting flexible modeling languages can be hindered by

105

106 CHAPTER 5. EXISTING TECHNOLOGY

environments that severely limit possible visual representations. In terms of section
4.1, this criterion can be formulated as related to the visual attributes that a library
supports.

Apart from these general questions of flexibility in the representations, also the
ability of a framework to manage multiple representations of the same conceptual
entity is an important feature that can be of use in learning contexts in general and
also within collaborative modeling in particular (Ainsworth, 1999; Löhner et al.,
2003).

Another topic related to graph representations deals with spatial layouts: there
are a number of modeling languages with have an abstract graph oriented repre-
sentation (like, e.g., Petri Nets), but no inherent specification that determines the
positioning of nodes. As such, automatic layout mechanisms embedded in the graph
framework would be an advantage.

5.1.3 Syntax

If representations for elements of the graphs can be customized at all (cf. pre-
vious subsection), an interesting criterion is how these specifications can be done
syntactically.

Of course, syntactical issues about specification formats might also relate to con-
cepts exceeding pure representational parameters: if, e.g., semantic or operational
features are available (cf. next subsection), also the specification methods for these
are important.

For the purposes within this thesis, an easy but powerful mechanism of defining
object and relationship characteristics and structures would be ideal. Yet, as known
also from other fields of computer science, a certain trade-off between expressiveness
and simplicity can be expected.

5.1.4 Semantics and Operational Functionality

In the context of expressiveness of graph structures and their specifications, also the
potential of a framework to express semantics of nodes and edges is an important
criterion - within the Reference Frame approach, the notion of semantics has a
prominent place (cf. section 4.3).

The exact definition of model semantics varies considerably in literature (Harel
& Rumpe, 2004), from the original meaning of a formal mapping between between
syntax and a domain to aspects like, e.g., model behavior, context, or interpretation
by humans. The tool comparison along the criterion of semantics will focus on the
narrower original sense, but include other connotations if applicable.

Apart from the abstract notion of model semantics, another important criterion
is the degree to which a graph framework can express active structures in the
sense that model simulations are supported. This can, e.g, be reached through the
provision of an event propagation mechanism, a general message passing framework,
or states and state transitions for nodes and edges. Typical effects of actions on
models may be related to the graph structure itself, or the semantics of the contained
nodes and edges.

Obviously, an at least rudimentary support for operations on graph structures
is a necessary requirement for a graph framework used in the context of modeling
and simulation applications.

5.1.5 Interactive Usage

As pointed out in the introduction chapter, the implementations within this thesis
are, among others, driven by the idea of allowing for an interactive and collaborative

5.2. SYSTEMS FOR GRAPH BASED REPRESENTATIONS 107

system usage. For the used graph framework, this means that an interactive usage
must principally be possible - pure display tools that, e.g., read graph definitions
from a file and generate a visualization that cannot be further manipulated, are
useless as underlying technologies. A subcriterion in the field of interactive usage is
the potential of a library to restrict the structures that can be created by the user
interactively: in many graph based modeling languages, not all graph structures
constitute syntactically correct expressions (e.g., in a Petri Net, places and places
must not be connected) so that a flexible constraint mechanism embedded into
the graph framework would be an advantage. This criterion, however, does not
claim that syntactical correctness should generally have the priority over freedom
of actions - yet, the simulation of models will usually only be possible for syntactic
correct ones.

A good fulfilment of the ”interactive usage” criterion would be reached if, in
addition to a general support for user interaction with the graph, also direct manip-
ulation techniques like drag&drop were inherently facilitated by the graph library,
as the immediate feedback (which the direct manipulation techniques offer) may be
important for experimenting with models.

5.1.6 Additional Features

As will be shown in the next section, most graph libraries are designed for specific
purposes or application areas. Therefore, they typically offer specific additional
functions. A lot of these (like specific storage mechanisms, synchronization options,
embedded advanced graph algorithms, or extraordinary performance in terms of
memory or speed) are relevant for applications in the domain of collaborative mod-
eling. For that reason, the inclusion of a dedicated criterion that allows for taking
into account additional features makes sense.

5.2 Systems for Graph Based Representations

Having identified theoretical results about graphs and their representations, in par-
ticular also within the specific use case of modeling, this section lists existing tech-
nology in this field, and classifies it according to the criteria elaborated in section
5.1.

Nearly all modern programming languages come with an extensive library to
support programmers in building applications with graphical user interfaces. Cur-
rent examples include the Swing API of Java (Java Foundation Classes Homepage,
n.d.), or the GDI+ tools of C# (C# Corner, n.d.). In addition to these built-in
libraries, also an enormous number of other frameworks designed to facilitate the
construction of graphical structures is available (Big Faceless Java Graph Library,
n.d.; Java Imaging and Graphics Library, n.d.).

However, in contrast to this large number of frameworks that are targeted to-
wards general graphical representations, specific tools for graph representations are
rare - despite these representations being used frequently (cf. section 3.2). It
seems that many applications use their own underlying technical infrastructure for
the representation and visualization of graphs, but that these libraries are rarely
encapsulated and offered as self-contained software components. The following sub-
sections give an overview on the currently existing and freely available state-of-art
graph libraries. Tools that offer graph visualization only and do not offer interac-
tion options (in the sense of direct manipulation of graph structures, cf. subsection
5.1.5) to the user, like e.g. the dot framework (Gansner & North, 2000) or the Java
Universal Network/Graph library (JUNG manual, n.d.), are not considered, as for
the purposes within this thesis, interactive functions are a necessary prerequisite.

108 CHAPTER 5. EXISTING TECHNOLOGY

5.2.1 Sourceforge JGraph

A prominent Java library for graph representations in Java is the Sourceforge
JGraph project available at sourceforge.net and in a commercial version (Java
Open Source Graph Visualization Component Suite, n.d.). This project provides
a freely available and fully Swing (Java Foundation Classes Homepage, n.d.) com-
pliant implementation of a graph component. The developments in the library are
guided by the principles of full standards compliance, a clear and efficient design,
and the avoidance of large or complex functions.

The Sourceforge JGraph library is focused on graph visualization and offers
a very high degree of flexibility in this respect. Some aspects of this flexibility are
gained by specific functions of the library (like, e.g., zooming or grouping of ele-
ments), others are a direct consequence of design choices in the system architecture.

Sourceforge JGraph is a modular system that makes use of a three-tier
architecture. The lowest layer is core graph visualization library, the medium layer
offers layouts, graph algorithms and export routines to various data formats, and
the top layer contains applications which allow users to interact with the graph
visualizations.

Most of the criteria listed in the previous section correspond to the lowest layer
of this architecture. This layer makes use of the Model View Controller (MVC)
software architecture pattern (Buschmann et al., 1996) in a similar way the standard
Java Swing components do. This pattern allows the separation of data from its
representation and contains an elegant way of change propagation. It is the de
facto standard for current interactive systems with graphical representations.

In the case of Sourceforge JGraph, the roles of the different parts are as
follows (Alder, 2003):

• The model part (interface GraphModel) describes the abstract underlying
graph structure, including groupings and selection models.

• The view part (class GraphView) contains the display’s internal representation
of the graph, and the mapping and update between the model and the view.
A special focus is set on geometric relations and patterns.

• The control components (class GraphUI) handle the rendering process, the
steps necessary for in-place editing and cell handling, and the objects involved
in data transfer and marquee selection.

The class diagram in figure 5.1 illustrates the core parts of the architecture
and visualizes the mentioned separation between model, view and controller. It
is a remarkable aspect of the Sourceforge JGraph architecture that this clear
separation is only made on the graph level. In particular, there are no further
substructures for nodes or edges. This has an immediate consequence on the ex-
pressiveness of the library: multiple views per graph model are possible and enable,
e.g., two windows showing different parts of one graph, but this flexibility is not
available on the node or edge level. Here, only one fixed visual representation at a
time is supported.

An interesting detail in the architecture is that all elements of graph (models)
are essentially of one type, the interface GraphCell. This interface allows for a very
generic handling of attributes throughout the system. Apart from nodes (base class
DefaultGraphCell) and edges (DefaultEdge), the Sourceforge JGraph library
makes use of so-called ports (DefaultPort) which are dedicated locations of nodes
which serve as connection points for edges. This clearly illustrates the orientation
of the library as a means of visualization.

There are two different ways of defining custom node or edge types in the
Sourceforge JGraph framework:

5.2. SYSTEMS FOR GRAPH BASED REPRESENTATIONS 109

Figure 5.1: Architecture of the Sourceforge JGraph

110 CHAPTER 5. EXISTING TECHNOLOGY

• All GraphCell objects have attributes. These name/value pairs can be freely
chosen and therefore serve as a (limited) means of creating custom element
types.

• Java classes which implement the corresponding interface (GraphCell or Edge)
or extend existing node or edge classes. This ensures a maximum of flexibility,
but is of course no real option for non-programmers.

There is no formal semantic mapping associated to nodes, edges, or graph struc-
tures in the Sourceforge JGraph library. However, it can be argued that the
availability of attributes with open domains is a good base for embedding formal
semantics. Operational aspects are well covered in the library: there are several
event change propagation mechanisms following the Publisher Subscriber pattern
(Buschmann et al., 1996) with respect to changes in models and views (not included
in figure 5.1). The option of writing customized node and edge classes principally
allows for a flexible reaction to these events.

Apart from pure visualization of graphs with flexible node and edge concepts, the
Sourceforge JGraph library also fulfills most of the criteria related to interactive
usage: it allows for editing, moving, cloning, and sizing nodes, and bending edges
as well as of course adding and removing edges and ports. The availability of each
single form of interaction can be explicitly controlled.

The Sourceforge JGraph library uses the XML based Graph Exchange Lan-
guage GXL (Winter, Kullbach, & Riediger, 2002) for storage. This format supports
typed, attributed, directed, ordered graphs (potentially also hierarchical structures
and hypergraphs), and is designed as a means to reach syntactic interoperability
between different applications that make use of graphs as central data type.

A very strong point of the library is its generic ability to support grouping of
elements and hierarchic structures - a node can, e.g., contain a whole graph - the
algorithms for deleting, selecting, and modifying elements fully take these relations
into account. With the additional option of hiding specific parts of a graph, this
enables applications to build quite complex structures with sophisticated navigation
strategies.

Another aspect worth mentioning is the embedded capability of the library to
undo and redo any kind of operation on the graph, also in the context of multiple
views. This transaction based mechanism is implemented using the event propaga-
tion mechanism of the library. Even though the Sourceforge JGraph framework
does not have the ability to synchronize graphs between applications over a net-
work, this could be a suitable starting point to add this feature - a structure that
can react upon undo and redo events is already prepared to deal with remote change
events to some extent.

5.2.2 TouchGraph

TouchGraph (Touchgraph, n.d.) is a library which is primarily designed for vi-
sualization of graph structures. It is very competitive in terms of performance: the
management of several thousand nodes or edges is unproblematic, both in terms of
memory usage and speed.

The main purpose of the TouchGraph library is put on assisting the user to
visually navigate through dynamic networks. Current applications include a visual
Wiki Browser, and a Google Graph Browser which uses the API of the search engine.

Unlike most of the other graph libraries presented in this section, the program-
ming style within TouchGraph does not meet higher requirements: issues of flex-
ibility and reusability are not dealt with, and some functions (like, e.g., the drag
& drop support) are implemented in a proprietary way although current standard
solutions do exist.

5.2. SYSTEMS FOR GRAPH BASED REPRESENTATIONS 111

Figure 5.2: Architecture of the TouchGraph

The low degree of flexibility can be illustrated with the system architecture
concerning node and edge management. Figure 5.2 reveals that there is neither a
separation between models and views, nor any abstraction of node or edge interfaces.
This implies that the definition of node or edge types beyond setting attribute values
for color and displayed text (figure 5.2 contains all attributes for nodes and edges
that are not directly related to spatial layout or unique identification) is hard to
achieve. In fact, the library does not explicitly foresee a method to define custom
objects, though the use of inheritance should work. Together with the absence of a
suitable event model capable of propagating changes within a graph, this means that
there is no real support for adding any kind of semantics (neither formal mapping
nor of operational character) to TouchGraph instances

Another characteristic aspect of the TouchGraph library is that nodes and
edges are no ”real” Java user interface components in the sense of extending the
java.awt.Component base class, but merely provide a paint method which adds
their image to a java.awt.Graphics object. This has two immediate consequences.
The first one is positive: this design choice is one of the reasons why the Touch-
Graph is fast and competitive in terms of memory usage. The negative aspects of
this design include that it is not possible to make use of the flexible Java component
library from within nodes in the TouchGraph. This means that there is no way of
embedding interactive control elements like buttons in the user interface of a node.

Apart from the mentioned performance, strong aspects of the TouchGraph
library are mostly related to visualization aspects: the tool generically supports
zooming and rotation of graphs, and the partial hiding of subgraphs is well sup-
ported through the operations expand, collapse, and hide. Furthermore, the
TouchGraph includes a sophisticated layout algorithm which bases on the prin-
ciples that nodes have a repulsing effect on other nodes, while edges pull nodes.
Making use of damping factors, the algorithm iteratively constructs a stable situa-
tion for any graph.

112 CHAPTER 5. EXISTING TECHNOLOGY

Figure 5.3: Architecture of the OpenJGraph

5.2.3 OpenJGraph

The OpenJGraph library (OpenJGraph, n.d.) is distributed via sourceforge.net.
Apart from source code level documentation, it is not well documented. Similar
to the TouchGraph, it does not seem to be maintained - however, both tools
are compatible with current Java versions, which justifies their inclusion in this
comparison.

OpenJGraph is a very flexible tool for graph visualization and interactions
with graphs. The architecture of the library, as shown in figure 5.3, incorporates a
lot of classic design patterns and bases on a clear separation between data and view.
OpenJGraph does not offer a full MVC architecture, but the change propagation
between model and view(s) is implemented with a Publisher Subscriber pattern, as
in the original architecture.

A significant difference between OpenJGraph and both Sourceforge JGraph
and COLLIDE JGraph (cf. next subsection) is that the OpenJGraph library
applies the separation between model and view both on the graph level and on
the node/edge level. This theoretically allows for multiple synchronous views per
graph, and also per node or edge. In practice however, the tool does not allow for
multiple views per node - yet, this could be overcome relatively easy by extending
the visual components of the library.

An important part of the OpenJGraph library is an interface hierarchy (and
corresponding implementing classes) to represent abstract graph structures. Di-
rected and weighted edges (not included in figure 5.3) are generically supported,
and adding elements (nodes or edges) to a graph is solved in a very elegant and
flexible manner through a factory based solution (Gamma et al., 1995).

The OpenJGraph library has one critical design decision in common with the
TouchGraph: the views for nodes and edges are no Java (Swing or AWT) com-
ponents, but do merely consist of the provision of painting methods. As already
stated in the previous subsection, this brings advantages in terms of performance,
but severely restricts the design space for graph components, and in particular the
options for interactive usage.

Apart from this disadvantage, the OpenJGraph tool has a lot of very strong

5.2. SYSTEMS FOR GRAPH BASED REPRESENTATIONS 113

points: it includes a number of ”standard” graph algorithms like the check for
connectivity, the search for an eulerian tour, or the construction of a spanning tree.
These algorithms are implemented very flexibly and with respect to potential re-
use. Cycle checks, e.g., are implemented by using the Visitor pattern (Gamma
et al., 1995), which elegantly allows to apply them also for extended node and edge
concepts.

The OpenJGraph tool allows the specification of nodes and edges in XGMML,
an XML format that describes graph structures and their visual attributes in detail.
However, this format does not allow for customized fields, which might be interesting
for the enhancement of the library towards the inclusion of semantics.

Operational semantics in the sense of allowing for active dynamic structures are
partially supported in the OpenJGraph. There is the option to attach listeners to
an abstract graph structure, but the events are only related to structural changes
and (partially) to changes in the layout. There is no explicit consideration of the
change of a model as a source of an event - in addition, the conception of nodes and
edges as non-interactive objects does not easily allow for creating events of these
types.

The layout problem for abstract graphs that have to be visually represented is
solved very elegantly in the OpenJGraph library: via a Strategy pattern (Gamma
et al., 1995), different layout managers (not to be confused with the standard Java
layout managers) can be defined and applied to graph representations.

Finally, another aspect that distinguishes this library from the others in this
comparison is the consideration of rules that constrain the set of ”allowed” graphs.
Any attempt to add nodes or edges is handled by the graph and may cause an
exception to be thrown, which means that this action is not permitted. Thus, the
definition of arbitrary rules is possible using inheritance (i.e. extending the graph
class). Figure 5.3 shows how this approach is implemented in the library in order
to construct a tree structure.

In general, the chosen method for representing constraints for graph structures
is very flexible and expressive. Yet, a disadvantage of the approach is that rules
are always bound to a graph. There is no explicit concept of a rule, which could be
transferred between graphs, and there is no way of dynamically changing rules for
a given graph.

5.2.4 COLLIDE JGraph

This last library within this comparison is the COLLIDE JGraph (COLLIDE
JGraph, n.d.) which is being developed by the COLLIDE research group at the
University of Duisburg-Essen. The design of this system is guided by the aim of
high flexibility and expressiveness for the node and edge elements.

Similar to the Sourceforge JGraph, the COLLIDE JGraph makes use
of the Model View Controller paradigm. However, the core principle of this pat-
tern, the separation between data, control and representation, is implemented at a
different point of the architecture (see figure 5.4). Each node and edge defines an
explicit model and a view, but the overall structure - the graph itself - is not further
subdivided.

This fact prevents some of the benefits of a pure MVC architecture: the COL-
LIDE JGraph library does not directly allow for having different graph views
simultaneously. Also on the node and edge level, the COLLIDE JGraph has cer-
tain limits: although a separation into model, view, and controller is available here,
the framework requires a one-to-one relation between models and controllers on the
class and the instance level. Additionally, each controller can only handle only one
view at a time, so that multiple simultaneous views on nodes are not possible.

114 CHAPTER 5. EXISTING TECHNOLOGY

Figure 5.4: Architecture of the Collide JGraph

These restrictions obviously limit the original flexibility of the Model View Con-
troller paradigm. The reason why these limitations are necessary is related to one
of the advantages of the COLLIDE JGraph: graph instances can be synchronized
between applications, on one machine as well as in a networked situation. This is
implemented using the MatchMaker technology (cf. 5.4.7) the following way:

• To synchronize itself, the COLLIDE JGraph creates a MatchMaker syn-
chronization tree that consists of one single vertex.

• For each node in the COLLIDE JGraph, a child is added to the root vertex
of the tree. This child contains information about the location of the node
in the COLLIDE JGraph. Below this vertex, another child vertex is added
to the tree. The content of the latter child is the model of the node in the
graph. This structure of the subtree decouples location changes from model
changes, which allows for very fast transmission of position changes of nodes
(e.g., during drag&drop operations) without the need to send the whole node
model each time.

• For each edge in the COLLIDE JGraph, a child is added to the root element
of the MatchMaker tree. The content of this child vertex is the model of
the corresponding edge in the graph. As the location of the edge is implicitly
determined by the location of the nodes that it connects, no split similar to
the one for the case of the nodes is done here.

• The local change of a model in the COLLIDE JGraph is propagated to syn-
chronized instances via the MatchMaker library. The remote COLLIDE
JGraph instances are notified using the event mechanism of the Match-
Maker library and react upon transmitted changes by updating their local
models correspondingly.

5.2. SYSTEMS FOR GRAPH BASED REPRESENTATIONS 115

Figure 5.5: A COLLIDE JGraph instance and the corresponding MatchMaker syn-
chronization tree

• Node or edge creation and deletion events are distributed in the same way.

Figure 5.5 shows a typical synchronization tree used to couple two COLLIDE
JGraph instances via MatchMaker. The three TopicModel instances describe
the nodes contained in the graph and consequently contain the string content of
the nodes - more sophisticated nodes can of course contain more attributes. The
two SimpleEdgeModel instances are related to the two edges in the graph. Edge
models always contain identifiers of the two nodes that the edge connects, together
with additional information of the edge (e.g., a label or a color).

The approach chosen to couple COLLIDE JGraph instances is very flexible
and lightweight: the node and edge models that build the foundation for synchro-
nization are usually very small data classes with only few attributes. Due to the
chosen event propagation mechanism (Publisher Subscriber pattern), unnecessary
data transfers are prevented. Additionally, the usual case of a change in the graph
structure (e.g., caused by the editing of a node, or the creation of an edge) does not
affect the whole synchronization tree but only one leaf, so that the amount of data
that needs to be transmitted is further reduced.

Another dimension of flexibility, which is a result of the design choice of model
based synchronization in combination with the MVC paradigm, is that a model can
principally be displayed differently on different synchronized applications, as each
graph instance decides locally and individually how to represent a model.

The disadvantage that comes with the flexibility of the chosen method for syn-
chronization is that the whole approach relies on the node and edge models only as
the primary means of synchronization. A first consequence of this is that they need
to be suitable for serialization. This is usually unproblematic and no real limitation
for model classes in the MVC architecture. Apart from this, another restriction is
that in the chosen method of synchronization, the application (i.e. the COLLIDE
JGraph) must be able to receive node models and generate ”complete” nodes in-
cluding view and controller components from the model information - for the edges,
the same situation occurs. This is the reason for the necessity of the one-to-one
relation between models on the one side, and controllers / views on the other side.

One partial exception to this is that multiple views per model are indeed possible
in three senses:

1. It is possible to switch between different views easily. In this case, only one

116 CHAPTER 5. EXISTING TECHNOLOGY

view at a time is active so that the 1:1 relation holds. The information which
view is currently active can be stored in the node model.

2. Locally, different synchronous ”views” for a model can be implemented by
simply generating user interface components within the controller class, and
displaying them on the screen. Yet, these ”additional views” would then be
differently bound to the graph: whereas the ”first” view is embedded in the
core interfaces (and thus generically accessible in the library), the additional
ones would be proprietary and outside the scope of the COLLIDE JGraph.
As a consequence, synchronization features for these views (and many other
functions like, e.g., drag&drop support) would have to be added manually.

3. Multiple synchronous views are also possible using the synchronization mech-
anism. By not including information about the currently ”active” view in
the node model (or simply ignoring is), different graphs can contain different
views of the same model.

Despite these two options, there is no generic support for multiple and syn-
chronously available node (or edge) views in the COLLIDE JGraph. Additionally,
adding such a support is a difficult task since the role of the models in the archi-
tecture is very central: not only the synchronization support, but also the whole
storage mechanism, and the unique identification function of nodes relies on the
models.

Apart from the mentioned architectural differences and the available synchro-
nization support, the COLLIDE JGraph is similar to the Sourceforge JGraph
in many respects: there is a suitable event mechanism to distribute model changes
to subscribed listeners, and an interactive usage is fully supported, including drag
& drop operations.

The syntactical definition of graph elements in the COLLIDE JGraph archi-
tecture can be done either in an intuitive (but proprietary) XML storage format,
or in Java. The first method relies on existing Java classes that offer the option to
be parameterized with specific attribute values of primitive data types, the latter
one essentially makes use of inheritance and allows for a very flexible way of spec-
ification - but, as in the case of the Sourceforge JGraph, only for users with
programming experience.

Also the degree to which semantics of graphs is covered by the COLLIDE
JGraph is similar to the Sourceforge JGraph case: there is no embedded se-
mantic mapping, but the option of extending the predefined nodes and edges, and
in particular their models, is a suitable starting point. The built-in event propaga-
tion mechanism is a part of the library that is well suited to include constraints for
graph structures - however, this is not embedded in the core COLLIDE JGraph
tool.

Finally, the COLLIDE JGraph contains interfaces for attaching automatic
graph layout engines. One of these engines, which makes use of the same algorithm
as in the TouchGraph tool, is also included in the library.

5.2.5 Comparison and Discussion

The previous subsections described the characteristics of the current state-of-art
libraries for graph representations. Table 5.1 summarizes these descriptions with
respect to the criteria list as presented in section 5.1. The assessment symbols used
in the table express the degree to which the libraries fulfil the criteria. They have
the following meanings:

+ Completely fulfilled

5.2. SYSTEMS FOR GRAPH BASED REPRESENTATIONS 117

Table 5.1: Comparison of graph libraries

Sourceforge Touch- Open- COLLIDE
JGraph Graph JGraph JGraph

Structures graphs graphs graphs graphs
ports, nested nested

Extensions
graphs graphs

- -

Directed Edges + + + +
Multiple Edges ◦ ◦ + (+)

Loops ◦ ◦ + (+)

Flexible
Representations

(+) - - (+)

Multiple
Representations

(+) - (+) -

Layout Engines + (+) + (+)

Syntax XML, XML, XML,
Specification Classes

Attributes
Classes Classes

Semantic
Mapping

◦ - ◦ ◦

Operational
Functions

+ - (+) +

Interactive Use + (+) (+) +
Constraints - - + ◦

Drag & Drop + (+) (+) +

Storage + - + +
Synchronization - - - +

Graph
Algorithms

+ - + (+)

zoom, undo, zoom, ro-
Other

hiding tate, hiding
- -

(+) Partially fulfilled
◦ Basically prepared but not elaborated
- Not fulfilled

The summary table immediately reveals two things: there is no single graph
library that fulfils all the criteria, and a simple determination of a library which is
”the best” according to the criteria list is not possible, as each of the frameworks
has different strong aspects but also some weak points.

Common points are that all compared suites use graphs (rather than hyper-
graphs or other more complex structures) as their abstract data structure, and
that directed edges are always supported. The syntactical definition of nodes and
edges is mostly done in XML, which usually means that the values of a more or
less predefined set of attributes can be specified. All libraries fall short in the pro-
vision of semantics: none of them easily allows for the inclusion of any kind of
semantic mapping. The only reasonable way of adding this (and other functions
needed for modeling with the graph structures) is the definition of node and edge
classes in Java and their embedment in the tool. Using inheritance mechanisms,
this is principally possible in all the libraries. Yet, the degree of support for this
varies considerably: TouchGraph offers no support at all, Collide JGraph and
Sourceforge JGraph provide suitable interfaces and guidance how to implement
custom structures, and OpenJGraph even includes a number of helpful pattern
based mechanisms that allow for a finer integration of custom node and edge types
into its graphs.

A distinctive aspect between the libraries is the way in which they solve the
task of providing visual representations for nodes and edges. Two different princi-

118 CHAPTER 5. EXISTING TECHNOLOGY

ples are observable: either elements are painted in a graphics context, or the Java
component API is used. The former approach, which is taken by TouchGraph
and OpenJGraph, is a severe restriction for the purposes within this thesis, as it
drastically limits the potential of interactivity for supported node and edge types:
things beyond simple low level mouse clicks, like e.g. control elements (checkboxes,
buttons,...) or even simple text input fields within elements, are not easily possible.

This drawback reduces the usability of the TouchGraph and the OpenJ-
Graph as a base technology for the further implementations in this thesis. In
the case of OpenJGraph, this is despite the fact that this library has by far the
most flexible architecture and also some very elegant solutions for detail features
(e.g., the layout and algorithm implementation, or the consideration of rules).

The remaining two libraries, Sourceforge JGraph and Collide JGraph,
present themselves very differently: the former is excellently documented, well sup-
ported by a large user community, and distributed in a commercial spin-off, whereas
the latter is not published well. Yet, with respect to most of the comparison criteria,
these two libraries are very similar. The most important point, from which a num-
ber of other similarities can be derived, is that both make use of the Model View
Controller paradigm (in different parts of the architecture), and reach a certain
degree of representational flexibility with this.

The differences between the two tools are rooted in their origin and primary
purpose: the Sourceforge JGraph is designed as a graph visualization tool,
which explains its strength in the areas of layout and display. The advantage of the
Collide JGraph, a tool developed to support collaborative usage of graphs, is its
function of synchronization.

In summary, my conclusion is that both the Sourceforge JGraph and the
Collide JGraph are suitable as a base for implementing a collaborative modeling
system based on the Reference Frame approach and its visual typed graphs. I
have chosen to use the Collide JGraph in the implementation parts because
the already available synchronization support seems to be more valuable for the
targeted implementations than a finer control of visual parameters, which a choice
of the Sourceforge JGraph would have offered.

5.3 Criteria for Synchronous Cooperation Support

Aiming at the implementation of a framework which allows the co-construction of
visual typed graphs, a considerable technological ingredient is a system for coop-
eration support, especially the support for synchronous cooperation in distributed
scenarios. As the focus of this thesis is not to build a technical solution for coopera-
tion support but to use one, the aim of this section is to set up a criteria list which
then serves as a means for the comparison of several communication frameworks in
section 5.4.

Literature on distributed systems (Coulouris, Dollimore, & Kindberg, 2000;
Tanenbaum & Steen, 2002) and groupware (Borghoff & Schlichter, 1998) helps
to identify these distinction criteria between different communication technologies
and frameworks. The following subsections briefly describe the typical criteria that
can be used to characterize ”lower level” communication frameworks. There are
definitely also other important topics to discuss in the area of supporting cooper-
ation via synchronized applications. These will shortly be presented in subsection
5.3.6. Yet, these typically depend on the concrete synchronized application - the
system comparison in section 5.4 will rely only on criteria which depend solely on
the underlying communication technology.

5.3. SYNCHRONOUS COOPERATION SUPPORT 119

5.3.1 System Architecture

The architecture of a distributed system is essentially dominated by the location
and roles of its components and the types of relations between them (Coulouris
et al., 2000). Typical architectures for distributed systems include the following
ones:

Pure Client-Server. This frequently chosen and most important architecture con-
sists of one dedicated server process and a number of client processes that
establish connections with the server and interact with it.

Modified Client-Server. A lot of variants of the pure client-server model can
be found. Most of them try to improve the central weakness of the original
architecture, the bottleneck of the central server. Typical modifications are
the inclusion of multiple servers, or the use of proxy and cache components.

Peer-to-Peer. A peer-to-peer architecture strictly avoids explicit server processes
and completely relies on direct communication between the peer clients. The
client processes have similar roles in this architecture - sometimes, even the
same application is used on all client machines.

Heterogeneous Systems. Some architectures are mixtures of the two extremes of
client-server and peer-to-peer architectures, and differ in such a way from both
extremes that they cannot be called modifications any more. Typical exam-
ples of heterogeneous systems include the extension of a peer-to-peer architec-
ture with specific dedicated processes for, e.g., central resource management.
Other heterogeneous architectures rely on a classic server, but additionally
allow for explicit inter-client communication.

Other means of distinction between different architectures include the availabil-
ity of replicated data, of mobile code or mobile agents (with code and data), and
of explicit layers with dedicated functions.

Obviously, these architectural dimensions of a communication framework have
an impact on the applications that use the framework. For instance, the availability
of a central server can simplify certain tasks (e.g., logging), whereas a pure peer-to-
peer solution avoids bottlenecks and the need to install dedicated servers.

5.3.2 Model of Information Transfer

The model of information transfer describes lower level aspects of data transmission
between processes. As such, it contains information about the following points:

• Is data transmitted directly from client to client, or are indirect channels used?
Are specific multicasting, broadcasting or routing techniques made use of?

• The criterion of speed: what is the mean transmission time for messages, and
which factors have an impact on the performance?

• In how far are security issues addressed? Are, e.g., encryption mechanisms
embedded, and how can users identify themselves?

Of course, the identified criteria are not independent and have an impact on
each other. Indirect data transmission, e.g., is generally problematic in terms of
security, and a higher performance can be gained by omitting data integrity checks
which reduces the overall reliability. Additionally, some of the criteria may not be
directly applicable to certain communication techniques. It often makes sense to

120 CHAPTER 5. EXISTING TECHNOLOGY

handle specific issues (like, e.g., certain security aspects) on a generic low layer,
which can then be used by various higher-level frameworks.

Despite these two things (interdependency and applicability), the inclusion of
an information transfer model as described above in the criteria list makes sense,
as it covers the most important technical constraints for application communica-
tion. Evidently, these are a considerable factor for the choice of a communication
technology that underlies the targeted application.

5.3.3 Strategy for Information Distribution

The strategy for information distribution as summarized by Borghoff and Schlichter
(1998) is on a higher level than the more transmission oriented model of information
transfer. In particular in at least partially replicated architectures, the following
criteria are an important characteristic property of communication technologies.

• Is there a general policy of information distribution in the system? Typical
examples for such policies are event based change propagation mechanisms,
or pure client-server models which require pull strategies.

• Are there any basic conceptual entities of interaction between processes? Typ-
ical primitives are messages, streams, remote objects, and remote method in-
vocation (Tanenbaum & Steen, 2002). Another dimension relates to the usage
of these primitives: in how far is synchronous or asynchronous communication
enabled?

• Does the communication technology impose any prerequisites on the data that
is supposed to be sent?

It is worth noting that not every technology does necessarily have to address
all these aspects. In fact, most low-level fundamental technologies are likely to
be neutral with respect to some criteria. However, the strategy for information
distribution in terms of the listed criteria has direct implications for the applications
which rely on these strategies. In particular, certain communication features on the
application level can be significantly supported by means of a well-chosen underlying
infrastructure.

5.3.4 Stability

Also on a higher level than data transmission reliability and failure detection (which
are included in the ”information transfer model” criterion), the stability of a com-
munication technology is an important characteristic point. In distributed settings,
the following aspects are worth consideration:

• Are there any (lower or higher order) fault tolerance mechanisms?

• Is persistency guaranteed by some means?

Often, the answers to these questions are to a large extent predetermined by
other criteria like the architecture or the model of information transfer. Yet, as
sophisticated higher order mechanisms may make up for certain lower level disad-
vantages, an explicit category for stability related issues makes sense.

5.3. SYNCHRONOUS COOPERATION SUPPORT 121

5.3.5 Concurrency Control

When users are interacting and access or modify shared data, conflicting situations
can inevitably occur. If a communication technology offers a means to control this
concurrency, this is an important characteristic factor, as each solution to some
extent predetermines application behavior. For instance, locking based pessimistic
concurrency control strategies may require the application to ”freeze” and block
user input, whereas optimistic techniques can potentially lead to inconsistent states
and may require undesired undos of user actions in order to re-establish consistency.

The following two questions determine the internal and external aspects of con-
currency handling in a communication framework:

• Are there critical aspects that require concurrency control even within the
framework? By which means are these controlled? These technology inherent
concurrency problems can, e.g., occur in replicated architectures.

• What other means to deal with general concurrency problems that inevitably
occur when several users synchronously operate on shared entities does the
technology offer? How good are these means in terms of data consistency and
respond times?

5.3.6 Higher Level Criteria

As already outlined in the beginning of this section, there are also a number of higher
level criteria that determine the quality and usefulness of groupware tools in general,
and in particular also collaborative systems. These depend on the application rather
than on the underlying communication mechanism, so that it does not make sense
to include them in the criteria list for the system comparison in section 5.4. Yet,
to underline the importance of higher level aspects, also as a reference point for
the system description parts of this thesis, the following short list provides a brief
summary of some important points.

Awareness

When using groupware systems, it is often important for a user to know about the
context of his and other people’s system usage activities. This type of knowledge
is denoted with the term awareness. Endsley (1995) gives a very intuitive and easy
to understand term definition of awareness as

”[...] knowing what is going on.” (page 36)

This definition implies that different types of awareness can be distinguished,
including e.g. situation awareness, conversational awareness or social awareness.

Gutwin and Greenberg (2004) analyze the importance of workspace awareness,
which they define as the knowledge of a user about other user’s interaction with a
shared workspace. The collaborative situations they refer to are characterized by
a real-time distributed groupware that relies on shared workspaces and is used by
small groups. This matches quite well the target within this thesis, so that their
main message is of importance:

”For people to sustain effective team cognition when working over a
shared visual workspace, our groupware systems must give team members
a sense of workspace awareness.” (page 177)

122 CHAPTER 5. EXISTING TECHNOLOGY

Coupling Level and Mode

Some important architectural design choices related to the communication frame-
work have not been mentioned in subsection 5.3.1 because they depend on the
architecture of the application that is used cooperatively.

For the important case of a Model View Controller architecture (Buschmann
et al., 1996), both Schümmer and Schuckmann (2001) and Suthers (2001) discuss
variants of synchronization that, e.g., consider shared and private states, differ-
ent object of synchronization (model, view, or controller), and strict versus loose
coupling strategies.

User Management

Building collaborative software in most cases involves the need of having some kind
of system side distinction between different users. A basic exemplary use case that
requires this distinction is an authentication as one part of a security mechanism
(cf. subsection 5.3.2). Apart from these aspects that can indeed be implemented
by a very low level communication framework, there are also a number of higher
order functions which substantially contribute to the usefulness of groupware tools
and require user management.

The availability of user identifications within the system is a prerequisite for
a lot of awareness mechanisms, as it allows for mirroring back to users not only,
e.g., changes caused remotely, but also the causing factor of these changes. Beyond
that, user models build the foundation for a number of applications in collaborative
systems - they can, e.g., be used to propose potential collaboration partners (Hoppe,
1995; Ikeda et al., 1997).

Group Interface

An important characteristic aspect of collaborative systems is the interface that the
system offers to the user group. The most important aim of a group interface is to
provide the users with shared context (Borghoff & Schlichter, 1998), the concept
of awareness as discussed before representing one aspect of the group interface.
Other aspects include the choice of the core means of interaction (like, e.g, a shared
whiteboard), or the principle that underlies the conceptual sharing method. An
example of the latter is the well-known WYSIWIS (what you see is what I see)
approach.

Transparency

Transparency of a distributed system is the hiding of its heterogeneity, the fact that
processes and resources are physically distributed. A number of different trans-
parency types like, e.g., access, location, or concurrency transparency are distin-
guished. In general, a transparent distributed system presents itself to the users as
if it was ”just” a single computer system (Tanenbaum & Steen, 2002).

Transparent groupware systems have the advantage of a natural usage: the
cooperative usage should not be more difficult than a single user mode. Yet, it is
worth noting that the aspects of awareness and transparency are in some senses
contradicting to each other, so that the resulting application profile (what is made
transparent / what is made explicit) is an interesting characteristic factor for a
groupware tool.

5.4. TECHNICAL SOLUTIONS FOR COOPERATION SUPPORT 123

Feedthrough

As stated in section 1.2, communication through the artifact can be an important
means to support collaboration. The mechanisms of making shared objects reflect
the manipulations done on them are called feedthrough mechanisms (Dix et al.,
2004). Of course, these mechanisms are application specific and cannot be com-
pletely implemented (but supported) by underlying communication technologies.

5.4 Technical Solutions for Cooperation Support

Trying to give a complete overview about existing technologies that are used to
support cooperation in distributed systems is unrealistic: the amount of distributed
systems targeted at this aim is far too high. Yet, while some of the systems use
their own proprietary approaches to implement the information transfer between
computers, others rely on existing and reusable technologies or even frameworks of
higher complexity.

The following subsections compare a selection of existing technologies and frame-
works with respect to the criteria list elaborated in section 5.3. The selection of
technologies has been motivated by the premise of considering only frameworks that
are independent of specific applications. To further reduce the set of communica-
tion frameworks to be reviewed, only those that are freely available, currently main-
tained, and independent of at least either the operating system or the programming
language are considered. Pure application sharing tools which essentially mirror
application views like, e.g., NetMeeting (NetMeeting Resource Kit, n.d.) are not
included in the list because they do not offer enough degrees of flexibility for sharing
applications: using them, an application is either completely shared or it is not -
some important implementations within this thesis will, however, require a finer
granularity. Another argument against view based sharing mechanisms is that they
do not allow for real data replication: as only a view is synchronized, a crash of the
machine which really runs the application causes all others to definitely loose their
data.

Taking into account that the communication technology, despite being a consid-
erable external resource used within this thesis, is far less important than the library
for graph representations, the communication technology review is kept shorter than
the comparison for the graph libraries as conducted in section 5.2. In the following
descriptions, I just mention the basic approach of the respective frameworks, and
describe their performance in terms of the criteria.

The following subsections are organized as follows: the review starts with ap-
proaches that are independent of both both operating system and programming
language. This category (subsections 5.4.1 - 5.4.3) contains very basic techniques
that simply reach the independency because they are very low level, as well as
very sophisticated frameworks that put a lot of effort in reaching this degree of
independency. In subsections 5.4.4 to 5.4.7, some tools that depend on the pro-
gramming language but not on the operating system are outlined. Finally, some
important examples for approaches that are independent of programming languages
but dependent on the operating system are presented (subsections 5.4.8 and 5.4.9).

5.4.1 Network Sockets

Network sockets are a very basic form of establishing communication between com-
puters in a network: all modern operating systems support networking via sockets,
and all the currently available general purpose programming languages allow for
the the development of programs that make use of network sockets.

124 CHAPTER 5. EXISTING TECHNOLOGY

The idea behind sockets is simple: the processes that communicate use network
ports to send data to each other. The transmission can either be connection-oriented
using, e.g., TCP (in this case, data streams are the means of communications),
or connectionless using e.g. UDP. In the latter case, the data units are called
datagrams. TCP ensures the arrival of all packets and takes care of ordering issues,
whereas UDP datagrams may get lost without any notification to sender or receiver.

As mentioned, sockets are independent of both operating system and program-
ming language (of course, concrete data bytes sent via the sockets might have inter-
pretations that depend on either of the two). Sockets are by far the fastest way of
communication between two machines, but (being very low-level) offer no embedded
functions for concurrency control, or persistency. The Secure Socket Layer (SSL)
standard, supported by major programming languages, is a widely accepted means
to encrypt socket based communication. Via multicast and broadcast mechanisms,
the mode of information transfer in socket based communication is more flexible
than a simple one-to-one model.

5.4.2 Web Services

Web services (Coyle, 2002) are a modern middleware approach that can be under-
stood as a consequent enhancement of remote procedure calls towards independency
of operating system and programming language. The basic idea of web services is
that SOAP (Simple Object Access Protocol) envelopes containing XML data are
transported via standard web based transmission technologies (like, e.g., HTTP).

Web services architectures are based on explicit servers and clients. Service
description and location is possible via the WSDL (Web Services Description Lan-
guage) and the UDDI (Universal Description, Discovery and Integration) protocols.
Due to the use of established standard technologies, the encryption of messages is
easily possible (e.g., using HTTPS), and there are also higher-order means of fault
tolerance (e.g., using SMTP). Concurrency and persistency issues, however, are not
generically handled by web services.

5.4.3 CORBA

The CORBA (Common Object Request Broker Architecture) approach (CORBA
specification, n.d.) has been developed by the Object Management Group, an in-
dustry consortium, in the 1990s. It is a broker architecture which reaches indepen-
dency of both programming languages and operating systems through the use of the
textual Interface Definition Language (IDL), which is mapped to language-specific
constructs. Distributed objects, as specified by their IDL interface, make up the
core of CORBA. ORB (object request broker) services are running on all participat-
ing machines (clients and servers), which makes the architecture principally usable
in peer-to-peer situations, though normally CORBA is used with dedicated clients
and servers.

The information transfer is done directly between machines (though there are
interface and implementation repositories that are used for locating services), and
as one of the few architectures within this comparison, CORBA supports both
the pull and the push model for information distribution. Through this and the
available event and notification mechanisms, CORBA offers very flexible methods
of interaction between distributed objects, including asynchronous method calls.

Via services (implemented as system services described in IDL), CORBA allows
for concurrency control with transactions, higher order fault tolerance mechanisms
(e.g., replication), persistency, and a number of security and authentication facili-
ties.

5.4. TECHNICAL SOLUTIONS FOR COOPERATION SUPPORT 125

5.4.4 Remote Method Invocation

The use of remote objects to invoke methods on them, a successor of Remote Pro-
cedure Calls (RPCs), is (besides network sockets) the second basic networking tech-
nology that is available in most modern object oriented programming languages. A
remote procedure call is typically dependent on the programming language - Java
RMI is at least independent of the underlying operating system, which justifies its
consideration in this comparison.

RMI always involves exactly two machines with different roles: one acting as
a server and the other one as a client. As one application can act as both server
and client, RMI is suitable as a base technology for peer-to-peer architectures -
but, of course, also for client/server based applications. RMI calls are relatively
fast (though not reaching sockets level performance) and insecure in their basic
implementation, though the exchange of the transport socket layer is possible and
allows for the inclusion of encryption mechanisms. The primitive data type trans-
mittable via RMI are Java objects that implement a dedicated tagging interface
(java.io.Serializable) which indicates the ability to be transformed into a byte
stream.

Being among the very basic technologies for programming distributed systems,
RMI does not provide any means for enhanced fault tolerance, persistency, or con-
currency control.

5.4.5 Java Shared Data Toolkit

The Shared Data Toolkit for Java Technology (JSDT) (Java Shared Data Toolkit
Homepage, n.d.) is a library that is designed to allow programmers to easily develop
collaborative applications. JSDT relies on sessions, which are defined as a set of
channels that can transport data objects (which essentially consist of byte arrays)
to groups of applications.

There is one dedicated server application which manages a registry - the whole
communication among the client applications has full-duplex multicast characteris-
tics in the sense that data can be sent to and received from the channel. Of course,
also ”private” communication between two applications via a channel is possible.

JSDT offers event subscription and notification mechanisms, with events fired
whenever clients enter or leave channels, or when data is transmitted.

JSDT allows the choice between three different underlying transportation tech-
niques: sockets (TCP/UDP), HTTP (to easily tunnel firewalls), and LRMP (Light-
weight Reliable Multicast Protocol). Concurrency can be controlled by a token-
based distributed synchronization mechanism, which can be used to ensure mutu-
ally exclusive access to a resource. Apart from the reliability mechanisms of TCP,
JSDT has no further fault correction mechanisms, and no provision of persistency.
The latter would even be in contrast with the concept of a channel as a medium to
transport volatile information.

5.4.6 JavaSpaces

JavaSpaces is a technology which belongs to the Java Jini suite (Freeman, Hupfer,
& Arnold, 1999; Flenner, 2001). The central idea behind JavaSpaces is that of a
shared whiteboard in form of a tuple space with associative lookups (Carriero &
Gelernter, 1989): objects in the space have a type, and a set of attributes with
name and value. A lookup in a JavaSpace is done by first creating an element of
the desired type, then setting values for all the attributes that serve as queries,
and finally querying the space with this template. The JavaSpace then returns an

126 CHAPTER 5. EXISTING TECHNOLOGY

object that matches the given type and attributes - there is no embedded way of
accessing objects through any kind of direct identifier.

As described, JavaSpaces are a classic client/server architecture. JavaSpaces
does not offer a way for clients to directly communicate with each other beyond
the exchange of objects via the space. The currently available implementations
are quite slow and offer only very limited ways of secure access. However, there
are commercial initiatives (GigaSpaces Homepage, n.d.) that aim at solving these
issues.

JavaSpaces can be accessed by four basic operations: write, read, take, and
notify. The first three access and modify the content of the shared whiteboard, the
latter gives access to the event mechanism embedded in JavaSpaces: an application
can get a callback when an object which matches a query object is put into the
space.

As mentioned, the data primitive used in JavaSpaces is an object. In contrast
to other technologies that can handle all objects which offer the basically needed
function of serialization, JavaSpaces adds some other (minor) constraints like, e.g.,
the availability of public variables or a no-arg constructor. The reasons for these is
the specific serialization mechanism used for the lookup strategy. The constraints
do not really restrict the generality of the approach, but may mean a lot of work if
existing applications are to be synchronized via JavaSpaces.

JavaSpaces (at least the commercial implementations) offer persistency services,
but no advanced fault tolerance mechanisms. Concurrency control is solved by a
pessimistic locking approach with transactions.

5.4.7 MatchMaker

The MatchMaker library (Jansen, Pinkwart, & Tewissen, 2001) for synchroniza-
tion of Java applications has been developed at the University of Duisburg-Essen.
MatchMaker mixes characteristic elements of centralized architectures (e.g., a
dedicated server) with others that are typically found in peer-to-peer networks: ap-
plications are not strongly affected by network problems, and even a split from the
server does not necessarily cause a MatchMaker client to crash.

Applications that use MatchMaker for synchronization have no way of directly
communicating with each other. Similar to JavaSpaces, MatchMaker foresees
only indirect communication via shared objects. In the case of MatchMaker,
these shared objects build a tree and thus have a certain structure. Figure 5.5
illustrates how this tree structure can be used to represent the structure of the
artefact that is shared by means of MatchMaker.

It is worth mentioning that in a MatchMaker setting, all client applications
usually have local replicas of the MatchMaker tree and do not have to access the
data stored on the server all the time (though the library would in principle allow
for this way of access).

Due to the indirect communication (all changes caused by clients are first sent
to the server, which then propagates them) and the underlying RMI technology,
MatchMaker is relatively slow. This is a trade-off for the advantage of easily
allowing late-comers to receive the complete state of the synchronization tree, and
storing the tree even if no client applications are currently connected to the server.

As mentioned, the data primitive of MatchMaker is a tree. Each node in
the tree is composed of two things: a unique identification label which allows for
object identity (in opposite to the approach chosen by, e.g., JavaSpaces), and a
content object. The latter can be any java object which supports serialization.
Thus, MatchMaker can handle exactly the same objects as the underlying layer
(RMI) and does not add further constraints.

5.4. TECHNICAL SOLUTIONS FOR COOPERATION SUPPORT 127

Like some other libraries in this comparison, MatchMaker has an event no-
tification mechanism that bases on a Publisher Subscriber model (Gamma et al.,
1995). MatchMaker distinguishes between three types of modifications within a
synchronization tree:

• modifications of the tree structure itself by adding or removing elements,

• state changes of objects within the tree, and

• the execution of actions on elements of the tree

According to the publisher subscriber model, objects in a client application
can register themselves as listeners for elements of the tree. They then receive
notifications about events occurring on that tree element, and can modify their
local state correspondingly.

Together, the event mechanism and the data structure of MatchMaker allow
for a very fine granular control of coupling between applications. Typically, the ob-
jects synchronized via MatchMaker are of the same type in all client applications
and are registered as listeners of their corresponding element of the synchronization
tree. Both, however, is not a necessity: MatchMaker easily supports, e.g., the
synchronization of a checkbox in one application with a toggle button in another
application - which makes sense, as the conceptual models underlying these two
objects are similar. MatchMaker also allows an object in one client application
to register as listener for arbitrary elements in the synchronization tree. This facili-
tates, e.g., the development of additional services using the framework (see below).

As pointed out, a strong point of the MatchMaker event model is its flexibility.
Also the support of both state based and action based propagation mechanisms
offers a lot of design options to the user of the MatchMaker library. In some
cases, the use of actions to distribute local changes to coupled applications is the
most suitable, elegant and/or efficient way. Examples include the communication
of a ”button clicked” event, or situations where the state of an object is large and
changes are frequent - here, the transmission of changes (encapsulated in actions) is
advantageous. Other applications may choose a purely state based synchronization
(which seems the more natural usage of MatchMaker, since a tree of object states
is the core data structure in the library), and decide not to use actions at all.

One disadvantage of the allowed mixture between action based and state based
methods is that this makes logging and analysis of log data far more difficult, as most
analysis methods rely on either actions or states, but seldom support a mix between
the two. This, of course, is a drawback especially in research contexts that focus
on interaction analysis. Another disadvantage of the implementation of actions
in MatchMaker is that actions can cause the state of the synchronized object
to change without generating further state change events transmitted to the client
applications. This is necessary if the aim is to reduce the amount of transmitted data
by only sending changes, encapsulated into actions. As for the mentioned reasons
also the MatchMaker server locally keeps one instance of the synchronization tree,
this requires that also on the server, the actions are executed on the corresponding
elements of the synchronization tree. Consequently, a MatchMaker server can
only synchronize classes that are available in the server runtime environment, and
cannot deal with ”unknown” data types. This definitely is a restriction in a number
of usage scenarios.

Security issues are not directly addressed in MatchMaker, thus this library
does not exceed the options already provided by the underlying RMI layer. As in
the case of CORBA, replication can be seen as a fault tolerance mechanism. In fact,
a strong point of MatchMaker is that it allows coupled applications to continue
working (locally) even if the communication server fails.

128 CHAPTER 5. EXISTING TECHNOLOGY

Within a master thesis (Jansen, 2003), MatchMaker has been extended with
persistent storage functions (reached by regularly backups of the server replica),
and a central redo/undo mechanism which relies on the event model and essentially
transforms and reorders events. Also an approach for pessimistic locking concur-
rency control by means of transactions has been implemented for MatchMaker
within a master thesis (Mwakitalima, 2003).

5.4.8 DCOM

Within this comparison, DCOM (DCOM Technical Overview, n.d.) is the first ex-
ample of a library that is independent of programming languages but dependent on
the operating system. DCOM is the extension of the Microsoft Windows compo-
nent object model (COM) towards usage in distributed systems. Though criticism
on the design of the library is not rare, DCOM has at least definitely proven to be
useful in a lot of real world scenarios (Tanenbaum & Steen, 2002).

The general architecture of DCOM resembles that of CORBA: client and server
machines have local service control managers (whose functions are similar to the
ORB in CORBA), and there is a central interface repository. Thus, as in the
CORBA case, both client/server applications and peer-to-peer scenarios are possible
with DCOM.

Like, e.g., RMI and CORBA, DCOM makes use of a remote object model. Yet,
a central drawback of DCOM is its lack of a central naming and location service.
The Microsoft Active Directory technology can be used for these purposes, but if
the latter is not available, no name based lookups are possible, which constitutes a
severe limitation.

The basic notion within DCOM is that of a component, which is defined as an ex-
ecutable object that can be activated and that can interact with other components.
Components are transient, i.e. they are destroyed when they are not referenced by
other components. The interfaces of components are binary, which makes DCOM
independent of programming languages, but dependent on platforms. Both inter-
faces and implementing components have a globally unique interface identifier.

Similar to CORBA, DCOM allows for synchronous and asynchronous method
calls. In addition, DCOM offers the storage of events for temporarily not active
consumers.

DCOM contains authorization mechanisms to control the access to remote ob-
jects, and the library uses underlying Microsoft Windows layers for encryption using
SSL and Kerberos.

Concurrency and fault tolerance are addressed within DCOM by transactions
with automatic backup. Also persistent data storage is possible (both for objects
and also for events) using database access.

5.4.9 GLOBE

The GLOBE (GLobal Object-Based Environment) system (Steen, Homburg, &
Tanenbaum, 1999), developed at the University of Amsterdam, has been designed
primarily for distribution transparency and is driven by the principle of designing
for scalability.

Compared to other higher level libraries as presented in the previous subsections,
GLOBE can be characterized as a puristic architecture with only few central services
for naming and location. GLOBE formally distinguishes between clients and servers,
but this distinction is on a technical level. With respect to the design aims of the
library, GLOBE is well suited for peer-to-peer applications.

In contrast to most other technologies (including DCOM, CORBA, and RMI
from this comparison), GLOBE does not adopt the remote object model. Instead, it

5.4. TECHNICAL SOLUTIONS FOR COOPERATION SUPPORT 129

uses a distributed shared object model, which bases on replication and distribution
of objects and their use by multiple processes. In contrast to MatchMaker,
GLOBE does not define a common policy for replication and distribution, however:
this specification is done individually by each object. This approach offers enormous
options to the programmers using GLOBE, but of course also means additional work
when developing the objects to be shared.

Objects in GLOBE are a composite of essentially four components which encap-
sulate the semantics, the connection to the underlying network, the replication and
distribution strategy, and a control component. The object model of GLOBE is
passive in the sense that between method invocations, objects are not active. The
only way of accessing objects in GLOBE are synchronous method calls.

As mentioned, GLOBE is a system with only few central services: most tasks
(including policy definitions) are delegated to the distributed objects themselves.
Consequently, security issues are addressed within GLOBE by adding encryption
mechanisms on a per-object base - there are no global security services. Persistency
and fault tolerance can be solved in GLOBE in an elegant manner using the so-
phisticated replication mechanism, but concurrency control is problematic. There
are ways to define object-bound control mechanisms, but GLOBE does not provide
inter-object synchronization mechanisms (Tanenbaum & Steen, 2002).

5.4.10 Comparison and Discussion

Even the brief description of the communication frameworks as done in the pre-
vious subsections reveals that there is a wide variety of approaches and solutions
with respect to the comparison criteria mentioned in section 5.3. The presented
technologies differ greatly in terms of purposes, underlying philosophies, and design
principles. Furthermore, they partly use each other and thus belong to different
layers in an abstraction hierarchy.

The degree of fulfilment of the comparison criteria varies considerably, and there
is no simple scale with which the different communication technologies could rea-
sonably be compared on a +/- base as done with the graph libraries in section 5.2.5.
I therefore take a different approach and compare the presented libraries more in
terms of the intended usage (i.e., supporting the sharing of visual typed graphs
within an implementation of the Reference Frame approach) than on a general
level.

The first important point is that within this thesis, the communication frame-
work will be used to synchronize graph structures. Of course, the data primitive of
the communication framework should match these purposes. This practically dis-
qualifies both the direct use of sockets and also JSDT: both approaches are oriented
towards data packets or streams, and do not support well the object oriented usage
context.

The second critical requirement is a consequence of the targeted collaborative
scenario: users are expected to work with representations, and changes are supposed
to be communicated to collaborators. Here, the availability of events and notifying
mechanisms in the underlying communication technology of essential importance.
Web services, RMI, and GLOBE do not offer generic event support and are therefore
not well suited for the purposes of this thesis.

The ”remaining” four technologies are CORBA, JavaSpaces, MatchMaker,
and DCOM. The next important requirement is related to the intended flexibility
and openness of the collaborative modeling system: a flexible and expressive ob-
ject model that does not restrict the usage scenarios is an advantage here. The
stateless transient object model without global identifies of DCOM does not meet
these requirements. The tuple space approach together with the object model of
JavaSpaces is also critical with respect to this point: there is no easy way of impos-

130 CHAPTER 5. EXISTING TECHNOLOGY

ing a structure onto elements within a JavaSpace, and the missing object identity
and lacking options of directly accessing elements within a JavaSpace are serious
drawbacks.

As a conclusion, I consider both CORBA and MatchMaker as suitable com-
munication technologies for the implementations within this thesis. CORBA re-
quires a lot of implementation overhead, but is better supported and documented,
programming language independent, and contains more flexible solutions for a lot
of detail problems. Consequently, it would be the first choice in a selection without
side constraints. However, as also MatchMaker fulfils all the needed essential
requirements and, in addition, is already supported by the chosen graph library (cf.
section 5.2.5), it is reasonable to use MatchMaker as communication technology.

Chapter 6

An Abstract Implementation
Model

The Reference Frame approach as presented in chapter 4 is on a conceptual and
formal level. Having discussed suitable ”background” technologies in the previ-
ous chapter, this chapter now proposes an implementation of the Reference Frame
approach based on these technologies. For several reasons, it would be inappropri-
ate to design the targeted collaborative modeling framework directly on top of the
results from chapter 4 and the libraries selected in chapter 5:

• Though the conceptual results have been developed with a view towards the
construction of a concrete system, the Reference Frame approach is not oper-
ational enough to provide guidance for a straightforward implementation.

• The attempt of implementing the results from chapter 4 directly is likely to
lead to mixing decisions deduced from the theoretical foundations with more
HCI or usability related aspects, which have to be taken into account for the
concrete system development, but not necessarily on an abstract architecture
level.

• It is an established and reasonable tradition in software engineering to design
for flexibility and reusability. In particular, as will be shown in chapter 7, an
encapsulated abstract implementation of the Reference Frame based modeling
approach decouples conceptual work from system design issues and thereby
allows differently targeted or designed tools to make use of the Reference
Frame idea.

For these reasons, the presentation of an implementation of the Reference Frame
approach is done first on an intermediate layer of abstraction within this chapter of
the thesis. In particular, the conceptual results from chapter 4 are taken up, and
abstract computational structures that represent a basic functional implementation
of these conceptual results are developed, using an object oriented approach.

6.1 Visual Typed Graphs

The notions of typed graphs and their layouts have been presented in chapter 4 on
an abstract level. This section, discusses how they can be implemented using the
COLLIDE JGraph (COLLIDE JGraph, n.d.) library, which is described in detail
in subsection 5.2.4 within the comparison of graph libraries.

131

132 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Any attempt of building a system for visual typed graphs has to give an answer
to two design questions: the representation of node and edge types, and the im-
plementation of layouts and visual attributes. These are discussed in the following
subsections.

6.1.1 Node and Edge Types

In object oriented approaches, a natural way of representing the types of certain
entities is to use different classes corresponding to the types. The interfaces and
abstract base classes provided by the COLLIDE JGraph library are well suited
for this. Here, any class that implements the interface info.collide.graph.Node
can be conceived as a node type, and in analogy all the classes which implement
the interface info.collide.graph.Edge represent edge types (cf. figure 5.4).

With this translation of the type concept into an object oriented structure, the
node type set N and the edge type set E from definition 4.3 naturally correspond
to the sets of classes which implement the interfaces mentioned above.

Node and edge types defined in terms of classes, the nodes and edges themselves
are represented as objects - instances of these classes. Therefore, the ”instance of”
relation is exactly the implementation of the type mapping relations domN and
domE as contained in definition 4.3.

These simple relations show that the COLLIDE JGraph library (like most
of the libraries compared in section 5.2) offers a straightforward way of represent-
ing typed graphs. There are even several options the library offers which are not
required by the notion of typed graphs:

• The attributes and operations of node and edge classes do not have any cor-
respondence in the basic concept of typed graphs.

• Inheritance mechanisms allow the definition of nodes as being subtypes of
other nodes (and similar for the edges). In the concept of visual typed graphs,
this is represented through the subtype relations in definition 4.2 - yet, these
are not required (though supported) by the core parts of the theory.

The following parts of this chapter describe how these additional capabilities can
be used to support the intended usage of the typed graphs within a collaborative
modeling framework.

6.1.2 Layouts

As presented in chapter 4, the layout information for graphs is kept separate from
the concepts of types and Reference Frames: the attribute sets VN and VE are
independent. This design decision was made in order to easily allow for a generic
integrated visualization of a typed graph, irrelevant of the node and edge types that
this graph contains.

On the software level, this can be modeled by (interface or implementation)
inheritance: abstract node or edge structures which define (among others) the visual
attributes, and methods for interfacing to the general top-level rendering methods
of the info.collide.graph.JGraph class. In terms of definition 4.4, the domains
of the variables represent the attributes themselves, and the results of the mappings
λN and λE are represented through the values that these variables have for a given
set of nodes and edges.

Table 6.1 shows the visual attributes of two simple exemplary base classes in the
COLLIDE JGraph library. Here, the layout parameters of the node contain infor-
mation about its current selection state, its variability in size, its behavior concern-
ing layout algorithms, and its popup menu. In addition, a javax.swing.JComponent

6.2. RULES AS EXPRESSIONS FOR CONSTRAINTS 133

Table 6.1: Visual attributes of AbstractNode and SimpleEdge

Class Visual attributes
boolean selection
boolean resizable

AbstractNode boolean sticky
JPopupMenu popupMenu
JComponent view
EdgeComponent[] edgeComponents

SimpleEdge
JComponent view

encapsulates further pieces of information (including position, border, etc.). The
parameters of the edge are its components (visual objects to attach to the edge
when painting it), and again a javax.swing.JComponent.

Higher-level base classes with more visual attributes do also exist in the library
(e.g., the classes AbstractView and ShapedEdge in the info.collide.graph pack-
age). This solution of handling the visual attributes in abstract base classes and
interfaces enables a type-independent availability of visual information, which mir-
rors the approach taken in definition 4.4.

One drawback of this approach is that arbitrary mixing of layouts and types
is not possible: at design time of a class, a fixed set of layout attributes (i.e., the
base class and the implemented interfaces) must be chosen. Here, more dynamic
mechanisms (e.g., variable property lists) could help - however, up to now, no real
need for this occurred during our practical usage of the system.

As briefly described in this section, the COLLIDE JGraph library enables
an easy and straightforward implementation of visual typed graphs, with classes
representing types, and variables in abstract base classes or interfaces for nodes and
edges corresponding to visual attributes.

6.2 Rules as Expressions for Constraints

Apart from the pure availability of visual typed graphs as suitable data structures
for a collaborative modeling system, also the notion of syntactical correctness of
models is important.

In section 4.2, the syntactical correctness of models was addressed through con-
straint mappings - a visual typed graph being correct (or: conform), if the constraint
function parameterized with the graph evaluates to true.

Definition 4.6 does not require a specific calculus for the definition of constraint
mappings. Thus, its implementation is a design choice, influenced by two parame-
ters: on the one hand, the mechanism should be intuitive to use, as it is one part
of the definition of Reference Frames, which should not be too complicated (cf. re-
quirements list in section 1.5). On the other hand, a constraint mechanism with a
too small scope does not make sense, as it risks not supporting modeling languages
with complex syntactical requirements would not be supported any more.

Taking these two positions into account, one possible solution is to base the
implementation of constraint mappings on rules which are easy to specify and ex-
pressive enough to cover a broad range of possible syntax restrictions, but do not
offer any further dynamic calculus. A rule merely represents a certain non-allowed
situation in a graph, the calculation whether the rule matches is left to the graph.

Obviously, rules of different complexity are imaginable. This can be taken into
account by different rule types, which enable the expression of different non-allowed

134 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

situations in visual typed graphs. In particular, the following rule types can be
distinguished (and have been added to the COLLIDE JGraph library):

Edge Rules. This very basic type of rule can be used to express that between
two nodes of a specific type, only a certain number of edges (rule weight)
of a specific type are allowed. Setting the rule weight to 0 results in simply
forbidding connections of the node types with the edges types. These simple
edge rules can, e.g., be used to disallow the connection of places with places
in Petri Nets.

Limit based Edge Rules. This rule type allows, in addition to the parameters
of edge rules, the specification of limits for the total number of outgoing and
incoming edges per node, depending on edge type and neighbor node type.
Limit based edge rules can be used to control on a fine-granular level the data
flow in a graph.

Cycle Rules. These rules are parameterized with a list of edge types and a list
of node types. The rule matches if the graph contains a circle that consists
only of nodes and edges of the specified types. Cycle rules can be used to
guarantee tree structures, e.g., in the case of calculation trees (cf. figure 4.2).

Structural Pattern Rules. This very generic type of rule is parameterized with
a typed graph, serving as a pattern. The rule matches if the graph to be
checked has the pattern as a subgraph: in the matching algorithm, node and
edge types are considered. Pattern rules are very flexible, as they allow the
specification of very complex forbidden ”axioms” - their limit is that they are
not dynamic (i.e., only fixed patterns are allowed, see discussion of rules with
behavior below).

Equality based Pattern Rules. This rule is very similar to the structural pat-
tern rule, differing in that the matching check does not rely on the type of
nodes and edges, but invokes the equals() method of the elements. This gives
greater flexibility in pattern matching by delegating decisions to the node and
edge classes.

These five types are partially redundant: e.g., a pattern rule can easily replace
a simple edge rule by using a graph that consists of two nodes and one edge as a
pattern. This redundancy has two reasons. First, these rule types have evolved
during a number of years (practically, a new rule type was added whenever it was
noticed that the available ones were not sufficient any more), so that the less pow-
erful constructs still exist for compatibility reasons in the software. Second, the
feedback from the programmers indicated that in the case of several suitable rule
types, the easier one is chosen. This motivates keeping the redundant types for
convenience reasons.

Alternative constraint mechanisms with more expressive power might support
the specification of expressions with certain behavior, e.g., specified by a graph
grammar (cf. subsection 2.2.2). This would obviously extend the set of constraints
that can be expressed, but would at the same time make the specification of a rule
more difficult.

Technically, these rules are implemented as Java classes (extending a common
superclass info.collide.graph.Rule, which encapsulates localized messages that
are designed as feedback for the user who ”made the mistake”). The JGraph class
has methods for managing these rules, and is also responsible for checking whether
these rules match. In theory, this problem breaks down to the subgraph isomor-
phism problem, which is computationally hard (cf. subsection 2.1.2). Section 6.4
shows an implementation that addresses these problems.

6.3. REFERENCE FRAME IMPLEMENTATIONS 135

6.3 Reference Frame Interfaces and Implementa-
tions

Similar to the visual typed graphs, the concept of Reference Frames has been in-
troduced in chapter 4 on a formal level, which was helpful for conceptualization
purposes, and in particular for the derivation of some advanced mappings and re-
lations. This section now proposes an object oriented implementation of Reference
Frames. In contrast to the case of the visual typed graphs, where the implementa-
tion was a mapping to the existing COLLIDE JGraph library, the object oriented
Reference Frame implementation is not based upon any pre-existing component: it
merely uses the visual typed graphs implementation in the COLLIDE JGraph as
underlying data structure.

6.3.1 Encapsulated Components

As stated in definition 4.10, a Reference Frame is a conceptual collection of the
following components:

• Node and edge types

• Visual attributes for nodes and edges

• A set of constraint mappings

• A semantic domain and a semantic mapping

• A synchronization context mapping

Given that Reference Frames are the analogy of modeling languages in my ap-
proach, a high degree of flexibility in their specification is of high importance. There-
fore, it makes sense to model a Reference Frame as a Java interface, in order to allow
the specification of modeling languages independent of inheritance hierarchies - in
the case of a programming language with multiple inheritance, also an abstract base
class would of course have been a reasonable choice. Figure 6.1 shows a list of all
the methods in the interface.

The first block of methods in the interface is designed to support the dynamic
and interactive use of Reference Frames in the system. In particular, a Reference
Frame can define a user interface, and has methods that allows a runtime system
to notify it about changes. Details about this will be described in the next chapter
of this thesis.

The second block serves practical purposes. Here, a Reference Frame specifies a
unique identifier, several pieces of metadata which are usable for managing multiple
Reference Frames, and some methods that allow for a smooth embedding in the
runtime system (cf. chapter 7).

Node and Edge Types

The two methods that return Association arrays allow the specification of node
and edge types. Here, an Association is a collection of two classes: a model class
and a controller class (in the MVC scheme). This way of specification is necessary
due to the JGraph and MatchMaker libraries: both need to generate views and
controllers from models (cf. sections 5.4.7 and 5.2.4), so that an explicit specification
of models and corresponding classes (to be generated from these models by Factories
in the runtime environment) is needed.

In terms of the conceptual approach from chapter 4, the proposed Reference
Frame implementation explicitly specifies the node and edge types that belong to his

136 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

public interface ReferenceFrame {
public void init(GraphApplication manager);

public void update();

public void dispose();

public Palette getPalette();

public String getIdentifier();

public LocalizedMessage getLocalizedIdentifier();

public String getLocation();

public String[] getPackagePrefixes();

public String[] getNeededReferenceFrames();

public String[] getNeededExternalResources();

public String[] getAuthors();

public String[] getLanguages();

public ActionType[] getActionTypes();

public void switchMode (int mode);

public Association[] getNodeAssociations();

public Association[] getEdgeAssociations();

public Node[] getImportedNodes();

public Edge[] getImportedEdges();

public Rule[] getRules();

public void synchronizeContext(Node node, JGraph graph);

}

Figure 6.1: The technical ReferenceFrame interface

Defines set (using the getNodeAssociations and getEdgeAssociations meth-
ods). This implementation allows for the following:

Proposition 6.1 The proposed way of defining node and edge types and Reference
Frames allows for guaranteeing unambiguity of Reference Frame sets.

Proof. First, the name of a class uniquely identifies this class in a Java runtime
environment, so that the mapping between (conceptual) node or edge types and
their representing classes is really bijective.

Now assume that a set R of Reference Frames is given. In the proposed imple-
mentation, each Reference Frame R ∈ R declares his Defines set through interface
methods. Therefore, an application that manages the set R just has to check the
returned lists for elements contained in more than one, and can thus easily detect
violations of the unambiguity criterion.

A practical implementation can then exclude one of the Reference Frames that
caused the problem from the set R - in the Cool Modes system (cf. next chapter),
the consistency check is, e.g., performed actually before adding a Reference Frame
to the set of already ”loaded” ones, which ensures permanent unambiguity of the
set of loaded Reference Frames.

Similar to the Defines set, there are methods in the Reference Frame interface
which allow the direct specification of the Knows set. Theoretically, the node and
edge classes that a Reference Frame refers to on the code level, including those
returned in the getAssociations methods, could constitute its Knows set also
implicitly. None of the further implementations presented in this thesis indeed
rely on the explicit way of defining the Knows set: e.g., the model interpretation
mechanism works by delegating the calculation of the G|R graph to the Reference

6.3. REFERENCE FRAME IMPLEMENTATIONS 137

Frame. Yet, the explicit way of declaring imports has the advantage of clearly
reflecting the relationships between Reference Frames.

In addition, if a Reference Frame relies on the availability of functionality
provided by other sources (e.g., if certain needed algorithms are implemented
in external Reference Frames), it is possible to declare this dependency in the
getNeededReferenceFrames(); and getNeededExternalResources(); methods
of the ReferenceFrame interface, returning the identifiers of the needed Reference
Frames or the location of the general resources. This indicates the dependency be-
tween the Reference Frames to the framework, which can then check the availability
of the resources at runtime.

Constraints

As described in detail in section 6.2, the implementation of constraint mappings
is done by rules. Via the getRules() method, a Reference Frame can explicitly
specify a list of syntactical integrity constraints. Subsection 6.4.1 discusses the
management of the rule sets by the framework.

Visual Attributes

The visual attributes for nodes and edges (VN and VE in the formal definition) are
defined implicitly: as stated in section 6.1, these are contained in the abstract base
classes and interfaces for the node and edge structures defined by the Reference
Frame. Being a basic means for consistent visual representation of heterogenous
models, the visual attributes are not intended to be highly dynamic. Yet, adding
attributes if possible through the inclusion of further interfaces.

Semantics

As contained in section 4.3 and definition 4.10, the semantics to be encapsulated
within a Reference Frame consists of two elements: a semantic domain D and a
semantic mapping Ip, which maps to D. The ”standard” domain of Ip are graphs -
though more modular approaches which allow the mapping of nodes or edges to D
are also possible (cf. section 4.3).

Similar to some other cases (like the the visual attributes), an implicit way of
representing semantics in the implementation, driven by the following principles,
makes sense:

• As described, nodes, edges, and Reference Frames are represented as classes
which implement specific interfaces or inherit from certain abstract base classes.
Apart from the requirement of being suitable for serialization (which comes
from the collaborative context of use), there are no further explicit or implicit
restrictions concerning attributes or operations of the classes.

• Therefore, the semantics of a graph (or: node/edge) can be stored in attributes
of the nodes or edges classes, or in attributes of the Reference Frame class.
This is a natural approach, as some attributes will typically be related to
single elements of a model, whereas others describe the model as a whole
(difference between Ip(nG) and Ip(G)). This way, the semantic domain can
be conceived as the cross product of the domains of these variables.

• In accordance with the previous point, the semantic mapping can be repre-
sented by methods which calculate the values for the variables that constitute
the semantic domain. These methods can be specified either in the node or
edge classes, or in the Reference Frame class (here, of course, delegations are
possible).

138 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Alternative design decisions foreseeing, e.g., a central storage for semantics at-
tributes, are possible with the abstract Reference Frame concept. An advantage of
a more centralized approach is that it simplifies the access to the result of model
interpretation significantly - however, it imposes (typically) unnecessary conditions
on the developer of a Reference Frame implementation. Besides the choice between
centralized and distributed storage of semantic attributes, another design decision
is related to whether an explicit declaration (or: marking) mechanism for semantic
attributes is used or not. The next part of this section and section 6.4 show that
such a mechanism is not required for the core functionality needed for the inter-
pretation of distributed heterogeneous models. Thus, to relieve the developer from
unnecessary work, the proposed architecture does not foresee an explicit marking
mechanism. Subsection 8.3.3 shows that some users of the system libraries support
this design decision, whereas others would have preferred a more explicit approach.

Synchronization contexts

The synchronization context mapping has an explicit representation in the
ReferenceFrame interface: the method synchronizeContext(Node, JGraph) ac-
cepts a node and a visual typed graph as parameters. In conformance with definition
4.8, the policy for implementations of this method is that it calculates a synchro-
nization context of the parameter node in the parameter graph (cf. proposition 4.2
- in the best case, a minimal synchronization context should be returned), and cou-
ples the whole context together (instead of only the node). This way, an attempt
of synchronizing a node in a graph with other graph instances can be processed
locally, and lead to a coherently synchronized subgraph.

The inclusion of the synchronizeContext(Node, JGraph) method in the in-
terface requires the developer of a modeling language to reflect in detail upon the
semantics of the structures he defines in partially coupled situations. Of course, this
is not a trivial task, especially not for modeling languages with formal semantics.

An alternative to this, which disburdens the developer from these decisions,
would be the automatic calculation of (in the best case minimal) synchronization
contexts. However, such a calculation is practically not reasonable due to the flex-
ibility of calculating model semantics as stated above. In particular, the following
three steps would be required:

1. a way to make explicit all the variables in nodes, edges, and the Reference
Frame itself which belong to the semantics (i.e., to distinguish them from
other information like, e.g., temporary variables or help variables),

2. a method to compare these variables with partially synchronized applications,
and

3. a technique to build the minimal synchronization context based on the results
of the comparison.

In particular the third point is the problematic one:

• Straightforward algorithms that simply test out which subgraph is a minimal
synchronization context are no real option due to their complexity, especially
taking into account that this is a distributed algorithm (step 2).

• The idea of relying on the comparison results (step 2 in the algorithm) does
not work either: even if the nodes and edges with varying semantics are
available, the step of determining which elements of the graph must minimally
be synchronized in order to ”repair” the inconsistency cannot be derived by
simple means due to the possible complex interdependencies in the semantic

6.3. REFERENCE FRAME IMPLEMENTATIONS 139

mapping and its a priori unknown calculation. The case is even harder if
semantics information is (at least partially) stored in the ReferenceFrame
implementation itself: if this varies between two instances, there is no direct
way of finding out if and how this influences the semantics of single nodes,
and thus no easy method of finding a non-trivial synchronization context. A
known storage location (marking of semantics attributes) does not help here,
and approaches without a central storage location for semantic attributes
are generally problematic, as they have to use substitutes for general model
attributes that are not bound to specific elements of the model.

• Finally, algorithms that go into detail about the interdependencies and are
able to calculate a suitable synchronization context based on the comparison
results are very similar (and not less complex) than the ones required for
implementations of synchronizeContext(Node, JGraph). Both approaches
also offer the same degree of explicitness.

In order to assist the developer in the task of defining suitable synchronization
contexts (which do not have to be minimal, though non-minimal ones lead to an
unnecessary restriction of options for partial synchronization), a number of typical
algorithms that are applicable for a variety of modeling languages can be pre-defined
and implemented in form of a Strategy pattern (Gamma et al., 1995):

Single Node. This simple implementation does not add any nodes to be addi-
tionally synchronized. This algorithm makes sense if the semantics of a node
does not depend on the surrounding context in the graph. A visual language
designed to support brainstorming sessions with unrelated contributions is an
example of a language where this strategy makes sense.

Whole Graph. The second trivial case always synchronizes the whole graph upon
the attempt to synchronize one node. This strategy guarantees a synchroniza-
tion context, but obviously in most cases synchronizes too many elements.

Connectivity Component. In modeling languages where the graph structure
plays an important role, the semantics may often be retained if the connec-
tivity component that a node belongs to is synchronized along with the node.
Here, highly interoperable Reference Frames are an example (cf. the System
Dynamics example in the next subsection).

Subgraph induced by Reference Frame. Typically, for ”closed” (non-interop-
erable) modeling languages the subgraph of the graph which consists only of
types known by the Reference Frame (denoted by G|R in section 4.6.1) is a
good candidate for a synchronization context. Here, calculation nets or the
extended Reference Frame for Stochastics (Kuhn et al., 2004) as described in
the next subsection are representative example languages.

The class diagram in figure 6.2 illustrates how these algorithms are implemented
using the Strategy pattern. It contains the class AbstractReferenceFrame, which
is an abstract adaptor class (in the sense of the Java adaptor classes) which contains
default implementations for most of the methods contained in the ReferenceFrame
interface.

6.3.2 Implementations for Interoperability

In the introduction of the Reference Frame concept in section 4.5, two important
aspects were paid attention to: first, the conceptual structure of a Reference Frame
representing a ”modeling language”, and second the interoperability options between

140 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Figure 6.2: Synchronization contexts as strategies for Reference Frames

Reference Frames. There, two different ways have been proposed, one being import
based, and the other one extension based. This subsection now outlines possible
implementations of these two kinds of interoperability between Reference Frames.
A number of other forms of interoperability, which does not strictly adhere to the
”import” or ”is-a” type, are imaginable and possible on the code level.

Import based solutions

Definition 4.12 can be read in the sense that an import relation between two Ref-
erence Frames R1 and R2 exists if R1 includes a set of node types N ′ ⊆ N (R2)
and/or a set of edge types E ′ ⊆ E(R2) to his set of ”interpretable” structures.
In terms of section 4.6, this import R↙〈N ′

2,E′2〉
1 means that the Knows set of R1

includes N ′
2 and E ′2.

A prerequisite for discussing import relations between Reference Frames is that
the node and edge type import is well-defined (i.e., Defines and Knows sets do
not share elements). Using the unambiguity property of Reference Frame sets,
the propositions 4.3 and 6.1 show that this can be reached with the architecture
proposed in this chapter.

Figure 6.3 shows an example of the import relation between Reference Frames.
The left side and the right side of the figure show two Palettes, which are user
interfaces of Reference Frames (cf. next chapter).

The left Palette belongs to a Reference Frame in the field of mathematics. It
contains an element that allows the user to specify a function term, and another one
that allows the input of number pairs in a table. A plotter component is capable of
visualizing the information contained in elements of the other two types (function
plots or single points from table). In addition, this Reference Frame imports a
”simple edge” type and offers it to the user in the Palette. Here, the distinction
between defined and imported elements is transparent: in the user interface, it
cannot be seen. The user interface of a Reference Frame can be flexibly defined (cf.
section 7.2), so that also other approaches are imaginable: in general, neither the
defined nor the imported types have to be contained - however, at least the defined
types will typically be.

The right Palette shows a ”System Dynamics” Reference Frame (Bollen, Hoppe,

6.3. REFERENCE FRAME IMPLEMENTATIONS 141

Figure 6.3: Node imports between Reference Frames

Milrad, & Pinkwart, 2002). This enables computational modeling using the method-
ology introduced by Forrester (1968). The Reference Frame defines three node types
(stocks, rates, and constants), and two edge types which represent data flow and
information flow. Though not shown in the Palette, this Reference Frame imports
the plotter component of the other Reference Frame.

This import relation becomes clear in the workspace, shown in the center of the
figure. The upper part contains a simple System Dynamics model, which describes
an exponential growth. This part of the model is connected to the plotter compo-
nent, which then shows both the graph of the function entered in the textual field
on the left, and also the graph of the exponential growth. This kind of connec-
tion between objects defined in different Reference Frames is obviously more than
a simple syntactical connection that an abstract graph structure can offer.

On the programming level, the import was in this specific case done by an
interface that the ”data source” nodes implement. The plotter node is capable of
accessing the numerical data contained in the nodes which implement this interface.
Thus, the import relation is done here by implementing this specific interface and
thus making use of a subtype relation on the node type level. Yet, a number of
other code-level equivalents of the conceptual ”import” relation are imaginable.

Extension based solutions

As argued, import relations between Reference Frames can be implemented by
simply using concepts (node or edge classes or interfaces) defined by other Reference
Frames. The example described above outlines that this simple relation can already
offer quite nice options.

Yet, some information like constraint mapping sets, semantics, or synchroniza-
tion context mappings cannot be transferred between Reference Frames with the
import mechanism proposed above. Thus, another technique for the implementa-
tion of the ”is-a” relations is needed. Here, a natural way is the use of inheritance.
If, on the code level, a specific Reference Frame class c1 extends another Reference
Frame class c2 and does not override any method, it immediately fulfils some of
the criteria listed in definition 4.13: the constraint mapping sets defined by c1 and
c2 are the same, and the semantic domains also practically fulfil the criterion (with
DE consisting of one neutral ”dummy” element).

The only problematic issue are the node and edge types (and, implicitly, the
visual node and edge attributes). The node and edge associations returned by c1
and c2 are the same, which violates the unambiguity criterion. This exceptional

142 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

situation, however, can easily be detected by the application framework - in the
case of Cool Modes (cf. next chapter), the Java Reflection mechanism is used to
decide whether a ”real” double definition occurs, or whether the double definition
is caused by classes that are in an inheritance relation.

As argued, if c2 is an implementation of the ReferenceFrame interface, and
c1 extends c2 without overriding any methods or adding attributes, then the ”is-
a” relation in the sense of definition 4.13 holds. Not surprisingly, these trivial
extensions are semantically consistent in the sense of definition 4.15, as neither the
syntactic constraint mappings are modified nor the semantics mapping/domain are
changed.

However, a more interesting question is of course if the ”is-a” relation (or even
the syntactic or semantic consistency) also holds if c1 overrides methods of c2.
Here, three cases have to be distinguished:

Types and visual attributes. If c1 imports further node types (not defined or
imported by c2), this leads to an extension of N ′∗ in the terminology used in
definition 4.13. Obviously, this cannot violate the subset criterion. The case
of c1 defining new node and edge types is irrelevant within the criteria list in
the definition. The inclusion/definition of edge types is analog to the case of
the node types. Finally, the subset relation of the visual node/edge attributes
is an immediate consequence of the subset relations for node and edge types
together with the implicit definition of visual attributes (cf. subsection 6.1.2).

Semantic Domain. As stated, the semantic domain of a Reference Frame is con-
ceived as the cross product of data types of the variables that constitute the
semantic domain. In the proposed implementation, these variables can either
be associated to node classes, edge classes, or the Reference Frame class itself.
If c1 extends c2, then the variables introduced additionally by c1 (either in
the class itself, or in additional node and edge classes), are the set which con-
stitutes DE in terms of definition 4.13. c1 cannot reduce the semantic domain
of c2 due to the functionality of the inheritance mechanism in Java.

Constraints. This is the only critical case. If the getRules() implementation
in c1 does not include the rules already defined by c2, then the constraints
criterion specified in definition 4.13 is violated.

The previous lines show that the way in which specializations of Reference
Frames deal with syntax (i.e., which constraint mapping sets they define) is the fac-
tor that determines if an extension on the code level is really equivalent to an ”is-a”
relation in terms of definition 4.13. However, there are a number of techniques that
can be applied on the framework level (and, thus, independent of concrete Reference
Frames), which ensure certain characteristics of extensions. As these techniques are
related to the runtime management of several Reference Frames, they are discussed
in the next section.

Figure 6.4 shows an example of an ”is-a” relation between two Reference Frames.
On the left side, the figure shows the Palette of a Reference Frame in the domain
of stochastics, the right side of the figure contains the user interface of an extended
stochastics Reference Frame. It is visible that the right Reference Frame extends
the left one with respect to both node and edge types - syntax and semantics are
also retained in this extension, although this has of course no visual representation
in the figure.

Besides illustrating the concept of ”is-a” relations between Reference Frames,
this example also shows some advantages of the mechanism. The reduced com-
plexity in ”basic” versions of Reference Frames may help users to understand the

6.4. EVENT BASED MODEL INTERPRETATION 143

Figure 6.4: The user interface of a Basic and an Extended Reference Frame for
stochastics

principles of the modeling language, while advanced users can switch to more ex-
pressive and powerful versions. Apart from these usability issues, there are also
some education-related advantages of iterative versions: they allow the teacher to
adjust the level of modeling language abstraction according to his pupils and their
learning advances. This is visible in figure 6.4: the ”basic” version of the Reference
Frame contains very simple elements to model random processes: an urn, a dice, a
representation of ”drawing”, and a result visualizer. The extended version offers a
whole range of more advanced concepts, including abstract urns, elements for the
repetition of drawings, and edges that model the drawing elements with putting
them back immediately.

6.4 Event Based Model Interpretation

The previous parts of this chapter described the computational representation of vi-
sual typed graphs and Reference Frames. Building upon some approaches presented
by Pinkwart, Hoppe, Bollen, and Fuhlrott (2002), this section describes how the
interpretation of visual typed graphs by a set of Reference Frames can practically
be implemented.

Here, one of the foundational design decisions is the interaction model between
the visual typed graph and the Reference Frames. Two classical alternatives are
the pull model (in which the Reference Frames would query the visual typed graph,
usually interval-based), and the push model. In the latter, the visual typed graph
is an active structure which propagates changes to the Reference Frames.

The push model has a number of advantages: it reduces the total number of
messages (as no messages are sent as long as the data stays unchanged), and is
faster in providing the information receiver with data (as time intervals do not
play a role). The COLLIDE JGraph supports the push model (cf. subsection
5.2.4), so that its adoption as a base for both the syntax checking and the model

144 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Figure 6.5: The event classes in the COLLIDE JGraph architecture

interpretation makes sense. The basic event types employed for both tasks are
NodeEvent and EdgeEvent. As shown in figure 6.5, these events can be handled
by implementations of the GraphListener interface, which consists of methods
that represent structural changes in visual typed graphs. Typical listeners are the
ReferenceFrame implementations or delegates, and also nodes and edges. The next
subsections show these listeners (ConcreteListener class in the diagram) can be
designed and connected in order to manage syntax and semantics of models.

In the runtime system, NodeEvents and EdgeEvents events are produced when-
ever the abstract graph structure has changed, which may have one of the following
causes:

• the user manipulating the visual typed graph,

• remote synchronized applications whose visual graph changes, or

• other local system-internal processes initiated by Reference Frames (in par-
ticular, the interpretation of a visual typed graph is allowed to change the
interpreted graph!)

6.4.1 Syntax

As argued in section 4.6, the only reasonable way of defining a visual typed graph G
syntactically correct with respect to a set of Reference Frames R is to base this on
the syntax predicates defined by the Reference Frames contained in R. Consequently,
G is then correct concerning R if and only if G is correct in terms of each single
R ∈ R.

Therefore, an implementation which ensures syntactic correctness of visual typed
graphs by sets of Reference Frames has to guarantee that at any point in time, all
integrity constraints hold, i.e. all mappings evaluate to true. This is possible with
a simple algorithm outlined in the state diagram in figure 6.6.

Proposition 6.2 Assuming a correct constraint checking mechanism for visual
typed graphs, the algorithm from figure 6.6 guarantees syntactic correctness of a
visual typed graph with respect to a set of Reference Frames.

Proof. If the set R of Reference Frames is empty, then there are no constraint
mappings, which leads to trivial fulfilment of the syntactic correctness criterion.
Whenever an element is added to R, the constraint mappings defined by this Ref-
erence Frame are transmitted to the graph G (state ”Calculate constraints”, event

6.4. EVENT BASED MODEL INTERPRETATION 145

Figure 6.6: Basic algorithm for ensuring syntactic correctness of visual typed graphs
with respect to multiple Reference Frames

”updatedRuleSet”), and therefore (by assumption) hold, at least after potential
modifications within G (state ”Modify graph”). If an element is removed from R,
syntax problems cannot occur, as the total set of constraint mappings is reduced.
Finally, with R temporarily stable, the result of any modification within G is (by
assumption correctly) checked with respect to the constraint mappings as defined
by the elements of R, so that only change attempts of G that yield a syntactically
correct state are accepted.

This algorithm is implemented in the Cool Modes framework (cf. next sec-
tion). Here, a FrameController holds a list of currently available Reference Frame
classes, and a JGraph represents a visual typed graph, including also the ability to
check constraints in form of rules (cf. sections 6.1 and 6.2). The algorithms for
checking the matching of rules with the graph have to face the problem that graph
isomorphism is a computationally hard problem (Skiena, 1990). This theoretical
problem, however, is not a practical one for three reasons: First, the number of
nodes and edges (i.e., the complexity of the graph) is usually not too high in the
targeted modeling situations (as the users need to have an understanding of the
model). Second, the type information associated to nodes, edges, and rules greatly
reduces the amount of potential matches for rules to be checked. Third, the events
that are sources for constraint checks include the source of the event. This can be
used to further restrict the scope of the matching routines.

The described algorithm to ensure the syntactic correctness of a visual typed
graph with respect to multiple Reference Frames can be modified in some direc-
tions, taking into account inheritance relations between ReferenceFrame imple-
mentations. A history-preserving variant of the algorithm is shown in figure 6.7.
Here, upon adding a Reference Frame class to R, also the superclass is added to R,
provided that it is also a Reference Frame (state ”Check superclass”).

This history-preserving variant of the algorithm has one central advantage:

Proposition 6.3 The history-preserving algorithm for syntax preservation ensures
that all class-level Reference Frame extensions are treated like ”is-a” extensions (in
the sense of definition 4.13) by the constraint check.

146 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Figure 6.7: History-preserving variant of the algorithm for syntactic correctness

Proof. One result of the discussion in section 6.3 was that a subclass of a Refer-
ence Frame class is in an ”is-a” relation to its superclass as long as the constraint
mappings set defined by the subclass includes the one defined by the superclass.
In the history-preserving algorithm variant, this property is guaranteed by explic-
itly adding the constraint mappings of the superclass to those that are applied for
checking syntactical correctness.

Of course, proposition 6.3 does not address code-level issues between the classes:
here, the constraint mapping sets may still not fulfil the criteria for ”is-a” relations.
However, the algorithm ensures (or: emulates) the effects of ”is-a” relations at
runtime. This is similar for the strictly history-preserving variant of the syntax
preservation algorithm, which is shown in figure 6.8. This includes the following
add-on in the state ”Filter rules”: if a class c and its superclass c’ are both in R,
then before proceeding to the ”Check graph” state (i.e., applying the rules), those
constraint mappings defined by c are removed from the set that only use node and
edge types defined by the getNodeAssociations() and getEdgeAssociations()
methods of c’.

Proposition 6.4 The strictly history-preserving algorithm for syntax preservation
ensures that all class-level Reference Frame extensions are treated like syntactically
consistent extensions (cf. definition 4.14) by the constraint check.

Proof. Assume that G is a visual typed graph which only consists of node and
edge types defined in a ReferenceFrame class c’, and let c be a subclass of c’.
Furthermore, assume that G fulfils all the constraint mappings defined by c’.

Adding c to R leads to adding also c’ to R, due to the history-preservation.
As all constraint mappings of c that operate only on node types defined by c’ are
filtered out, all the constraint mappings transmitted from c to G evaluate to true,
so that G is (by assumption) evaluated as syntactically correct.

The two previous propositions outlined how, with minor changes in the algo-
rithm, remarkable effects can be reached. However, it is difficult to judge about
a ”best” variant of the algorithm: on the one hand, the proposed variants ensure
certain coherence properties that the pure Reference Frame implementation cannot

6.4. EVENT BASED MODEL INTERPRETATION 147

Figure 6.8: Strictly history-preserving variant of the algorithm for syntactic cor-
rectness

guarantee. On the other hand, they reduce the design space for a Reference Frame:
programmers might want to use the inheritance mechanism known to them without
the side-effects that the algorithm variants introduce. Also on a conceptual level,
inconsistent extensions might indeed be wanted. E.g., the definition of a simple
Reference Frame that defines only some node and edge types but introduces neither
syntax nor semantics allows users to build arbitrarily, uninterpreted structures with
the primitive entities provided by that Reference Frame. An extended Reference
Frame, which adds only syntactic constraints and interpretation mappings, can then
allow the users to make use of further functions, e.g. for simulating the structures in
some sense. However, such an extension is not consistent and would be prevented by
the strictly history-preserving algorithm. For that reason, the Cool Modes system
can be parameterized so that different variants of the syntax preservation algorithm
are possible.

6.4.2 Semantics

The previous subsection described how the syntax constraint mappings defined by
Reference Frames can be checked for a visual typed graph under the condition of a
dynamic set of Reference Frames and a modifiable visual typed graph. As shown,
the syntax algorithm is centralized in the way it manages the set of constraint
mappings.

With syntactical correctness guaranteed, the next important topic is how the
interpretation of visual typed graphs by multiple Reference Frames (cf. subsection
6.3.1) can be implemented.

Interpretation by single Reference Frames

As expressed in subsection 6.3.1, the classes that represent Reference Frames and the
classes that represent node or edge types known by these Reference Frames can have
attributes whose domain corresponds to the semantic domain, and operations that
calculate values for the attributes (and thus correspond to the semantic mapping).
However, subsection 6.3.1 did not go into detail about the mechanisms that enable
the invocation of the semantic mapping calculation.

148 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

public interface NodeListener {
public void edgeAdded(NeighborEvent e);
public void edgeRemoved(NeighborEvent e);
public void stateChanged(NeighborEvent e);

}

Figure 6.9: The technical NodeListener interface

Similar to the case of syntax checking, the semantic mapping is based on a push
model with actions and events. This is reasonable, since the value of a semantic
attribute will only have to be re-calculated upon a change in the visual typed graph
- provided that the notion of ”change” is kept broad enough to cover all possible
event sources (cf. list of action sources at the beginning of this section).

Compared to the proposed model for verifying the syntax of visual typed graphs
(which relies on a centralized management), the information transfer model em-
ployed for the semantic mapping needs to be more flexible for several reasons:

1. The options for a Reference Frame to interpret a visual typed graph need to
be very flexible, in order not to restrict the set of modeling languages that
can be expressed in a Reference Frame. Therefore, a central ”interpreter”
instance (which is functionally richer than a typical Broker component) does
not make much sense.

2. The events used for syntax checking are not sufficient: additional events need
to be generated whenever the semantics of an element (i.e., the value of a
semantics-related attribute) changes, as this can cause further changes

3. With more event types and more receivers than needed for the case of syntax
checking, the total number of messages would significantly increase without
further reduction or filter techniques.

4. Not all Reference Frames need to be informed about all events: e.g., if a cer-
tain node type is not in the Knows set of a Reference Frame, then a change
of semantics related to a node of this type will usually not have to be trans-
mitted to this Reference Frame - yet, structural changes in the graph (e.g.,
adding nodes) might typically be triggers to start the generic interpretation
mechanisms. However, due to the degrees of flexibility in defining Reference
Frame classes (and, in particular, the implicit way of declaring semantics at-
tributes and imported node and edge types), there is no way for a an external
component to automatically calculate what events have to be distributed to
which sets of Reference Frames.

A solution to these problems is to base the event propagation mechanism con-
cerning semantics on the Publisher Subscriber model (Buschmann et al., 1996). In
this approach, events are only sent to a component after a ”subscription” (which
solves problem 3), the interested component can subscribe itself as listener (problem
4), and the interpreter can be of any type, provided that the class implements the
corresponding interface (which eliminates the need of a central interpreter, problem
1). A new event type (not used within the syntax check mechanism) can be used to
address problem 2. As shown in figure 6.9, a NodeListener implementation can be
informed about state changes within a node (an analogous class exists for edges).
The JGraph library has been extended with a number of help routines that facili-
tate the subscription (either to all events in the graph, or to events related only to
selected nodes or edges).

6.4. EVENT BASED MODEL INTERPRETATION 149

Using these interfaces, a Reference Frame can react upon changes in the state
of nodes and edges (in particular with respect to attributes that relate to the se-
mantics), and re-calculate the semantics of the whole visual typed graph.

It should be noted that there is no policy about which components should act as
listeners for state changes. This leaves design space and enables both ”local” and
”global” methods for determining model semantics:

Local Methods. These methods do not require a central ”model interpreter”, not
even on the level of the Reference Frame. Typically, the ReferenceFrame im-
plementation class does therefore not contain any semantics-related methods
or attributes - however, the node and edge classes do. Two examples that
underline the usefulness of local methods are the interpretation of Petri Nets
(here, the activation states of transitions and the effects of firing them can be
calculated locally within the transition classes, which only need to know their
connected places), and the code generation from UML class diagrams. Also
in the UML case, the code of a class or interface that is represented in the
diagram can be generated solely based on information about this element and
its neighbors in the graph.

Global Methods. In contrast to the local methods which are decentralized and
contain the semantic mapping in the node and edge classes, global methods
make use of one central interpretation component - which can typically be
located in the ReferenceFrame implementation class in my approach. Ex-
amples of modeling languages which are well suited for global approaches
include those that make use of spatial relations (like, e.g., puzzles), and those
that need to calculate new values for a whole number of sematic attributes
simultaneously, instead of adopting a ”data propagation through the graph”
approach. Here, an example is the System Dynamics modeling method.

The following proposition is an immediate consequence of the chosen design. Its
proof is nearly trivial - yet, the proposition reflects the distinctive factor between
the proposed implementation of the Reference Frame approach, and most of the
other modeling systems reviewed in chapter 3: with the exception of some (non-
collaborative) metamodeling systems, the tools usually restrict the expressiveness
of the supported modeling languages in some way if dynamic adding of languages
is supported at all. This is not the case for the implementation proposed in this
thesis:

Proposition 6.5 The model interpretation possible in the Reference Frame imple-
mentations is as expressive as the Java programming language.

Proof. A Reference Frame implementation can attach itself as listener to any event
in the model graph. Thus, it gets notified whenever any modification within the
model occurs. A notification consists of a method invocation, and is thus an entry
point into a java program. As a Reference Frame is not contained in any sandbox
but has full application rights, the proposition is proved.

A constructive proof is also possible by defining a Reference Frame which pro-
vides a node type suitable for entering Java program code, and offers the possibility
to compile and execute this code. Such a Reference Frame has been developed by
Baloian, Pino, and Motelet (2003), who have used the implementation within a
Java course.

150 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Interpretation by multiple Reference Frames

In the described approach, each Reference Frame is autonomous in interpreting
visual typed graphs, and there are a variety of options for implementing the inter-
pretations based on events of the type GraphEvent, NodeEvent, and EdgeEvent.

In the Publisher Subscriber pattern, which is adopted for the event propagation,
more than one Reference Frame interpreting a visual typed graph simply translates
to multiple listeners on an event source and is therefore generically supported. Thus,
in terms of subsection 4.6.3, the process of managing multiple interpretations is
invoked upon any event (of the described types) that occurs within the visual typed
graph. In the proposed implementation, the ⊗ operator is of the ”integration” type,
and results in an implicity defined µ, which is an aggregation of interpretations. In
terms of section 4.6.3, this can be expressed with the following conceptual relation:

Ip(〈G,N , E , L〉) = Ip(R1)(〈G,N , E , L〉) ◦ . . . ◦ Ip(Rn)(〈G,N , E , L〉)

Here, R1 to Rn correspond to the Reference Frames that are registered as listen-
ers on the element in 〈G,N , E , L〉 that conceptually causes the event upon which
the interpretation is invoked. Thus, the µ operator is not only implicitly defined,
but also partially : the interpretations to be aggregated vary with the listeners de-
fined by the Reference Frames. It is even possible that a Reference Frame does not
attach any components as listeners, and therefore does not conduct any interpre-
tation. Furthermore, the order of interpretations is not fixed and depend on the
order of the registration as event listener (cf. discussion in the following of this
subsection).

An interesting side aspect that comes with the possibility of storing interpreta-
tion results (i.e., semantics) either in the Reference Frame or in node/edge classes
is that the former is not accessible to other Reference Frames, in contrast to the
latter. In terms of subsection 4.6.3, this leads to the option of ensuring the separa-
tion of interpretation results by storing these in the ReferenceFrame class: in this
case, the aggregation operator ◦ does, for this particular interpretation, only have
a symbolic and formal meaning. On the other hand, all the interpretation results
stored in the node and edge classes are subject of potential modification by other
interpreters.

Similar to the aggregation operator µ, also the difference between generic and
domain specific interpretation is implicitly defined in the proposed approach: as
stated, a Reference Frame can subscribe as listener for any changes in the visual
typed graph, including also the parts of the graph that are ”unknown”. Here, the
access to semantics-related attributes of nodes and edges is obviously a specific case
of the Reference Frame importing the corresponding node/edge type (cf. subsec-
tion 6.3.1 and the implicit definition of imports). Therefore, a trivial deduction is
that in the proposed implementation, the domain specific interpretation done by a
Reference Frame is limited to its Knows set, whereas the generic interpretation is
enabled for the whole visual typed graph (cf. subsection 4.6.3). Here again, the ⊗
in the formal Ipgen(R)(〈G,

¯
,
¯
, L〉) ⊗ Ipdom(R)(〈G|R,N , E , L〉) notation translates

to an aggregation operator. On the implementation level, the event type (structural
change vs. semantics change) distinguishes between generic (only structural change
events) and domain specific (all events) interpretations - an integrated treatment
of these events is possible though not enforced. The following scheme outlines the
event distribution to multiple Reference Frames.

1. Any Reference Frames R can subscribe as an event listener for elements (nodes,
edges, or the whole graph) of a visual typed graph G. This subscription be
done or removed at any point in time.

6.5. INTEROPERABILITY ISSUES AND DESIGN AIMS MET 151

2. Upon a change in its graph structure that leads to a syntactically correct state
(cf. figure 6.6), G sends out change events to the Reference Frames that are
registered as listeners on G.

3. Nodes and edges in G can submit changes in their internal states to G.

4. Upon the reception of a state change event in a node n, or a change in the
neighbor areas of n in G, G sends out change events to the Reference Frames
that are registered as listeners on n.

5. Upon the reception of a state change event in an edge e, G sends out change
events to the Reference Frames that are registered as listeners on e.

6. The reception of a change event invokes the model interpretation mechanism
in the Reference Frame.

One not explicitly defined aspect in this algorithm is the method used by the
graph for publishing changes. Here, two different approaches are possible - both
have some disadvantages:

Synchronized. Invoking the listeners using synchronous method calls requires (or:
induces) an order among the listeners. As the execution of interpretation
routines (the ◦ operator) is generally not commutative, this order may have
an impact on the outcome of the interpretation. Furthermore, a ”best” order
is not easy to define in the case of heterogeneous models (cf. subsection
4.6.3). Apart from this order problem, the synchronized method makes the
overall interpretation mechanism critically dependent on the algorithms that
the single Reference Frames provide: if one of has, e.g., an infinite loop, the
whole mechanism hangs.

Concurrent. The use of asynchronous techniques for invoking the listeners does
not have the blocking risk. Yet, it is even worse in terms of interpretation
results, as (without further concurrency control mechanisms) it allows Ref-
erence Frames to interpret parts of models without granting them that the
model stays stable during the runtime of the interpretation algorithm. This
might easily lead to an interleaving of interpretations which is not serially
equivalent to any of the orders used within a synchronized approach.

As the modification of the visual typed graph as a result of the interpretation
process is generally allowed (and necessary for modeling purposes), both approaches
have the risk of infinite event loops, even in the case of only one Reference Frame.
These loops are easy to detect, since there is a single point of event distribution:
despite this, the decision whether to prevent event loops or not is not easy, as
Reference Frames (or sets of interacting Reference Frames) might use these event
loops as a means of simulating a model (and provide internal termination rules).

Currently, the JGraph implementation does not disallow event loops and sup-
ports only the synchronized approach of message distribution (with the order of
notifications according to the order in which the subscriptions were made). Yet,
the concurrent approach could easily be integrated, as well as event loop checks.

6.5 Interoperability Issues and Design Aims Met

This chapter of the thesis presented one possible implementation of the Reference
Frame approach as described in chapter 4. In accordance with some implementation
recommendations related to the meta modeling techniques shown in section 2.3, the

152 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

presented approach adopts an object oriented approach for representing both models
and modeling languages.

An explicit aim of this chapter was to ”put into practice” the Reference Frame
approach, and describe visual typed graphs and Reference Frames not only on
a conceptual, but also on an operational level. Therefore, the chapter contains
remarks about general architectural aspects, descriptions how to make use of the
existing COLLIDE JGraph library, outlines of specific algorithms, details about
needed events and central interfaces, and also discussions of some design alternatives
and their consequences.

As discussed in section 1.5, the proposed implementation framework puts an ex-
plicit focus on three things: simplicity in use (here, for the programmer who intends
to develop Reference Frames), flexibility in the sense that the scope of supported
modeling languages is not unnecessarily restricted, and interoperability. The de-
sign aim of simplicity has lead to some elements of the conceptual framework being
defined only implicitly. Examples are the visual attributes and the algorithm for
multiple integrated interpretations. Some other elements, like the synchronization
contexts, still have to be explicitly defined by a Reference Frame implementation.
To assist users in developing these, the proposed implementation includes a number
of service classes and libraries which cover a range of ”typically needed” functions.
In accordance with the design claims of Roschelle et al. (2000), programming con-
ventions are made explicit, and design patterns are used to help the user understand
the interrelations within the system, and the functionality of service classes and in-
terfaces.

This chapter discussed a number of critical design choices, which can in some
cases be regarded as tradeoffs between flexibility and interoperability on the one
hand, and security or guaranteed functionality on the other hand. Here, one ex-
ample is the order of event receivers in the event distribution scheme employed
for integrated interpretations, and in particular the check for loops in this scheme.
Obviously, the proposed ”loose control” approach (in contrast to, e.g., assigning
fixed orders by ID’s and generally preventing loops) has weaknesses in the sense
that it may theoretically lead to undesired or incoherent integrated interpretations.
However, this has to be seen within the general discussion of integrating arbitrary
modeling techniques on a semantic level, for which an easy-to-use and generally
applicable technique currently seems out of reach (cf. chapter 2 and in particu-
lar section 2.3.4). In contrast to both theoretical approaches like, e.g., structured
modeling (Geoffrion, 1989a) and also a number of comparable systems like, e.g.,
Ptolemy or ModellingSpace who solve these ”critical” parts by reducing ex-
pressiveness and/or interoperability, the implementation proposed in this chapter
relies to some extent on the developer of Reference Frames. He has a high degree of
flexibility in importing (and thus re-using) elements from other modeling languages,
or even whole languages. The system allows for heterogeneous models and multi-
ple interpretations - yet, as the syntax and semantics that a developer assigns to
”imported” structures is (on purpose!) not generally checked for total conformance
with the ”original”, conflicts might occur. It is the task of the Reference Frame
developer to consider them - under the assumption that re-use of elements or func-
tionality is done on purpose, this delegation of responsibility is not unreasonable.
As discussed in this chapter, alternatives to this are possible, but would typically
restrict flexibility and/or interoperability of the approach.

Within the discussion of challenges and aims for this thesis in section 1.5, the
criteria list of Dolk and Kottemann (1993) (page 19) played an important role.
With the exceptions of the user interface (which is not in the scope of this chapter),
and the model solution library (which is not an intended target of this thesis), the
Reference Frame framework as presented in this chapter fulfils their criteria:

6.5. INTEROPERABILITY ISSUES AND DESIGN AIMS MET 153

• With the ReferenceFrame interface and the JGraph class, there are uniform
internal schemes that are capable of representing many classes of models and
modeling languages.

• Conversion of external representations is easily possible by translators and
wrappers, as ReferenceFrame implementations have the full expressiveness
of the Java programming language.

• The object oriented approach in Java allows for robust typing and inheritance
options at various levels.

• The action/event based approach is a suitable foundation for supporting dy-
namic modeling with active and interactive structures (Lenard, 1993).

Some of these points also relate to the criteria listed by Roschelle et al. (2000)
(page 20). In particular, the ”dynamic publishing and subscribing mechanisms” and
the ”change coordination patterns” that they demand are available with the chosen
way of information distribution (cf. section 6.4). The advanced component per-
sistence mechanisms they claim are already basically supported by the COLLIDE
JGraph library and its XML storage format (the next chapter will discuss further
persistence issues). Also a number of points listed by Roschelle et al. (1999) (page
20) are fulfilled: options for component re-use are available (e.g. with importing
elements into Reference Frames), translators and wrappers embedded in the code of
Reference Frames (or even nodes or edges) can adapt external resource formats to
internal ones, and the flexible event-based model interpretation algorithm provides a
whole range of ”wiring” options between elements, which facilitates interoperability.

Going into the details of interoperability support in the proposed implemen-
tation, the dimension of syntax is addressed through three aspects: First, an im-
portant point is that the implementation does fully support heterogeneous visual
typed graphs in the sense of chapter 4. Second, the placement of visual attributes
in interfaces and abstract base classes (cf. subsection 6.1.2) ensures their indepen-
dency of Reference Frames. This is conform with the approach taken throughout
chapter 4. The need for a minimum set of visual attributes required for displaying
the visual typed graphs is taken into account by including corresponding methods
in the central interfaces for nodes and edges. Finally, the algorithms for checking
syntactic correctness as discussed in subsection 6.4.1 are a central contribution to
syntactic interoperability.

On the level of semantics, interoperability has been addressed in this chapter pri-
marily by two means. The first deals with the relations between Reference Frames.
Here, the framework provides a whole range of options for re-use of elements and
functionality, and in particular also for sharing of semantics and interpretations
in the integrated environment. The two techniques (import and is-a) presented
in subsection 6.3.2 exemplify possible interrelations between Reference Frames and
connect to the conceptual relations developed in subsections 4.5.1 and 4.5.2 - how-
ever, on the code level, also other types of re-use are of course possible. The second
dimension of semantic interoperability is related to the technique for integrated in-
terpretation of heterogeneous models, described in subsection 6.4.2. Based on the
Publisher Subscriber design pattern, the algorithm offers one possible implemen-
tation of the µ operator introduced in subsection 4.6.3. The presented approach
enables the storage of model semantics in nodes and edges objects or in the Refer-
ence Frame. These two options allow for a separation of individual interpretations
as well as for real integrated and ”shared” solutions.

On the abstract framework level that this chapter addresses, one aspect of task
interoperability is covered: as argued, the implementation allows for using different

154 CHAPTER 6. AN ABSTRACT IMPLEMENTATION MODEL

Reference Frames in an integrated manner, and for constructing heterogeneous vi-
sual typed graphs. As Reference Frames can be conceived as modeling languages or
techniques, this integration feature can avoid tool breaks, and thus provide support
for tasks that consist of different phases (each of these associated to certain tools).

Chapter 7

The Cool Modes Framework

In the three previous chapters of this thesis, Reference Frames as a conceptual
base for collaborative modeling systems have been presented, and an abstract im-
plementation based on existing software libraries has been proposed. This chapter
concludes the implementation parts of this thesis with the presentation of the collab-
orative modeling tool Cool Modes (COllaborative Open Learning and MODEling
System) as an example application which puts into practice the Reference Frame
ideas and architectures outlined before, considering the interoperability issues raised
in section 1.5.

In particular, this chapter discusses specification strategies and user interfaces
for Reference Frames, as well as issues dealing with collaboration support in the
context of modeling with Cool Modes.

7.1 Definition and Usage of Reference Frames

This section discusses three different approaches of specifying/developing Refer-
ence Frames, and shows how the runtime management of these Reference Frame
implementations is done in Cool Modes.

7.1.1 Definitions of Reference Frames

Simplicity in system usage is always a criterion worth considering. For the case of
the collaborative modeling framework as targeted within this thesis, this simplicity
can be seen from two different perspectives: the use of the modeling environment as
such, and the development of Reference Frames (modeling languages) together with
their integration into the environment. For the case of educational applications,
this aspect has in particular been demanded by Roschelle et al. (1999), who claim
that the integration of new components into interoperable frameworks should be as
easy as copy&paste operations.

Using the interfaces and abstract base classes for Reference Frames as described
in the previous chapter, there are several options of implementing concrete Refer-
ence Frame implementations. Three of these, as integrated in the Cool Modes
framework, are shortly summarized and compared in the following.

Program centered Approach

As shown in section 6.3, the proposed architecture represents a Reference Frame via
the interface info.collide.frames.ReferenceFrame. The abstract Java adapter
class AbstractReferenceFrame offers default implementations for most of the in-
terface methods.

155

156 CHAPTER 7. THE COOL MODES FRAMEWORK

Figure 7.1: Reference Frames and Palettes in the Cool Modes system architecture

From an object oriented programming perspective, a natural way of defining a
concrete Reference Frame is the development of a class which implements the men-
tioned interface, either directly or indirectly through inheritance from the abstract
adapter class. This program based way is fully supported in the Cool Modes envi-
ronment. Subsection 7.1.2 shows how these Java based Reference Frame definitions
are retrieved and managed by the runtime system.

Document centered Approach

As an alternative to the ”straightforward” program based method of Reference
Frame definitions outlined before, the Cool Modes environment offers the op-
tion of describing Reference Frames in a document based way using XML files. To
enable the integration of these data files with the architecture presented in section
6.3, the framework contains template classes which are parameterized with the XML
data. Figure 7.1 illustrates these classes in their architecture context: the interface
info.collide.frames.ChangeableReferenceFrame identifies template Reference
Frames (which differ from ”normal” ones in that they have additional methods to al-
low the setting of values), the class info.collide.frames.CustomReferenceFrame
is a concrete implementation of this interface. Finally, parsers and Factory classes
complete this part of the system design.

Figure 7.2 shows the document type definition for XML specifications of Ref-
erence Frames (leaving out some lower level entities that are connections to the
JGraph XML format). Most of the data elements contained in the DTD have
direct corresponding methods in the Java interface for Reference Frames shown in
figure 6.1. In particular, the document centered specification relies on the following
principles:

• An XML representation of a Reference Frame contains the specification of a
Java template class to be parameterized with the XML file.

• Node and edge type definitions can either be done by

– explicitly referring to the class name of the controller class and the model

7.1. DEFINITION AND USAGE OF REFERENCE FRAMES 157

<!ELEMENT ReferenceFrame

(TemplateClass?,Objects,Palette?,Metadata)>

<!ELEMENT TemplateClass (#PCDATA)>

<!ELEMENT Objects (Node*,Edge*,Rule*,SyncContext?)>

<!ELEMENT Node ((ClassName,ClassName)|NodeModel|NodeRef)>

<!ELEMENT Edge ((ClassName,ClassName)|EdgeModel|EdgeRef)>

<!ELEMENT ClassName (#PCDATA)>

<!ELEMENT NodeModel ANY>

<!ATTLIST NodeModel controllerClass CDATA #REQUIRED>

<!ELEMENT EdgeModel ANY>

<!ATTLIST EdgeModel controllerClass CDATA #REQUIRED>

<!ELEMENT NodeRef EMPTY>

<!ATTLIST NodeRef className CDATA #REQUIRED>

<!ELEMENT EdgeRef EMPTY>

<!ATTLIST EdgeRef className CDATA #REQUIRED>

<!ELEMENT Rule (EgdeRule|CycleRule|PatternRule)>

<!ATTLIST Rule Message CDATA #IMPLIED>

<!ELEMENT EdgeRule (NodeRef,NodeRef,EdgeRef)>

<!ATTLIST EdgeRule weight CDATA #IMPLIED

limitFrom CDATA #IMPLIED

limitTo CDATA #IMPLIED

limitMessage CDATA #IMPLIED>

<!ELEMENT CycleRule (EdgeRef*,NodeRef*)>

<!ELEMENT PatternRule (JGraph)>

<!ATTLIST PatternRule type (structure|equality) "structure">

<!ELEMENT SyncContext EMPTY>

<!ATTLIST SyncContext

type (single|connectivity|induced|graph) "single">

<!ELEMENT Palette

(PaletteClassRef|(PaletteTemplateClass?,

Icon?,ToolTip?))>

<!ELEMENT PaletteClassRef (#PCDATA)>

<!ELEMENT PaletteTemplateClass (#PCDATA)>

<!ELEMENT Icon (#PCDATA)>

<!ELEMENT ToolTip (#PCDATA)>

<!ELEMENT Metadata

(Package*,Name*,Author*,Language*,NeededResource*)>

<!ELEMENT Package (#PCDATA)>

<!ELEMENT Name (#PCDATA)>

<!ATTLIST Name language CDATA #IMPLIED>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Language (#PCDATA)>

<!ELEMENT NeededResource (#PCDATA)>

<!ATTLIST NeededResource internal (true|false) "true">

Figure 7.2: Document type definition for data based Reference Frame descriptions

158 CHAPTER 7. THE COOL MODES FRAMEWORK

class (to generate the required Association objects at runtime, cf. sub-
section 6.3.1), or by

– specifying the class of the controller and a NodeModel or EdgeModel
element, which represents the model. This approach uses the XML se-
rialization functions of the nodes and edges in the COLLIDE JGraph
library in order to parameterize the node and edge classes available in
Reference Frames.

• Node and edge types can be imported using the NodeRef and EdgeRef ele-
ments.

• The synchronization context mapping can be chosen from the four strategies
discussed on subsection 6.3.1.

• Using, again, a template class mechanism, Palettes (user interfaces for Ref-
erence Frames, cf. section 7.2) can be specified by referring to classes that
generate a ”default” user interface which contains the elements defined by the
Reference Frame - in particular, the node and edge types.

• An implicit condition is that template classes specified for Reference Frames
and Palettes have to fit in the framework in the sense that they implement
the respective interfaces. Otherwise, the runtime environment uses default
template classes.

Figure 7.3 shows a simple example of a document centered definition of a Ref-
erence Frame for Petri Nets. The definition makes use of the first way of node and
edge specification (i.e., passing model and controller classes), and sets the default
of the synchronization contexts to ”connectivity component” (this is not the mini-
mal solution, but an appropriate choice based on the four available templates). Two
rules are outlined (ensuring the bipartiteness property), and template classes for the
Reference Frame and its Palette are chosen. For reasons of space, the figure does
not contain the metadata of the Reference Frame, and also the package information
in the class references is omitted.

Mixed Approaches

Apart from the ”pure” program centered and document centered approaches for
Reference Frame specification, intermediary solutions are possible. Within the de-
scription of the XML based approach, the option of referring to Java classes serving
as templates to be parameterized with the XML file has already been outlined. This
option is available both for the Reference Frame and its Palette, which enables one
form of a ”mixed” Reference Frame specification style, consisting of a main XML
file and a set of associated Java classes.

Other mixed specification forms are possible with the program based approach.
Here, one option is the inclusion of a JGraph, serving as a source for drag&drop
operations, in the Palette. The graph itself can be loaded from an XML file, using
the serialization functions of the COLLIDE JGraph library. Also in this approach,
a mixture of Java and XML files constitute a Reference Frame - yet, the ”main”
element is a class file here.

Comparison

The program and document centered approaches for defining Reference Frames have
one point in common: the developer has to adhere to a certain structure in order to
allow for an integration of the Reference Frame into the environment. This interface

7.1. DEFINITION AND USAGE OF REFERENCE FRAMES 159

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ReferenceFrame SYSTEM "Frame.dtd">

<ReferenceFrame>

<TemplateClass>CustomReferenceFrame</TemplateClass>

<Objects>

<Node>

<ClassName>PlaceNode</ClassName>

<ClassName>PlaceNodeModel</ClassName>

</Node>

<Node>

<ClassName>TransitionNode</ClassName>

<ClassName>TransitionNodeModel</ClassName>

</Node>

<Edge>

<ClassName>PetriEdge</ClassName>

<ClassName>PetriEdgeModel</ClassName>

</Edge>

<Rule Message="Do not connect places to places!">

<EdgeRule weight="0">

<NodeRef className="PlaceNodeModel"/>

<NodeRef className="PlaceNodeModel"/>

<EdgeRef className="PetriEdgeModel"/>

</EdgeRule>

</Rule>

<Rule Message="Do not connect transitions to transitions!">

<EdgeRule weight="0">

<NodeRef className="TransitionNodeModel"/>

<NodeRef className="TransitionNodeModel"/>

<EdgeRef className="PetriEdgeModel"/>

</EdgeRule>

</Rule>

<SyncContext type="connectivity"/>

</Objects>

<Palette>

<PaletteTemplateClass>CustomPalette</PaletteTemplateClass>

<Icon>petri32.gif</Icon>

<ToolTip>Petri Nets</ToolTip>

</Palette>

<Metadata> ... </Metadata>

</ReferenceFrame>

Figure 7.3: Example of an XML based Reference Frame definition

160 CHAPTER 7. THE COOL MODES FRAMEWORK

is a Java interface for the program centered approach, and a DTD for the document
centered approach.

The specification in XML is easier (and can be the hook for a ”Reference Frame
editor”, cf. chapter 9), and does not require Java programming skills as long as
the existing template classes for Reference Frames and Palettes are sufficient, and
suitable node and edge classes for parametrization are available.

The limits of the XML based approach, however, lie in its inherent representation
of Reference Frames as passive data: in contrast to the program centered approach,
a flexible specification of runtime behavior (e.g., algorithms to simulate models)
is not possible. Due to this, the options for document centered specification of
Reference Frames are severely limited in their expressiveness concerning semantics.
The other elements of the formal framework developed in section 4.5 are supported
- yet, only by means of choices between existing objects (e.g., node and edge types)
or algorithms (in the case of the synchronization context mapping).

In terms of the Model View Controller scheme as used within the COLLIDE
JGraph library, the limits of the document centered specification have been ex-
plored by Pinkwart, Hoppe, and Gaßner (2001). Here, one result is that the model
class can usually be represented in XML, whereas the view and the controller are
more problematic. This has been addressed with the flexibility concerning ”mixed”
XML/Java Reference Frame specification techniques. The latter combine the sim-
plicity of the document centered approaches with the expressiveness of the program
centered techniques.

The implementation of the advanced XML based definition options for Reference
Frames is relatively new (compared to the program centered approach). In addition,
the usages of the system have to a large extent involved modeling languages with
a rich operational semantics, which is the weak point of the document centered
approach. Due to these two reasons, the XML based (and mixed) approaches for
Reference Frame specifications have not been used widely up to now - this should
be considered reading the corresponding evaluation parts in chapter 8.

7.1.2 Plug-In Management of Reference Frames

This subsection shows how the runtime management of Reference Frames, specified
using any of the mechanisms defined in the previous subsection, can be done (and
is implemented in the Cool Modes environment). Apart from system-internal
representation issues, there are two design questions to address, both having a
dynamic and a static solution.

• The first question is how Reference Frames are offered to the user: are se-
lection and deselection (thus, a dynamic use) possible, or are all Reference
Frames available all the time?

• The second question is related to the internal system design: is dynamic (i.e.,
runtime) retrieval of Reference Frames possible, or does the environment rely
on a static list of Reference Frames used?

In Cool Modes, the dynamic option is chosen to address both questions, which
motivates the name of ”Plug-Ins” for Reference Frames. For the first question,
a static solution would indeed by strange: the framework supporting a variety of
heterogeneous modeling languages, a permanent (and enforced) visibility of all these
languages is not likely to support users in their tasks. This is in particular true for
the case of applications in learning scenarios, where the reduction of means may
even have concrete educational reasons. In Cool Modes, the dynamic adding and
removing of Reference Frames can be controlled through menus and dialogs - figure
7.4 shows the central dialog, which allows the adding of Reference Frames.

7.2. VISUAL INTERFACES AND INTERACTION PARADIGMS 161

Figure 7.4: The Plug-In dialog of Cool Modes

As visible, the dialog contains the names and icons of the found Reference
Frames. The retrieval of the Reference Frames is also done dynamically behind
the scenes: upon a request to search for Plug-Ins, the FrameController initiates
a search for all .frame files and all Java class files in the installation folder (re-
cursively), including those in jar archives. A parser tries to parameterize template
classes with the found .frame files, and (if successful) the ReferenceFrameFactory
returns a ReferenceFrame implementation. For the class files, the Java Reflection
mechanism is used to determine if the class implements the ReferenceFrame in-
terface. Figure 7.5 shows the Plug-In search algorithm in a sequence diagram, and
the corresponding class diagram 7.1 shows the classes important for this algorithm
within their general architecture context.

As both the XML parsing and the Reflection mechanisms are relatively slow,
Cool Modes remembers the Plug-Ins that a user has added, and offers shortcut
options to add these again in future system usages. In addition, the Plug-In dialog
is capable of storing the ”found” results, so that not every time a user wants to add
a Plug-In, the whole search process has to be started (yet, it is possible using the
”refresh” button visible in figure 7.4).

7.2 Visual Interfaces and Interaction Paradigms

The description of Reference Frames in the previous chapters of this thesis already
included remarks about foreseen user interfaces (e.g., in the interface shown in figure
6.1). Obviously, the user interface design is an important issue for the targeted aim
of supporting collaborative modeling - users interact with the system (and thus,
with the model they construct) through the functions and with the metaphors that
the interface offers to them - in addition, the representations can have feedthrough
functions and thus contribute to the collaboration process. Consequently, the design
of the user interface is an important success factor of a collaborative modeling
environment.

The aim of this thesis, however, is not to investigate which representation and
interaction principles embodied in user interfaces for collaborative modeling are
of advantage. For this reason, the Reference Frame implementation proposed in

162 CHAPTER 7. THE COOL MODES FRAMEWORK

Figure 7.5: The Plug-In search algorithm of Cool Modes

chapter 6 is independent of concrete user interfaces. The latter are encapsulated and
decoupled from the ”rest” (the modeling language), so that certain user interface
design decisions like, e.g., the way the user interface allows the user to access the
node and edge types specified by the Reference Frame, can be made independent of
the Reference Frame they relate to. Of course, ”tailored” user interfaces for specific
Reference Frames are not prevented with this approach, as a Reference Frame still
defines ”its” user interface.

The two following subsections outline how the Cool Modes implementation of
user interfaces for modeling with Reference Frames is done.

7.2.1 Palettes: User Interfaces of Reference Frames

As contained in the ReferenceFrame interface shown in figure 6.1, user interfaces of
Reference Frames are denoted with the term Palette. Figure 7.1 shows how the cor-
responding Java interface is embedded in the architecture. The most important part
of this interface is a getUI() method, which returns a javax.swing.JComponent.
This reflects the flexibility that the developer has in the design: the major part
of figure 7.6 is the JComponent returned by this method. Typically, a Palette
implementation serves the following purposes:

• It provides the user with a means to access the primitives (node and edge
types) of the Reference Frame, and to build model graphs with these primi-
tives.

• Apart from that, a Palette can contain control elements, which might be
needed for, e.g., running simulations of models.

• The Palette can be the location that offers connections to external elements
(e.g., devices or file types) and allows the user to integrate these (cf. examples
in section 8.1).

Figure 7.6 shows an example of a Palette in Cool Modes. This example, taken
from (Bollen et al., 2002), is in the field of System Dynamics - here, the user

7.2. VISUAL INTERFACES AND INTERACTION PARADIGMS 163

Figure 7.6: Typical Palette design in Cool Modes

interface of the Reference Frame contains three node types and two edge types,
and in addition several control components which allow the step-wise simulation of
models.

The figure also illustrates how multiple Palettes are managed: the top compo-
nent of the frame contains buttons for all the Reference Frames that the user has
activated (using the dynamic mechanism described in subsection 7.1.2), with icons
on the buttons symbolizing the Reference Frames. In the example situation shown
in the figure, two other Reference Frames (one for discussion support, and another
for handwritten annotations) are active. The remaining (majority of) space in the
frame is left to the UI component as defined by the Palette of the currently selected
Reference Frame.

Figure 7.6 illustrates a frequently chosen design principle for Palettes as it has
emerged during the usage of Cool Modes in several application areas (cf. sec-
tion 8.1). Here, the Palette contains instances of the node and edge types that the
Reference Frame offers. Using drag&drop (in a copy&paste metaphor rather than
a cut&paste one), the user can create copies of these node instances in workspaces
(cf. next subsection). The edge types are made available with a similar mecha-
nism: upon activating a corresponding button, an edge of the selected type can be
”dragged” in a workspace.

These principles allow the construction of models based on primitives offered by
the Palettes, and imported into the workspaces from the Palettes through explicit
and intuitive direct manipulation actions.

For the document centered specifications of Reference Frames (cf. subsection
7.1.1), user interfaces of the described style can be (and need to be!) automatically
generated by the framework system. This is illustrated in figure 7.1: here, the
CustomReferenceFrame class makes use of a CustomPalette, the latter being a
parameterizable template for user interfaces of the type outlined above. The system

164 CHAPTER 7. THE COOL MODES FRAMEWORK

architecture shows that other general Palette templates can easily be integrated by
different ChangeableReferenceFrame implementations, referred to from the XML
Reference Frame specifications.

7.2.2 Workspaces

Palettes are the visual representation of modeling languages in the Cool Modes
system. They offer to the user the primitives with which graph based models can be
built. For the practical construction of models, additional user interface components
are needed. In the case of Cool Modes, these model construction places are called
workspaces.

Cool Modes allows the creation of multiple workspaces, which can be arranged
freely on the desktop that the system offers (cf. figure 7.8). The basic function
of a workspace is to allow the direct manipulation of the contained graph based
model. Of course, the allowed actions on nodes and edges depend on their type -
the framework system, however, offers generic drag&drop support within and across
workspaces, connectivity features (i.e., the construction of graph structures), and
some additional features like duplication of elements.

Obviously, the choice of a workspace orientation (versus other imaginable for-
mats like, e.g., a page model, or a tree structure) to allow for multiple model graphs
synchronously, is independent of both the Reference Frame approach and the Palette
concept. There are indeed other applications that make use of the Reference Frame
concept and its implementation including the Palette concept, but rely on a page
orientation (Gaßner, 2003).

The advantage of a classic workspace model with multiple workspaces per desk-
top is its flexibility in terms of fine-granular control of synchronized and private ele-
ments: it is possible to maintain private workspaces together with shared workspaces
on the screen, and thus (using simple drag&drop operations) ”publish” results to
the user group, or to develop private ”test” solutions while watching what the rest
of the group is doing in the shared space. The next subsection describes the op-
tions that Cool Modes offers (based on the Reference Frame approach and its
implementation) in this respect.

As put, workspaces are the primary means of model co-construction in Cool
Modes. In this application, a workspace consists of several layers: a background
image layer, a static and a dynamic graph layer, and multiple layers for handwritten
annotations. The graph in the static graph layer cannot be modified - thus, it can
serve as, e.g., a ”task description” component.

Workspaces are scrollable, can be saved (independently from the main ”save”
function of the system), and have auto-layout features for graphs. The embedding
framework offers the following ”standard” functions:

• load/save and export of models in various formats (e.g., SVG and JPG)

• clipboard functions: cut, copy, paste, and redo/undo (Jansen, 2003),

• workspace and Plug-In management,

• replay functions, and

• system-wide language management functions

Apart from these basic functions, Cool Modes includes connections to document
archives and model checking functions (cf. chapter 9), and a number of features
required for the support of synchronous cooperation via shared workspaces. These
are described in the next section.

7.3. COLLABORATIVE MODELING SUPPORT 165

7.3 Collaborative Modeling Support

As discussed in the introduction of this thesis, not only the approach for modeling
with heterogeneous graph based representations and its implementation are impor-
tant issues in this thesis, but also the system-side support for collaboration is an
explicitly targeted aim. On the conceptual and architectural level, this feature has
already been addressed in the sections 4.4 and 6.3.1. Furthermore, the sections 5.3
and 5.4 contain a discussion of the chosen background technologies.

This section builds upon these results and demonstrates how cooperation sup-
port mechanisms can be implemented for the specific case of heterogeneous graph
models contained in workspaces.

7.3.1 Shared Workspaces

Similar to a number of other environments presented in section 3.2, the collab-
oration support in Cool Modes relies on the principle of shared workspaces.
Changes caused by a user in a shared workspace are propagated to the correspond-
ing workspaces in the coupled applications. This leads to the conceptual group
interface of a ”shared graph space” with partial WYSIWIS usage metaphor. The
WYSIWIS principle is not completely enforced with respect to scrolling (i.e., dif-
ferent views on workspace parts are supported) and positions of workspaces on the
desktop. Furthermore, the flexibility in terms of partial synchronization (cf. next
subsection) is at the same time a reduction in terms of WYSIWIS.

As presented in subsection 5.4.10, MatchMaker is the synchronization back-
bone of the COLLIDE JGraph library, so that its use also on the workspace and
application level of Cool Modes makes sense. Indeed, the synchronization tree
model that MatchMaker offers, together with the concrete tree instances created
by the JGraph library, allows for a relatively straightforward approach for synchro-
nizing Cool Modes workspaces via MatchMaker. Figure 7.7, a synchronization
tree for Cool Modes, illustrates this. In the figure, two workspaces are synchro-
nized. The synchronization tree consists of a root vertex, a first child (label //4),
and one child tree per workspace (labels //4/5 and //4/16). The structure of a
workspace subtree is determined by the layers that this workspace contains, plus
one vertex for awareness information (see below). The highlighted part of figure
7.7 shows that the subtrees representing the graph layers are the same as those for
the JGraph (cf. figure 5.5) - a consequence of the MatchMaker synchronization
functions of the JGraph library used in Cool Modes workspaces.

Beyond the technical means for workspace synchronization, Cool Modes de-
monstrates the suitability of the Reference Frame approach for collaborative usage
scenarios with a number of additional cooperation support features, such as the
availability of flexible synchronization modes and the support for different modeling
phases (cf. next subsections). With these degrees of flexibility, workspace awareness
in an important issue. This is addressed in Cool Modes with several functions
suggested by Gutwin and Greenberg (2004):

• Distinguishable replicated mouse pointers which visualize the mouse cursor
positions of the different users in the workspace.

• An overview frame for scrollable workspaces (cf. lower right corner in figure
7.8), in which remote actions are symbolized by colors that represent the users
who caused the action. This way, users can quickly locate activity regions of
their collaborators (similar to a radar view).

• Plug-In dependent feedthrough mechanisms. E.g., the Petri Net Plug-In vi-
sualizes the firing of transitions so that collaborators can see the cause of

166 CHAPTER 7. THE COOL MODES FRAMEWORK

Figure 7.7: A synchronization tree for Cool Modes

changes in place states.

• A common telepointer (to enable the co-users to share a focal point in the
workspace) can be implemented as a Plug-In, which provides a single node
(e.g., in form of cross hairs) that can be dragged into a workspace from the
Palette (and subsequently disappears in the Palette).

7.3.2 Synchronization Modes

Flexibility in terms of usage scenarios for the collaborative modeling framework
is an important issue, especially under the premise that the tool is only part of
a (learning) environment (cf. section 1.5), and therefore needs to be adaptable
to various intended scenarios. In particular, multiple cooperation modes can be
a key factor to support a variety of group usage scenarios. The synchronization
functions available in Cool Modes are based on the shared workspace metaphor
and have been motivated by the axiom not to restrict the educational designer in
the collaborative settings he can orchestrate with the tool. Yet, this flexibility can
cause both undesired inconsistencies (cf. figure 4.3), and needs for visualization
(awareness) techniques to feed back to the users the synchronization state of the
workspaces.

As a result of the trade-offs between flexibility and consistency, Cool Modes of-
fers five different synchronization modes, which can be characterized simply through
their primitive of synchronization:

Coupling by Application. Here, the complete Cool Modes application (i.e.,
all workspaces), are synchronized. Private actions are not possible within
the system - instead, each user has a complete view on what the others are
currently doing.

Coupling by Workspace. This synchronization mode offers private workspaces
and shared workspaces synchronously, which allows users to, e.g., work on
”test models”, and publish them to the group after having verified them.

Coupling by Layer. Here, a workspace can be partially synchronized in the sense
that some layers are shared, while others are private. The layer-based syn-
chronization mode allows for, e.g., personal handwritten annotations attached
to jointly used models.

7.3. COLLABORATIVE MODELING SUPPORT 167

Figure 7.8: Cool Modes partially synchronized

Coupling by Reference Frame. This synchronization mode is based on user-
selected Reference Frames, whose primitives are automatically ”published” in
the workspace. This allows a pre-selection of private and shared entities, e.g.,
to a priori distinguish comment elements from model elements.

Coupling by Synchronization Context. This ”finest” level of synchronization
allows the user to specify the nodes he wants to share. For reasons of consis-
tency, not only these nodes are shared, but also (recursively) their synchro-
nization context as delivered by the Reference Frame which defines the node
to be coupled.

The last two points in the list are interwoven and can be combined, which ensures
consistency for the Reference Frame based strategy even if synchronization contexts
specify a larger scope, and allows for defining ”synchronized modeling languages”,
plus single shared elements from other languages.

Figure 7.8 shows a typical partial synchronization scenario in Cool Modes, and
outlines the visualization of synchronization as fed back to the users. The latter
is done throughout the system using the metaphor of a light bulb which can be lit

168 CHAPTER 7. THE COOL MODES FRAMEWORK

(representing synchronization) or not (in the enlarged parts of the figure, the real
colors have been replaced by black and white to highlight the differences).

In the figure, three layers of workspace 1 are synchronized. This is shown by the
three lit bulbs in the tool bar of the workspace. The graph layer is synchronized
by Reference Frame: here, the elements of the calculation net are shared, but not
the comments. In the user interface, this is represented through lit bulbs attached
to the shared nodes, and a semi-lit bulb in the tool bar. Workspace 2 is prepared
for sharing (including available awareness information), visualized by lit bulb in the
left part of the tool bar. Yet, none of the layers is shared. This is reflected through
the non-lit bulbs in the right part of the tool bar. Finally, workspace 3 has three
synchronized layers and one private handwriting layer, the latter visualized with the
non-lit bulb next to the handwriting symbol in the tool bar. Furthermore, the user
has locally hidden one (shared) layer, which is symbolized with the crossed layer
icon. The figure shows the dilemma that growing flexibility concerning coupling
options will typically go in line with more complexity with respect to the synchro-
nization awareness mechanisms - though, of course, there might be more suitable
representations than the light bulb metaphor.

7.3.3 Modeling Phases

The previous two subsections outlined how the support for collaboration in Cool
Modes is implemented based on shared workspace principles. However, the sup-
port for collaborative modeling (as opposed to general collaborative tasks) can be
more specific in that modeling activities typically involve different phases, which
may correspond to either different representations, different tools, or different us-
age modes like exploration or simulation (Löhner et al., 2003; Ainsworth, 1999;
Kurtz dos Santos & Ogborn, 1994).

If phases in a collaborative modeling task can be associated to different model-
ing languages, then the Plug-In concept for Reference Frames is a suitable support
for these phases, as representational notations (e.g., formal modeling languages
like System Dynamics, more exploratory notations like causal feedback loops, or
argumentation supporting languages) can be dynamically used. To contribute to
supporting these phases in the collaborative modeling process, Cool Modes op-
tionally offers the propagation of adding or removing Plug-Ins (via MatchMaker)
to synchronized instances. This way, a common group phase can be maintained -
yet, also independency in terms of used Plug-Ins is possible, thereby enabling sce-
narios in which, e.g., one user builds a formal model, and others have notational
primitives (like question symbols, etc.) suitable for challenging the model.

Modeling can be seen as an activity which contains both constructive phases
in which models are built (or revised), and testing phases in which the created
models are tested and ”run” in simulations. Therefore, apart from phases that are
related to modeling languages, it is also reasonable to distinguish between phases
corresponding to usage modes.

Typically, a user interface design based on the direct manipulation metaphor
(Shneiderman, 1983) would avoid the concept of ”usage modes”, but instead try to
build ”modeless” integrated solutions in which the edits of a user have direct impacts
on the behavior or the model. However, collaborative modeling situations might
have different requirements: if one user intends to edit a model, while concurrently
another one tries to conduct test runs on the model, this may lead to confusion and
unintended inconsistency.

To offer a means of coordination here, the Cool Modes environment allows the
selection of a an interaction mode, which is a synchronized system state independent
of Reference Frames and workspaces. The framework system controls this state
and delegates state changes to the single Reference Frames - methods to react upon

7.4. INTEROPERABILITY ISSUES AND DESIGN AIMS MET 169

state changes are foreseen in the ReferenceFrame interface. The list of modes is
not closed - however, three modes are currently foreseen:

• An integrated mode, which allows both editing of model graphs and simula-
tions of models. This is the default system mode.

• An edit mode, which lets the users construct and revise models, but does not
support any simulations.

• A simulation mode in which the model structure is fixed (i.e., edits are im-
possible), and simulations can be conducted.

Using the switchMode(int mode) method of the ReferenceFrame interface (cf.
figure 6.1), all Reference Frames are notified about interaction mode changes. Each
Reference Frame can then cause the necessary changes. Here, the mode parameter
is a constant defined in the ReferenceFrame interface. The changes are typically
located in the Palette of the Reference Frame (e.g., enabling or disabling of control
elements), and in the models in the workspaces (e.g., enabling or disabling text
input fields). The latter is supported by the Model View Controller separation in
the JGraph library: typically, only the view component of nodes will have to be
changed corresponding to the interaction mode.

As described, major parts of the implementation of the phase support based on
interaction modes is left to the Reference Frames: the framework system, however,
offers the option for interaction modes and ensures their consistency and propaga-
tion. Obviously, not all interaction modes are reasonable for all Reference Frames.
Typically, ”informal” languages with a low degree of formal semantics, e.g. to sup-
port discussion and argumentation, will not offer a specific ”simulation mode” and
therefore ignore interaction mode changes.

7.4 Interoperability Issues and Design Aims Met

This chapter presented the Cool Modes environment as one possible implemen-
tation on top of the Reference Frame architecture presented in chapter 6. Cool
Modes relies on the principle of shared workspaces and emphasizes flexibility with
respect to the primitives of sharing, thereby illustrating the options that the Refer-
ence Frame foundations and the proposed system architecture offer. Furthermore,
the system contains some support mechanisms specifically related to phases which
may occur in collaborative modeling activities. These mechanisms are lightweight
in the sense that Cool Modes offers only basic technical process support. Further
mechanisms, which would, e.g., address phase scripts or analysis and recommen-
dation techniques for specific situations in collaborative modeling processes, are
beyond the scope of this thesis.

As an effect of the conceptual split between abstract architecture and concrete
system design, the Reference Frame approach is not bound to the Cool Modes
environment: the FreeStyler application (Gaßner, 2003) is an example of an en-
vironment which uses the Reference Frame architecture, but provides a differently
designed (page based) user interface and further functionalities that are targeted
towards knowledge construction and management rather than flexibility in syn-
chronous sharing mechanisms.

Revisiting the list of challenges and aims for this thesis as developed in section
1.5, the criteria that were not yet addressed in chapters 4 or 6 can be characterized
as being (at least partially) dependent on concrete system implementations. As
argued, the Reference Frame approach and architecture are independent of con-
crete applications. Therefore, the fulfilment of the criteria for the specific case of

170 CHAPTER 7. THE COOL MODES FRAMEWORK

Cool Modes can usually not be transferred to other imaginable implementations
of Reference Frames.

The criterion of graphical user interfaces and views for model definition and
integration (Dolk & Kottemann, 1993) (cf. criteria list on page 19) is addressed
with the flexible Palette concept. As both Palettes and Reference Frames are Java
classes, the integration of translator components that convert external data formats
as demanded by Dolk and Kottemann (1993) and Roschelle et al. (1999) (cf. page
20) is also generically supported: the translators can simply be embedded into these
classes or delegates. The examples in section 8.1 illustrate the flexibility that Cool
Modes offers in this respect.

The advanced persistence mechanisms for models and modeling languages de-
manded by Roschelle et al. (2000) (page 20) are addressed with the XML serializa-
tion not only of models, but also (partially) of modeling languages (cf. subsection
7.1.1). The dynamic Plug-In mechanism is both easy to use (cf. figure 7.4), and
provides for dynamic runtime interoperability in the sense of Roschelle et al. (2000).

Task and social interoperability issues are met basically through the Plug-In ap-
proach and the collaboration support features. Of course, an application framework
can not generically offer these kinds of high-level interoperability - the concrete
usage context (including tool, task and social factors that are beyond computer
control) has an important impact, as expressed in the discussion in section 1.5.
Following this argumentation, the role of a framework in supporting social and task
interoperability can only be defined through the functions and degrees of flexibility
that the tool offers to the users in order to allow for an interoperability in these
senses.

For the case of Cool Modes, task interoperability is addressed primarily through
the provision of a co-constructive environment with shared workspaces and appro-
priate awareness mechanisms. Understanding modeling languages as tools, tool
switches are avoided through the dynamic and interactive mechanisms for ”plug-
ging in” languages. In addition, phases in the collaborative modeling tasks are
supported by synchronization functions for Reference Frames and application-wide
”interaction modes”, which reflect the current state of the modeling process.

From the viewpoint of social interoperability, the primary characteristic property
of Cool Modes is that it allows the integrated collaborative use of different tools.
In particular, it is possible to switch tools without leaving the group work context,
i.e., the collaboration session. For these sessions, flexible parametrization options
exist (cf. subsection 7.3.1). This degree of flexibility was chosen in order to allow the
orchestration of various social forms with the collaborative modeling environment
Cool Modes.

Chapter 8

Applications and Evaluation

The previous four chapters of this thesis presented the Reference Frame approach
from both conceptual and implementation points of view. This approach addresses
the target specifications discussed in the introduction, in particular in section 1.5.

The fulfillment of some ”success criteria” has already been discussed in various
parts of this thesis, in particular in sections 4.7, 6.5, and 7.4. The argumentations in
these sections were (mostly) on a theoretical level, in accordance to the formal and
implementation oriented character of the chapters. This goes well with most parts
of the criteria listed in section 1.5, in particular with those associated to formal or
technical system requirements (e.g., syntactic and semantic interoperability across
visual languages, or the criteria identified by Dolk and Kottemann (1993) (see page
19 of this thesis)). In fact, most of the core functional criteria (like the support for
heterogeneous model structures, or the retainment of a shared semantics in partially
shared models) were proved to be fulfilled.

However, the criteria list discussed in section 1.5 does not only consist of require-
ments which can be formally proved (or at least justified). Indeed, the list is quite
heterogeneous with respect to required methodological approaches for verification
or substantiation. For some more usage oriented aspects, including the ones related
to the educational suitability of the system rather than its core functionality, and
those focusing on reusability, empirical techniques are more appropriate.

For two reasons, the evaluation of these ”soft criteria” is difficult. First, the
Reference Frame approach and its Cool Modes implementation has a framework
character. Using the system makes sense with Plug-Ins only, which in turn have a
strong impact on the conception of the application framework by the users. Thus,
any study would be dependent on the Plug-Ins, which would lead to a high number
of required studies to eliminate this effect. Apart from this general framework
evaluation issue, the second problem is the intention of the system: as argued in
section 1.5, Cool Modes is not designed to be a learning environment of own right,
but primarily as a tool that can be flexibly used within learning environments (or:
contexts). This would not be considered by any evaluation study which, employing
e.g. a classical pre-test/post-test design, measures ”learning success” on some scale.

To address these problems, the evaluation parts in the following of this chap-
ter base on interviews conducted with several teachers who have used the Cool
Modes system in their regular classes, and with programmers who have developed
a number of Plug-Ins. Due to the amount of experience that the interviewed persons
(both programmers and teachers) have with the system, a certain degree of Plug-In
independency can be reached in the integrated view on the interviews.

The analysis of these interviews gives answers to the questions related to usabil-
ity, task and social interoperability (teacher interviews), and expressiveness, ease of
use and reusability (programmer interviews).

171

172 CHAPTER 8. APPLICATIONS AND EVALUATION

To furthermore outline the flexibility of the system not only from a theoretical
perspective (as done in sections 6.5 and 7.4) but also based on concrete implemen-
tation results, the next section presents some example application areas of Cool
Modes. The diversity of these examples also indirectly substantiates the general
usability of the framework system: major problems in this area would surely have
prevented repeated and successful usage.

8.1 Application Areas

The Cool Modes system presented in chapter 7 has a development history of
(roughly) four years: a first version of the system was released in 2001. At the time
of this writing, 41 differently targeted Plug-Ins are available in the software archives
of the COLLIDE research group, external ones do exist additionally.

During the previous nine months (i.e., since the last major release), more than
400 users downloaded the Cool Modes framework from the ”official” place in the
web portal of the COLLIDE research group. The downloads of Plug-Ins sum to more
than 1400 during the same period of time. All these numbers do not consider the
usage of the system in specific contexts (e.g., within research projects): here, other
(uncontrolled) distribution mechanisms have been used, so that the real number of
downloads is significantly higher than the presented numbers.

The statistics show that a complete listing of the application areas of Cool
Modes is not realistic within this thesis. To give an overview of the diversity of
application areas for Cool Modes as reached through its Plug-In concept, the fol-
lowing subsections shortly illustrate some use cases and different roles of the Cool
Modes system in selected recent research project contexts, and the associated dif-
ferent requirements that were imposed on the system. In addition, some ”extreme”
cases of Plug-Ins are shown in subsection 8.1.4.

8.1.1 SEED

The SEED (”seeding cultural change in the school system through the generation
of communities engaged in integrated educational and technological innovation”)
research project (SEED project homepage, n.d.), supported by the European Union,
lasted from 2001 until 2004. An important aim of this project was the generation of
integrated communities, consisting of teachers, researchers, and software developers,
with the purpose of promoting innovative educational practices which are possible
through pedagogical and technological innovation. The general reason for building
integrated communities was to combine educational and technological expertise in
designing, developing and implementing innovative activities.

The local community established at Duisburg and maintained through and be-
yond the lifetime of SEED included a number of interested local teachers. Evolving
from this, a number of regular school lessons (and lesson series) which integrated
Cool Modes and the related FreeStyler application (cf. section 7.4) have been
conducted. All the teachers that volunteered as interview partners (cf. section 8.2)
also participated in this SEED community.

Based on this project embedment, the role of the Cool Modes system in the
SEED scenarios is closely related to the original motivation for the system discussed
in chapter 1: embedded in realistic school usage contexts, the system is used as a
means to enable or support collaborative modeling tasks. Two immediate conse-
quences of this are the requirement of technical reliability (in regular school lessons
of 45 minutes duration, the tolerance of teachers against buggy software or low
performance is relatively low), and usability : in most cases, a regular classroom use
does not leave much time for lengthy explanations of tool use, so that an intuitive

8.1. APPLICATION AREAS 173

Figure 8.1: Cool Modes in classroom use: the stochastics scenario

usage is important. The success of the Cool Modes usage in these scenarios shows
that these criteria were at least basically met (cf. section 8.2 for details).

Concrete Plug-Ins developed and/or used within this SEED context include the
System Dynamics implementation (Bollen et al., 2002), a Stochastics environment
(Lingnau et al., 2003), computer science Plug-Ins (UML and finite automata), a
biology environment in the field of genetics, and a Plug-In designed for knowledge
management that was used in a German lesson - see Gaßner (2003) for a detailed
description of the usage situation.

Kuhn et al. (2004) have presented the educational setting employed in the
”stochastics” lessons, including an evaluation based on a number of lesson sequences.
Figure 8.1, taken from this paper, shows two different usage modes of Cool Modes
in the lesson series. The figure underlines the approach of ”seamless media inte-
gration in the classroom”, fostered by the SEED project, and also exemplifies the
approach of computer based tools being integrated parts of learning environments
as presented by Hoppe (2002).

8.1.2 COLDEX

COLDEX (”Collaborative Learning and Distributed Experimentation”) is a re-
search project funded by the European Union from 2001 to 2005 (COLDEX project
homepage, n.d.). In this project, technological approaches and computational
tools to foster scientific experimentation, modeling and simulation in distributed
collaborative settings have been developed and used to establish an intercultural
(European-Latin American) community of learners.

In this attempt, the COLDEX project focused on educational scenarios which
involve the study of visual and other perceptual phenomena, including astronomical
and seismic measurements, from both scientific and subjective experiential perspec-
tives. The target groups of COLDEX ranged from higher secondary education to
academic beginners.

The pedagogical idea of ”challenge based learning”, adopted within COLDEX,
includes open-ended learning activities which confront students with realistic (and
complex!) scientific challenges. ”Digital experimentation toolkits” (DEXTs), con-
taining both virtual and physical tools, are handed to students and allow them to
undertake investigations.

In a number of these DEXTs, Cool Modes with different Plug-Ins had the role
of the (virtual) modeling tool. Different from the SEED context, here the connection
of the system to real physical devices (including data transfer or exchange) was an
essential factor. Of course, these usages demanded flexible system interfaces, and a
high expressiveness of the Plug-In concept.

Within this COLDEX context, three Plug-Ins have been developed and used
with Cool Modes:

174 CHAPTER 8. APPLICATIONS AND EVALUATION

Figure 8.2: Cool Modes in the COLDEX maze scenario

Astronomy. The astronomy scenario, presented by Hoeksema et al. (2004), deals
with space objects like the moon or planets. With real physical telescopes,
images of these objects can be taken. Two Cool Modes Plug-Ins can then be
used for image processing and calculating heights of craters based on distance
measurements in the images and geometric rules.

Seismology. This scenario, presented by Baloian et al. (2004), is about the inves-
tigation of the geological phenomenon of earthquakes. Using real data gath-
ered from seismic measurement stations, students can calculate epicenters and
hypocenters of earthquakes. The calculation process is facilitated through a
specifically designed Plug-In. The scenario possible with this Plug-In allows
supporting scientific inquiry learning well, since it includes challenging prob-
lems, real data, and options for investigations and modeling.

Maze. In this scenario (Jansen, Oelinger, Hoeksema, & Hoppe, 2004), the problem
is to help a robot out of a maze through case based rules in a ”reactive
programming” approach, which defines global robot behavior based on single
rules that can be provided ”on demand”. The COLDEX implementation
involves a physical maze with Lego Mindstorms robots as well as a Cool
Modes implementation for the virtual parts (cf. figure 8.2). Rules can be
transferred from the virtual environment to the physical robot.

8.1.3 ”Shared Workspaces”

The ”Shared Workspaces” (”Co-constructive working and learning in replicated
shared workspace environments: Visual languages, automatic analysis, and sup-
port”) project was funded by the German Science Foundation from 2000 until 2004.
This project was part of a research program on networked knowledge communica-
tion in groups (Wissenskommunikation project homepage, n.d.).

8.1. APPLICATION AREAS 175

Figure 8.3: Palette of the feedback charts Plug-In

Compared to the previously reported projects, the ”Shared Workspaces” project
was less application oriented. Using rather analytical and theoretical approaches
than ”field studies” with realistic user scenarios, it primarily aimed at advancing
the state of art in CSCL and knowledge communication with respect to semantic
enrichment and support in CSCL environments as well as computerized analysis of
cooperative activities.

Particular results of the ”Shared Workspaces” project are in the fields of state
based and action based interaction and collaboration analysis methods (Gaßner,
Jansen, Harrer, Herrmann, & Hoppe, 2003), and the use of real-time feedback
on the collaboration process to support learning teams (Zumbach, Mühlenbrock,
Jansen, Reimann, & Hoppe, 2002).

The Cool Modes environment has been used in the ”Shared Workspaces”
project primarily as a system with which controlled lab studies were conducted. The
log files generated by the system (which have their original purpose in serving as
replay files) served as a means for data analysis. This usage of the system included
technical reliability and high usability as critical requirements, as a too high amount
of ”tool talk” caused, e.g., through technical problems, would have reduced the
quality of the material available for analysis.

Concrete Plug-Ins used within these studies included simple discussion support
languages as well as specifically designed ”feedback” Plug-Ins, which provide statis-
tics elements that, put in a workspace, mirror back interaction parameters to the
users for self-reflection. Figure 8.3 shows the Palette of this Plug-In: here, three
different analysis and feedback options (nodes by user, edges by type, and nodes
by type) are visible - put in workspaces, the sample categories for user names and
element types are replaced by the ones that concretely exist.

8.1.4 Plug-Ins for Non-Standard Applications

Almost all the Plug-Ins that have been developed for usage within Cool Modes (or
FreeStyler) follow a pattern which is explicitly foreseen already in the conceptual
notion of a Reference Frame, and even more in the system architecture and the basic
interfaces: the essential and most important definition of a Plug-In is the set of node
and edge types it offers to the users. The Palette is designed primarily as a space

176 CHAPTER 8. APPLICATIONS AND EVALUATION

which offers prototypical instances of the nodes and edges, and allows the user to
drag copies of them into workspaces in order to build models (cf. section 7.2).
However, there are a number of exceptional cases which do not follow this pattern,
and are therefore useful to demonstrate the flexibility of the Plug-In concept. Three
categories of these exceptional cases are briefly summarized in the following:

Analysis and Feedback. Already motivated in example 4.6 in subsection 4.6.2
and shortly illustrated in the previous subsection, Plug-Ins can have a ”meta
functionality” in that they are designed for acting upon structures created
with other Plug-Ins. Here, one example is the ”interaction feedback” appli-
cation (Zumbach et al., 2002). Another one involves a domain independent
”model checker” (Herrmann et al., 2003), which is implemented as a Plug-In
and can be used to verify models against known solutions (cf. section 9.2).

Element Generation. Another cluster of ”non-standard” Plug-Ins can be char-
acterized through their ability of generating elements and automatically in-
serting them into workspaces according to some system-external event. The
Palettes of these Plug-Ins do typically not contain any primitives for drag &
drop. Here, examples include an ”external devices” Plug-In, which is capable
of generating text nodes and image nodes from the content of certain folders
in the file system (this was intended for integrating digital cameras and scan-
ner pens with text recognition), an SMS simulation Plug-In (Bollen, Eimler,
& Hoppe, 2004) which puts short messages sent from mobile phone PDA em-
ulation into a workspace, and also an ”e-mail” Plug-In. The latter does not
contain any user interface at all, but launches a local e-mail server and listens
to incoming messages. Upon reception, a corresponding entry is generated in
a workspace.

Communication Support. Based on the Reference Frame approach, the Plug-In
concept of Cool Modes is originally intended to describe and encapsulate
modeling languages to be used collaboratively. Yet, the expressiveness of the
Plug-In notion has lead to some ”abusive” forms of Plug-Ins which contain
elements that are designed for pure communication support rather than as
a means for collaborative modeling. These Plug-Ins have representational
primitives that they offer to the users, but the primitives and are not intended
for building models out of them. Here, examples include a chat Plug-In (which
enables having multiple chat nodes in workspaces), and a ”voting” Plug-In. In
the latter, the Palette allows the construction of poll with, put in a workspace,
enables the users to vote anonymously. Both Plug-Ins illustrate that even
though Cool Modes does not come with advanced built-in communication
features (apart from the shared models), such an extension is possible by
means of the Plug-In concept.

8.2 Teacher’s Views

During the last years, a number of teachers has used the Cool Modes application
with different Plug-Ins in the context of experimental school lessons or even their
regular teaching activities (cf. subsection 8.1.1). Even though in most cases no
empirical evaluation of these lessons was conducted, the personal and subjective
experiences of these teachers are an important source of information for evaluating
the ”soft goals” within this thesis (cf. introduction to this chapter).

For this reason, I conducted interviews with three teachers. These interviews
were designed as ”focused interviews”. Merton and Kendall (1946) state that this
semi-structured form is suitable for addressing situations with complex clusters of

8.2. TEACHER’S VIEWS 177

Table 8.1: Guide for the teacher interviews

Topic Subtopics

Infrastructure: computers and network in classroom
Usage Lessons conducted with Cool Modes: topics, classes

situation Role of software in the lessons
Other employed media: comparisons?

Used Plug-Ins
Inter- Were Plug-Ins used together?

operability If yes: Which ones? Was usage problematic?
If no: Reasons? When would this be reasonable?

Did students collaborate in the lesson?
Cooperation If yes: How? Was this intended? Role of Cool Modes?

If no: Why not? When would this be reasonable?

Did Cool Modes contribute to learning outcome? How?
Teacher and Learner role: modified?

Assessment Is Cool Modes flexible or more an ”expert tool”?
Usability issues
General points of criticism and improvement suggestions

dependent factors - situations in which large series of successive experiments were
needed for an ideal experimental design:

”The focused interview provides a useful near-substitute for such a series
of experiments [...] Such a procedure provides an approximate solution
for problems heretofore consigned to the realm of the unknown or the
speculative.” (page 543)

The interview situations met the characteristics of focused interviews (personal
involvement of interviewed persons, previous content analysis and initial hypothesis
available, interview guide to locate the major areas of inquiry, and interview focused
on the subjective experiences of the persons) and were conducted according to the
recommendations given by Merton and Kendall (1946) and Liebold and Trinczek
(2002). Table 8.1 shows the interview guide that was used as a loose structure for
the interviews.

The analysis of the interviews was based on the methodology proposed by
Liebold and Trinczek (2002), differing in that the coding was done on the audio files
directly instead of using written transcripts. Table 8.2 contains the pre-determined
codes used for this process.

The interviews were conducted in German, the native language of the inter-
viewed persons and the interviewer. To be consistent with the text of this thesis,
all quotations are translated to English.

8.2.1 Usage Context

The three interviewed teachers have different relations to the COLLIDE research
group: teacher 1 is in loose contact with the research group and uses the Cool
Modes system regularly as part of his lessons. Teacher 2, who had been a student
assistant of the research group some years ago, is currently not affiliated to the
group in any way, whereas teacher 3 has an intermediary position: he works part
time at school and part time within the research group.

The three teachers have used the Cool Modes system in different contexts
with respect to a number of dimensions. Table 8.3 lists the variations in terms of
student age, taught subject, used Plug-Ins, and number of student groups.

178 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.2: Coding categories for the teacher interviews

Code Description

Context Statements about the usage scenario for Cool Modes

Statements that express the quality of
Usability teacher’s and student’s experiences in

interacting with the Cool Modes system.

Statements which express the teacher’s
Flexibility conception of the possible usage fields of

Cool Modes in educational scenarios.

Statements that refer to task specific characteristics
Task

of the tool, e.g. related to modeling,
interoperability

task specific collaboration, or work phases

Social Statements which refer to Cool Modes used in groups
Interoperability including general remarks about collaborative usage.

Pedagogic Statements about the general usefulness of
assessment Cool Modes in educational situations.

Table 8.3: Teacher’s usage contexts of the Cool Modes system

Teacher Grade Subject Plug-Ins Usage

System Dynamics,
1 12th

Biology
Functions, 5 times

(Ecology)
Discussion

Computer Science Petri Nets,
2 12th

(Modeling) Handwriting
2 times

Stochastics,
9th

Mathematics
Discussion, 2 times

3
(Probability)

Handwriting,
Computer Science

11th
(Modeling)

UML 1 time

8.2. TEACHER’S VIEWS 179

In addition to these dimensions, also the technical infrastructure that the teach-
ers had access to during the lessons varied: teacher 1 and 3 (working at the same
school) had access to a well-equipped computer room with modern networked com-
puters and a data projector, whereas teacher 2 only had old and slow machines (100
MHz) that did not allow for a use of the synchronization mode of Cool Modes.

A common point of these cases is that a group usage of Cool Modes in the sense
of having two or three students per computer was employed. This was largely due
to the fact that the number of students exceeded the number of available computers
- however, the teachers reported quite positive on this (cf. subsections 8.2.4 and
8.2.5).

Apart from the details presented in the forthcoming subsections, the general
impressions about the student groups as reported by the teachers differed consid-
erably: teacher 1 reported on very interested students who felt ”important” being
in contact with university and research. Teacher 3 shared this positive attitude,
whereas teacher 2 stated that his class consisted of a number of students that were
only partially interested in his lessons.

8.2.2 Usability

The statements given by the teachers concerning the usability of the system can be
classified in three subcategories:

1. General statements

2. Specific statements about certain Plug-Ins

3. Concrete problems

In general (i.e., speaking of the Cool Modes framework system independently
of concrete Plug-Ins), the usability of the system was assessed as high by all teachers.
Comparing Cool Modes to conventional system dynamics modeling tools like
Stella or DynaSys, Teacher 1 stated:

”As a biology teacher I am happy to have a tool that is easy to use.”

Even with his limited experience with computers in general, he did not have any
problems using the tool in the classroom context, and he did not report on major
problems about his student’s usage of Cool Modes, although ”some required a
number of explanations.” Teacher 2 confirms this:

”I think this is fairly intuitive. No larger preparation time necessary.
[...] That went without problems. One could directly start.”

The statements of teacher 3 are in the same direction. His introduction to the
system in the classroom is nearly only about the Plug-In, which is only possible due
to the intuitive usage of the framework system. In addition, he points out that the
Plug-In character of the system makes further usages (with other Plug-Ins) easier,
as the general interaction principles remain the same.

All three teachers evaluated the usability of the Plug-Ins that they used as very
high. Teacher 1 also said that the students had no problems in using the different
Plug-Ins together. The other teachers did not explicitly refer to this aspect, but
their positive statements about the overall system have to be seen in the light of
multiple Plug-Ins used in an integrated manner (cf. table 8.3). Teacher 3 also points
out that the synchronization mechanism of Cool Modes can be handled by the
students easily in the current system versions.

180 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.4: Usability problems identified by the teachers

T. Problem State

Plug-In specific,
1 File handling problems, loading impossible

solved

Plug-In specific,
2 Font size and style not changeable

unsolved

1&2 Workspaces too small for large models solved

Plug-In specific,
2 No line break in text nodes

unsolved

3 Synchronization mechanisms difficult to use solved

3 Printing functions are not flexible enough unsolved

3 Replay mechanism too complicated to use unsolved

3 Missing context help functions unsolved

All teachers had specific points of criticism. These are listed in table 8.4. As
these statements partially refer to older Cool Modes versions, the last column of
the table indicates whether the mentioned aspects are still ”open issues” or already
dealt with.

The table shows that some of the mentioned points have already been addressed.
For the important case of the workspace size, this has been done with scrollbars
and the corresponding awareness mechanisms (cf. subsection 7.3.1). In accordance
to the generally positive statements about the framework system, the (unsolved)
problems reported by the teachers relate to specific detail functions, not to the
core fundamentals (like, e.g., workspace or Plug-In management and handling, or
collaboration support features) of the system.

8.2.3 Flexibility

Concerning the options and limits of using Cool Modes in school lessons, two
topics emerged during the interviews:

1. Possible roles of the system in school lessons

2. Functional limits and options of the system as such

The former aspect was addressed by all teachers. Here, two different basic roles
were mentioned: the use of the system as a medium for working on modeling tasks,
and the possible use for presentations and discussions of outcomes (using a data
projector to project the screen content). Going more into detail, teacher 3 added
that Cool Modes offers support for a variety of different tasks related to modeling
in education (cf. Milrad et al. (2002) for a theoretical perspective on this). He has
used the system to:

• introduce and demonstrate the basic model primitives and their usage,

• work with existing models, varying parameters and interpreting the changes
in the simulation outcome, and

• structurally modify or create models that meet a given problem description.

The aspect of functional limits and options (apart from the specific school usage
contexts) of the system was also mentioned by all three teachers. Interestingly, one
common point is that they all report on certain limits that the software had, and at

8.2. TEACHER’S VIEWS 181

Table 8.5: Functional limits and the teacher’s workarounds

Teacher Problem Solution

Quantitative data analysis Convert saved files to
1

components insufficient CSV format and use Excel

Design options for label Insert snapshots from
1

nodes insufficient Word into the workspace

No element for noting
2 formal Petri Net semantics Use of handwriting

(e.g., marking tables) available

Missing text nodes Use of handwriting and
3

in Stochastics Plug-In Discussion Plug-In

the same time present ways to overcome these (cf. table 8.5). The flexibility that
the system offers through its openness (Plug-In concept and integration of different
media resource types as nodes in the graph) seemed to play an important role in
their system usage, as it allowed for creatively solving problems caused by functional
limitations. Talking about his experiences with the system, teacher 1 summarized
this as follows:

”I went pretty far and saw the limits clearly. But you can help yourself.
[...] The further functions are not so important. It does not make sense
that you people have sore fingers programming functions that we have
on our computers anyway for long. [...] It is legitimate to say that you
do not reinvent the wheel a second time, but just mount it.”

8.2.4 Task Interoperability

The analysis of the interviews with respect to task interoperability yields a large
number of statements. These can be classified into the following five subtopics:

1. Plug-In interoperability used for task purposes

2. Cross-tool interoperability

3. Modeling support in a narrower sense

4. Task specific collaboration issues

5. Phase support

Except for subtopics 2 (only teacher 1) and 4 (only teacher 2 and 3), all the
points have been addressed by all three teachers.

Plug-In interoperability has already been dealt with in the previous subsection, in
the context of the teachers classifying this as a means of flexibility which contributes
to task support. Both the labeling of formal models with ”informal” elements
from other Plug-Ins and the option for handwritten annotations were mentioned
here. However, teacher 3 added to this that the students did not frequently use
the labeling of models with text pieces in his lessons. He identifies the lack of
private access to the data as a possible reason for this: as the students had to
share the computers, they preferred documenting their results on paper instead
of using the digital tool only (and losing access to the data when they have to
leave the computer). Concerning task support, teachers 1 and 3 also identified

182 CHAPTER 8. APPLICATIONS AND EVALUATION

the interoperability between data visualizer components and model components as
essential factors of the system.

As already discussed in the previous subsection, teacher 1 made explicit use of
the outward interfaces of Cool Modes in addition to the system-internal wiring
options. In particular, he reports on the usage of data exports from the Cool
Modes system dynamics model (in particular its simulation results) to Microsoft
Excel for further data analysis and visualization (these exports were done by editing
the saved Cool Modes XML files to achieve CSV format), and data imports from
arbitrary tools into the workspaces using screenshots and importing the images
into the graphs. The latter form of cross-tool interoperability was used to solve the
perceived insufficiency concerning font sizes, colors, and styles.

All three teachers identify the dynamic modeling options that Cool Modes of-
fers as a central feature which motivates the use of system in the lessons. Subsection
8.2.6 briefly discusses the pedagogic statements they make about this. Leaving out
these educational dimensions, a summary of their statements is that Cool Modes
suitably visualizes the complex model simulation processes (teachers 2 and 3), and
enables quantitative analysis of complex phenomena using simple-to-use elements
(teacher 1).

In several of his statements, teacher 3 emphasizes the importance of the collab-
oration support integrated with the modeling support as Cool Modes provides it.
He gives two examples from his course in stochastics:

• The transition from relative frequencies to the notion of mathematical prob-
ability requires a high amount of data. The condensation of data, enabled
through the sharing data with collaboration functions, can contribute signifi-
cantly to this.

• Some experiments in the field of stochastics are very time consuming and re-
quire a lot of processing power (e.g., lotto experiments). Here, the distribution
of calculation tasks that is possible with shared application instances might
be valuable.

The degree of usage of the synchronization functions of Cool Modes differs
between the three teachers: teacher 1 has used a basic variant (workspace wise
sharing only), teacher 2 did not use the synchronized mode at all due to the speed
of the computers, and teacher 3 employed even the partial (node wise) synchroniza-
tion options. A common question to all the three was in how far the (practically
experienced or hypothetical) degrees of flexibility in sharing models can contribute
to the success of joint modeling tasks. The answers to this, as quoted in table 8.6,
outline a generally positive attitude, and do also show the diversity of usage options
that the teachers have in mind concerning this feature.

The last subtopic of task interoperability that the teachers addressed in their
statements was phase support. The versions of Cool Modes that they used in
their lessons did not foresee different interaction modes, so that feedback on the use
of this option is not available. However, two contrary statements were made in this
respect: teacher 2, being directly told about the newly available interaction modes
and asked about his opinion, replied:

”I am just now thinking about this question for the first time. Obviously,
it has never disturbed me that multiple modes were not there.”

He even pointed out that for him, the integration of model construction with
simulation is an important aspect. On the other hand, the different usage modes
identified by teacher 3 (cf. subsection 8.2.3) may indicate that a tailored support
for these modes might be helpful for the intended educational scenario. Thus,

8.2. TEACHER’S VIEWS 183

Table 8.6: Teacher’s views on highly flexible synchronization options in Cool Modes

Teacher Statement

”I can hardly imagine this at the moment, because I have
never used something like this, where you practically
share results and jointly work on a model. With this

option I’d require help myself to say something
qualified. Generally I think it’s interesting, because
there is something like a conversation in the lessons

1
where a problem is presented and discussed among the
students how to deal with it and approach the solution.
And that could of course be done on the level that the

students do not only give their input in form of
discussion contributions, but also as entries in a

jointly used model.”

”Under the prerequisite that the the technical things
work, I’d say this can make sense. [...] Assumed that

you have student groups that have no problems, then you
could show to them only the sector that is more complex,

and the others would have the section which is easier
to work on. [...] The co-operation via computer is

2
superior to the traditional group work, if the

handwriting is completely usable, if you have the option
of sending them something. And they have the chance to
work on it. If this whole network works, then it makes
more sense than the conventional method. If it doesn’t

work, the whole thing looks different.”

”I have used a prototype of this partial coupling with
the prototype of the result collector in stochastics.

This co-operation mode has an enormous potential for
collecting and joining the results of group work. [...]

3
My experience with my seminar has shown that it can be

very interesting to give access to nodes to different
subgroups, in order to systematically share information

about data in different layers of a system.”

184 CHAPTER 8. APPLICATIONS AND EVALUATION

the ambiguity that was identified on the theoretical level (modeless interaction vs.
modeling phase support) has equivalences also in the practical feedback given by
the teachers.

8.2.5 Social Interoperability

In addition to the task specific collaboration aspects discussed in the previous sub-
section, the teachers also gave a number of statements concerning social interop-
erability on a more general level. Here, the following types of statements can be
distinguished:

1. Remarks about the system’s flexibility concerning collaborative usage

2. Educational collaborative usage scenarios of Cool Modes

All three teachers gave statements about the possible ways of using Cool
Modes as a means for collaboration. These statements were related to both their
experiences and also their estimation of hypothetical usage modes which they did
not yet implement. Interestingly, all the teachers explicitly mentioned a not techni-
cally supported group work mode (i.e., two or three students working together on
one computer) as one option which is valuable in the classroom. Here, teacher 1
had an indeed very positive impression:

”They have been sitting before it, and they have communicated. Many
of the things that are my task otherwise, e.g. solving thinking problems,
they did among themselves then.”

Teacher 2 saw this point a bit more critical and remarked that his experi-
ence showed that only fifty percent of the small groups indeed discussed using
the medium. Teacher 3 expressed positive experiences, and states that the shared
monitor offered a joint focus for work. In his opinion, the created visual model is

”[...] an extract of the problem solution, which one can fairly easy dis-
cuss.”

As all teachers pointed out that the advantages of students working jointly on
one computer are limited to groups of two or three students (due to space problems
and limits concerning interaction options with the application), it is apparent that
they welcomed the option of synchronizing Cool Modes instances.

Teacher 1 expressed that the students used this option intensively as a means of
co-operation to ”communicate ideas and pass changes in real time”. Yet, he states
that fine granular options for synchronization (e.g., sharing only partial models)
might require a level of systematic activity planning skills that some students do
not have. As pointed out already in the previous subsections, teacher 2 did not
use the application coupling functions due to technical problems. His estimation
is that, assuming the infrastructure is appropriate, this system function can be a
”valuable medium to enrich a teaching method.” As already pointed out in the pre-
vious subsection, he furthermore believes that an inner differentiation of the class
can be supported using advanced partial sharing mechanisms. Finally, teacher 3,
having experience also with partial model sharing scenarios, states that the flexibil-
ity the system offers in this respect allowed him to set up advanced collaboration
settings, in which small groups worked together intensively and added their results
to a ”pool” shared by the whole class. His reports about these use cases were
generally positive: he reported on very engaged students that actively shared their
work results with the rest of the group. A point of criticism is that the re-use of

8.2. TEACHER’S VIEWS 185

other’s results might have been more intensive: in his lesson design, he intended
students to use the results of peers in order to plan their own activities. This was
not observable frequently.

Apart from these views on the options about collaborating via Cool Modes
in different forms, the teachers also gave statements about particular situations in
which they consider the synchronization functions of Cool Modes as a valuable
means to implement educational approaches.

Here, teacher 1 and 2 identified in particular the option of having the better
and the weaker students collaborate as a good approach. Teacher 2 imagines that
here, the application synchronization might be a suitable technique, allowing better
students to adopt ”tutor” roles and observe other’s work without having to walk
through the class. Teacher 1 reports on his experiences with this type of working
groups as ”very fruitful co-operation sessions”.

The statements of teacher 3 go beyond this (relatively) simple usage mode of the
Cool Modes synchronization functions. His statements demonstrate that he used
the functions to orchestrate complex group scenarios, manifested in a collaboration
process and groups dynamically assigned using the synchronization functions: in
one of his scenarios, the class was split into two groups. The first group worked in
one collaboration session and internally organized its division of labor according to
the task. The second group was divided into several subgroups with different task
assignments, and included explicit ”integrator” and ”presenter” students, who were
member of both subgroups and could participate in the corresponding collaboration
sessions. Teacher 3 states that ”all this worked fine to a large extent.” (cf. Kuhn,
Jansen, Harrer, and Hoppe (2005) for a more detailed description of the lessons).
This is a very positive indication, taking into account the argument (brought up
by teacher 1) that students of the corresponding age are typically not masters of
systematic work.

8.2.6 Pedagogic Assessment

As a last point of the interview analysis, this subsection contains general statements
given by the teachers concerning the usefulness of Cool Modes in school lessons.
These statements can be classified into the following four areas:

1. Practical changes in the lessons

2. The role of the teacher in the lessons

3. Aspects related to the student’s learning

4. General statements

Concerning the first point, the three teachers share the opinion that the use of
the Cool Modes software in their lessons made new options available that differ
qualitatively from ”conventional” approaches. Giving arguments for this evalua-
tion, both teacher 1 and teacher 2 emphasize the dynamics of the models that
students can build as an essential factor. Both believe that the ease of design-
ing, modifying, and simulating models is an important difference to ordinary (i.e.,
non-computerized) methods. Teacher 3 also shares this viewpoint, and adds that
indeed some usage scenarios were not possible before: the execution of a very high
number of experiments in stochastics is ”very difficult on paper, and in the border
areas not possible.” According to him, the system did indeed bring new options. In
addition, he mentions a number of particular areas where the Cool Modes system
significantly facilitated certain processes. These examples include the collection of
experiment data created by the students working in distributed subgroups - here,

186 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.7: Teacher’s views on their role in lessons conducted using Cool Modes

Teacher Statement

”After knowing myself how this all works, the lessons
1 indeed had a different quality. I could observe group

and learning processes”

”You take back yourself more and hope
2

that he students work on that independently.”

”First of all, my teacher role changed because of the
distributed usage. Some students worked independently at

the computer, so that I could work more directly with
3

the other subgroup. [...] It is similar to other forms
of group work. You have an intensive exchange with some

groups, yet none at all with others.”

the collaboration support functions were an essential factor that helped replacing a
lot of tedious paper based work.

Similar to the first aspect, the teachers also give very similar estimations about
their role in the lessons when the Cool Modes software was used. Though there
are certain nuances in their statements (cf. table 8.7), they all report on a change
in the teacher role that goes along with a more active student role. A summary of
their statements is that they all see Cool Modes as a system which enables small
student groups to work together, and thereby relieves the teacher from certain tasks.
This is fully in line with the objectives of the SEED project, where the activities of
the teachers have their origin in (cf. subsection 8.1.1).

Apart from these changes in their role, all three teachers also gave statements
about their perception of the student’s behavior in the lessons, and also interpreted
this with respect to learning success. Here, teacher 1 clearly states that the new op-
tions coming with the use of the Cool Modes software (i.e., quantitative modeling
and experiencing large impacts of small model changes instead of qualitative extrap-
olations) did contribute to the learning success of the students. In particular, he
mentions the discussion of results that the software facilitates as an important as-
pect. Teacher 2 points out that he believes (yet, without having a ”control group”)
that the use of the software had a positive impact on the learning success. His es-
timation is that this is largely due to the option of dynamically simulating models,
which he considers a very motivating factor. Teacher 3 shares this opinion. Com-
paring the collaborative modeling activities using Cool Modes with other forms
of teaching, he summarizes:

”The students get a shared focus faster. [...] The process is experienced
live, not only in the head.”

In addition, he states that he experienced the students indeed trusting the com-
puter (in his role of generating random numbers). Based on research literature,
he initially had the fear that the students would not accept the computer as a re-
placement for ”real” experiments - yet, based on his experience working with Cool
Modes in his classes, he could not confirm this problem. In the contrary, he be-
lieves that the use of the system was indeed helpful for the students, as the model
execution (with a high number of repetitions) confirmed their hypotheses built on
a theoretical level.

Finally, all teachers gave some general statements about their conception of
Cool Modes as a tool for classroom use. The previous subsections already outlined

8.3. PROGRAMMER’S VIEWS 187

the positive attitude all three teachers have. In particular teacher 1 and 3 report
very positively and will continue using the system - teacher 1 even puts this as

”You really cannot go back beyond this now. That would be a step into
stone age.”

Teacher 2 gives modestly positive statements. The points of criticism he gives
are related to the use of computer tools in the classroom in general instead of Cool
Modes as a specific application:

• The speed of the computers did not allow for using all the functions of the
system. In particular, the collaboration support could not be used.

• The available internet access in the classroom had disturbing effects on the
lesson, as some students were distracted.

• A really fruitful use of the system requires equipment (a projector and tablets
for handwritten input) which is usually not available in all computer rooms.
The ideal equipment, an electronic whiteboard, is expensive.

Compared to this, the points of criticism that teacher 3 pinpoints are very
concrete and related to Cool Modes as a specific application. He demands:

• Better process documentation options: the pure workspace oriented approach
is well suited for collaboration, but has disadvantages when it comes to pre-
senting solutions that consist of iterative model refinements.

• Integrated help functions which explain to the students the function of single
modeling language primitives. There should be some support for such func-
tions in the framework system, although the concrete help texts are of course
specific to Plug-Ins.

• A connection of Cool Modes to structured archive systems (i.e., asyn-
chronous work support mechanisms) would augment the usability of the sys-
tem in the classrooms.

The third point is under current development and is shortly discussed in the
final chapter of this thesis, and the first point is part of a separate PhD project.

8.3 Programmer’s Views

As mentioned in section 8.1, there are currently more than 40 Plug-Ins for the
Cool Modes system. The far majority of these has been developed in the context
of the COLLIDE research group at the University of Duisburg-Essen. A number of
programmers have been involved in these developments.

The personal opinions and conceptions of the Cool Modes framework system
that these programmers have based on their work with the system is a valuable
source of information that can be used to evaluate the fulfilment of some ”soft goals”
of this thesis, in particular those that are related to questions of expressiveness,
reusability options, flexibility and (programming level) usability of the framework.

For this reason, I have conducted interviews with five programmers that were
intensively involved in the development of Plug-Ins. Similar to the teacher inter-
views, the programmer interviews were conducted as focused interviews (cf. section
8.2). Table 8.8 shows the interview guide, and table 8.9 contains the initial coding
categories.

188 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.8: Guide for the programmer interviews

Topic Subtopics

Programming experience (Java / general)
Applications and

Estimation of skills and weaknesses in programming
Programming

Developed Plug-Ins
experience

Were these Plug-In rich in semantics?

Were any ”workarounds” necessary?
Expressiveness

Did the system support / restrict the development?
and

Do Plug-Ins work together with others?
Interoperability

If yes: How realized? Did problems occur?

Which system classes or libraries were used?
Areas of greatest support?

Reusability
Difficulties in implementing load or save functions?
Was the cooperation support in the framework used?

Problems integrating the Plug-Ins into the system?
Estimation of requirements for developing Plug-Ins

Assessment
Programming without the framework: consequences?
General suggestions for improvement

Table 8.9: Coding categories for the programmer interviews

Code Description

Statements about own experience and
Context

skills, and the developed Plug-Ins.

Statements that relate to things that the framework
Expressiveness does allow or not allow, and statements about

functionality provided by the framework.

Statements related to the re-use of system
Interoperability

classes, and re-use of functionality across Plug-Ins.

Statements that refer to the difficulty of programming
Ease of Use with the Reference Frame framework and Cool

Modes, including general suggestions for improvement.

8.3. PROGRAMMER’S VIEWS 189

Table 8.10: Backgrounds of the interviewed programmers

Experience Skill
P.

(Java) Level
Weaknesses Strengths

5 years user interfaces, object oriented
1

(1 year)
medium

complex algorithms design

10 years pretty transactions,
2

(7 years) good
user interfaces

distr. systems

11 years quite
3

(3 years) advanced
distributed systems -

15 years very networking,
4

(7 years) good
user interfaces

distr. systems

10 years quite user interfaces,
5

(4 years) advanced
networking

XML

8.3.1 Background and Context

The five interviewed programmers were selected for interviews because they are the
persons with most experience in programming Plug-Ins for Cool Modes. They
all volunteered for the interviews and are (at the time of this writing) associated to
the COLLIDE research group: programmers 1, 2, and 5 are master students and
work as student assistants, and programmers 3 and 4 are PhD students working as
research assistants.

The background of these five programmers is listed in table 8.10. All informa-
tion, in particular also the strengths and weaknesses and the level of experience,
are according to the self-classifications given by the programmers.

The table shows that the interviewed programmers are generally already on an
experienced level. This practically eliminates impacts from Java language charac-
teristics (i.e., issues not specifically related to the system to be evaluated) on their
statements about the Reference Frame framework, as they are familiar with the
general capacities and limits of the programming language.

The table also reveals that the areas of expertise vary considerably among the
interview partners: some declare their strength to be in the fields of distributed
systems and networking, while others nominate these areas as their weaknesses.
The field of user interface programming plays an analogous role.

Finally, table 8.11 lists all the Plug-Ins that the interviewed programmers de-
veloped, co-developed or revised. This table shows that (except for programmer 1,
who is an important interview partner due to its only medium level of programming
skills and experience, compared to the others) all interview partners have significant
experience in programming Plug-ins for the Cool Modes system, which substan-
tiates their judgements and assessments. As already stated at the end of subsection
7.1.1, nearly all the implementations have been based on the program centered ap-
proach (sometimes, an inclusion of external data files has been used). Therefore, the
interviews can only give results on this approach for Reference Frame specification.

Most of the Plug-ins contained in table 8.11 are mentioned as examples at various
locations within this thesis - the remaining ones are not further described and
included in the table for reasons of completeness.

8.3.2 Expressiveness and Reusability

The first analysis category for the interviews is related to the expressiveness of the
Reference Frame approach and its implementation underlying the Cool Modes
system. Here, statements belonging to three different subcategories were made:

190 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.11: Plug-Ins developed by the interviewed programmers

Programmer Plug-Ins Degree of Semantics

Learning Phases,
1

Educational Modeling
very low

Functions,
External Devices, varying, from

2 CampusCouples, very low to
SMS, very high
Tutor

System Dynamics,
Petri Nets, highest degree

3 Discussion, of all that
Analysis, currently exist

QOC

Biosphere,
Moon craters,

E-Mail listener,
varying, from

4
Board games,

very low to

Discussion,
very high

Language Mixer

Maze,
System Dynamics,

Functions, varying, from
5 Stochastics, very low to

Discussion, very high
Tutor,

Simple UML

8.3. PROGRAMMER’S VIEWS 191

1. Statements about the expressiveness of the Reference Frame concept as such:
options and limits of the modeling languages that can be implemented as
Plug-Ins within the architecture.

2. Available and lacking functions of the overall system implementation, includ-
ing the management of Reference Frames and other services provided (or
desired) in the software backbone.

3. Use of the provided abstract base classes.

The range of statements given by the programmers differs considerably between
the first two subcategories. Concerning the first one, the expressiveness of the
Reference Frame concept, only little criticism was made. None of the five program-
mers felt that the Reference Frame encapsulation embedded in the Cool Modes
system restricted him in any major way during the implementations of visual mod-
eling languages. Programmer 1 states that he ”did not feel particularly restricted”,
programmer 2 also considers the framework ”rather a help than a corset.” Program-
mer 3 emphasizes the ”very high usability” of the system, programmer 4 states that
”there were no restrictions”, and programmer 5 believes that ”the system does offer
a lot of options to set up graph based modelings.” Only two minor disadvantages
were brought up:

• Programmer 4 referred to an older version of the Reference Frame implemen-
tation which did not provide the option of defining Plug-Ins without Palette,
and

• programmer 5 said that the general notion of Reference Frames should also
include interfaces to system-wide context sensitive help functions

None of the programmers reported on a case where the Reference Frame ap-
proach was insufficient for developing a graph based modeling language. This is in
line with the design choices discussed in chapter 4 and 6: here, the flexibility of the
implementation with respect to supported modeling languages has been a primary
factor.

Concerning the second subcriterion, the functions and expressiveness of the ap-
plication framework Cool Modes rather than the options of designing Plug-Ins,
the answers given by the programmers are quite heterogeneous: all programmers
mention both a number of positive aspects (i.e., important functionality that the
system provides), and also points of criticism in the form of functionality that should
be added or modified.

The mentioned positive supportive functions of the system architecture and
framework as conceived by the programmers are listed in table 8.12. These are
essentially based on answers to direct questions about important system services
that have used, and also on indirect questions (e.g., ”Imagine the framework system
did not exist, and you would have to implement a tool with same functionality as
you did using the Plug-Ins - where would you expect difficulties?”).

Obviously, the table is not complete in the sense that the programmers have
indeed used a number of functions that they did not mention (e.g., all of them have
explicitly used the event mechanism and implicitly the Plug-In management, but
only one mentions it). It can be assumed that a more systematic way of asking
(e.g., with a fixed list of functions and direct questions about their importance) is
likely to lead to different results - yet, the table points out the system functions
that the programmers were aware of and considered important.

Though the single points mentioned by the programmes depend on their esti-
mation of functional importance and also their usage context, the table as a whole

192 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.12: System functionality considered important by the programmers

1 2 3 4 5

Cooperation support x x x x

Drag & drop functions x x x

File handling (XML) support x x x

Conceptual graph structure x x x x

Graph view and layout x x x

Node duplication x

Plug-In management x

Localization x

Syntax rules x x x

Usage modes x x

Workspaces x x

Palette concept x x

Event mechanism and semantics x

reflects well the variety of features that the system offers to the Plug-In developers.
Cooperation support and graph structures are mentioned as important functions
by the majority of programmers - for both areas, the framework provides a layer to
easily access the functionality of the underlying libraries. In addition, all the other
core aspects discussed in the implementation chapters of this thesis (syntax and
semantics, visual attributes and layout, Palettes, etc.) have been mentioned. Some
of these concepts will be revisited in the interoperability and reusability discussion
in the next subsection.

In addition to these positive statements about available and important func-
tionality provided by the framework, the programmers also mentioned a number of
drawbacks and desired functionality extensions:

1. Both programmer 1 and programmer 5 expressed the wish for a better support
of hierarchical structures (nodes containing graphs). This first point of crit-
icism is related to the expressiveness of the underlying graph structure and
does not directly criticize the Reference Frame framework as such - with a
changed underlying graph library, such an extension would easily be possible.

2. Programmers 1 and 5 stated that there is a lack of communication options be-
tween Reference Frames and the content of workspaces: nodes in workspaces
cannot easily access ”their” Reference Frame, e.g., to modify it dynamically.
This is indeed not foreseen in the approach, as the Reference Frame and its
Palette are defined independently of concrete models, and in addition there is
no direct relation between node or edge types and Reference Frames on pur-
pose. However, both programmers gave quite ”extreme” examples of Plug-Ins
(Cool Modes being used a frame for a computer game and as a visualization
of dynamic Palette content details) that would benefit from these communi-
cation options. They stated that a ”regular” usage of the framework does not
require these channels.

3. Semantic interoperability was addressed by programmer 3, who poses the
question whether more controlled methods for data exchange between different
node types contribute to interoperability between Reference Frames. This will
be discussed in detail in the next subsection.

4. Programmer 4 stated that hot deployment (i.e., dynamic adding of Plug-Ins
at runtime and loading new versions of a Plug-In as they become available)

8.3. PROGRAMMER’S VIEWS 193

would be desirable. Although the Plug-In mechanism as such is dynamic in
the sense that the user can add Plug-ins at runtime, the criticism is legitimate
in the sense that the employed mechanism does currently not consider newly
available class resources in the search: only the XML based Plug-In definitions
are treated this way. A modified class loader could solve this problem of
dynamic classpath modification.

5. Programmer 5 requests a more flexible drag & drop mechanism that also works
with hierarchical structures (cf. first point). This is indeed a possible degree
of freedom that could be embedded into the framework - however, this would
have to be done taking into account that some programmers explicitly ap-
preciate the ”simply working” drag&drop in its current non-parameterizable
form (cf. table 8.12).

6. An improved library for sending e-mails from the system (e.g., containing the
XML file and a snapshot of the workspace) and invoking other external tools
(e.g., browsers) were demanded by programmer 5. This point of criticism is
not related to the core functionality of the framework.

Apart from these particular aspects, all five programmers report on a generally
high level of support that the framework has provided them with. A specific positive
aspect was expressed indirectly by programmer 3: he believes that both the under-
lying graph and synchronization libraries should be replaced by more standardized
ones. Being asked whether he thinks that this would require much refactoring work
in the existing code, he replied:

”No. They all base on classes that would have to be changed then. But
one would not have to change the classes themselves. From this, I think
that it would not be so much effort.”

This statement emphasizes, beyond the role as direct provider of functionality,
the role of the framework as a bridge between the modeling language specifications
and the underlying libraries: even if the latter, containing essentially used func-
tionality, are exchanged, this does not affect the Reference Frame definitions as
such.

The third subcategory is related to the use of the abstract base classes provided
in the framework. Of course, there is no really sharp borderline to the second
subcategory, as a reuse of functionality (provided somewhere in the framework)
may sometimes go along with a reuse of classes as base classes.

One typical question in the interviews was which system classes or libraries
the programmers were in touch with and/or consider important. Here, the answer
was homogeneous: all five programmers stated that they preferred working with the
provided abstract base classes for Reference Frames and Palettes. None of them used
the XML based specification option, and neither did any of them directly implement
the Java interfaces (cf. subsection 7.1.1). This expresses that the functionality
provided by the base classes was widely accepted. Being asked directly about the
reason for their choice, all programmers replied that the implementations available
in the base classes drastically reduce the work for developing a Plug-In. Programmer
3 even stated that he never really looked at the code of the framework system:
extending the available base classes was always sufficient for his developments.

This degree of reuse of the abstract base classes for Reference Frames and
Palettes allows the conclusion that in general, the provided functionality was wel-
comed by the programmers (cf. table 8.12). Detailed points of criticism were:

• Programmer 1 and 2 suggest an enrichment of the base classes with even more
functionality, as most Plug-Ins share very similar behavior, which currently
leads to a copy & paste usage.

194 CHAPTER 8. APPLICATIONS AND EVALUATION

• Programmer 3 addresses the problem of semantic interoperability, and dis-
cusses an extension of the core interfaces (cf. next subsection).

• Programmer 4 suggests dynamic code generation for the XML serialization,
using serializer and deserializer components.

8.3.3 Interoperability

The previous subsection already contained a discussion of the software components
that the programmers referred to as important and helpful, or lacking and to be
improved. Apart from these general aspects, the topic of how the programmers
dealt with interoperability between different Plug-Ins is important: in contrast to
the language primitives specification, the syntax rules and the collaboration support
mechanisms, the semantics of languages and the algorithms for implementing se-
mantic mappings are only supported on a basic level (cf. subsection 6.4.2), and the
interoperability options between different Reference Frames are kept very flexible
(cf. subsection 6.3.2). As argued in the previous chapters, these design decisions
were made in order to not restrict the development of Reference Frames. Yet, due
to the absence of a uniform ”interoperability algorithm” (which is available in com-
parable systems, cf. section 3.2), it is interesting to see how the programmers did
indeed make use of the flexibility - or whether they would have preferred a more
controlled and guided architecture.

The statements given in the interviews are related to the following two subtopics:

1. Approaches and experiences concerning interoperability between different Ref-
erence Frames.

2. Usage of the available abstract base classes and their embedded interoperabil-
ity support.

All five programmers gave statements related to the first subtopic, which can be
clustered as follows:

• Programmer 1 did not use any advanced model semantics (cf. table 8.11).
Yet, one of the Plug-Ins he developed extends an already existing one, both
on the node/edge level and also on the Reference Frame level. Thus, his imple-
mentations constitute an ”is-a” relation between the two Reference Frames.

• Programmers 2 and 5 report on semantic interoperability reached on a tech-
nical level through a dedicated interface used to connect Plug-Ins.

• Programmers 3 and 4 state that they looked at the data flow within heteroge-
neous models also from a general perspective, and found out three different ap-
proaches (via interfaces, the Java reflection mechanism, and MatchMaker).

Although these answers have to be interpreted carefully, since programmers 3
and 4 have worked on the problem of semantic interoperability also on a conceptual
level to some extent, whereas the other programmers took more straightforward
approaches, the variety of answers, together with the heterogeneity of developed
Plug-Ins, underlines the flexibility that the Reference Frame approach offers with
respect to semantic interoperability.

The programmers that belong to the first two clusters (i.e., use of extension
between Reference Frames, and interfaces to interconnect languages) do not report
on serious problems. Programmer 1 just states that ”sometimes you have to be
careful about which palettes feel responsible for which nodes”: this mirrors the design

8.3. PROGRAMMER’S VIEWS 195

decision of having loose associations between Reference Frames and node or edge
types.

Both programmer 3 and 4 mentioned that they worked together on a general
mechanism to allow for data exchange in heterogeneous models. This work has
lead to the development of a special Plug-In, providing a node designed for data
exchange: using a general mechanism, this node imports data from other nodes and
is capable of exporting it, provided that the target nodes follow certain conventions.
Technically, the programmers report on different underlying mechanisms (cf. bullet
list above).

The fact that these developments were indeed possible within the framework
demonstrates the flexibility of the Plug-In concept: it was possible to define a
”Meta-Plug-In” to interconnect models without having to modify the system core.
Apart from this, the opinions of the two programmers vary. Programmer 4 gives
positive statements:

”We always let the data flow along the edges. [...] All three options
worked quite well. They had advantages and disadvantages, but these
were inherent, not due to the framework system.”

Programmer 3 adopts a more critical perspective. According to him, interop-
erability in heterogeneous models is ”not so easy”. He considers syntactic issues
fully covered, but semantics and model execution only supported as long as this is
possible based on the event mechanism:

”The syntax part is definitely there. You have to do the semantics your-
self. As long as that works with events and notifications, it is also
available semantically, but if you want data exchange you have to do
something yourself.”

In contrast to programmer 4, he raises the question whether the integration of
a generic data exchange (or: semantics representation) format would enhance the
interoperability options in the system. Yet, (although having done some work in
this field before the interview) he does not have a clear solution:

”Concerning interoperability, I have thought of whether general input
and output methods should be available, that every node writes its values
as primitive types and is also able to accept them. [...] One should
investigate if this increases interoperability or if this is nonsense. I think
one could still do something about the data exchange between nodes.”

This statement reflects some of the decisions made in system architecture design:
there is no uniform and exclusive way of data exchange or semantics representa-
tion, and neither are general control algorithms (apart from the event propagation)
foreseen or enforced. These decisions contribute to the flexibility of the system
and the expressiveness of the Plug-Ins - however, more ”guided” structures could
be tailored for, e.g., interoperability between specific modeling languages. Here,
some of the more theoretically oriented approaches presented in section 2.3 can
have guidance character for implementations. In particular, the grammar based
transformation approaches (Lara & Vangheluwe, 2004), the transformation types
identified by McBrien and Poulovassilis (1999), or the strategies discussed by Dolk
and Kottemann (1993) may be worth considering. The existing Plug-In based im-
plementation for model interoperability done by programmers 3 and 4 shows that
the framework indeed supports this meta-level functionality.

196 CHAPTER 8. APPLICATIONS AND EVALUATION

Syntactic issues, in the contrary, are not discussed in such a controversial man-
ner: with respect to interoperability, the programmers pointed out that the ap-
proach easily allows for defining ”closed” and ”open” languages (i.e., allowing lan-
guage mixes or not) by simply using or not using corresponding rules in the Refer-
ence Frame.

8.3.4 Ease of Use

The flexibility and expressiveness of the framework as conceived by the programmers
who used it has been discussed in the previous subsections. Apart from this, also the
level of difficulty in using the system is an interesting factor: did the programmers
feel comfortable with the libraries, or did they have major problems caused by the
framework during their developments?

In the interviews, several statements related to this area have been made. Four
subtopics emerged here:

1. The use of particular aspects of the system functions (e.g., cooperation sup-
port, or XML serialization).

2. Remarks about the integration of the developed Plug-Ins into the framework.

3. Specific suggestions for improvement.

4. Estimations about requirements for developing a Plug-In for Cool Modes.

These four subtopics highlight different areas of programming level usability: the
first one gives answers to the level of support that the framework system gives for
certain required tasks, the second one is essential because the quality of an extensible
framework system is to a large extent determined by the ease of integrating new
parts. The third subtopic reflects whether central services or features are missing,
and finally the fourth subtopic is an additional measurement for the complexity of
the library, especially when taking into account the personal experience profiles of
the programmers as listed in table 8.8.

During the interviews, all programmers gave a number of statements related to
the parts of the system that they considered important and have used extensively
(cf. subsection 8.3.2). This fact shows that they have a positive conception of the
libraries: due to the flexibility of the system, proprietary solutions would have been
possible alternatively for most of the tasks. In addition to this indirect rating of
the framework system quality, the programmers also gave some direct statements.
These were related to two exemplary parts of the system functions: the XML se-
rialization and the cooperation support. Both functions are quite complex on the
general level: the serialization of heterogeneous models, including the parser han-
dling, requires some experience and a number of algorithmic techniques, e.g., for
loading potentially unknown elements - which is inevitable using a dynamic Plug-
In mechanism. Cooperation support (i.e., synchronization), is even more difficult.
Here, major parts of the work (connection, session, and user management as well
as construction of major parts of the synchronization tree and initialization of basic
listener instances) are done by the framework: the Plug-Ins only have to specify
the node and edge dependent parts. Thus, positive statements of the programmers
about the support level could be expected.

This expectation was met. Table 8.13 summarizes the statements that the pro-
grammers gave concerning the level of difficulty. The table shows that the positive
statements clearly outweigh the few mentioned disadvantages.

As argued before, the integration of Plug-Ins into the framework is a critical
success factor: the dynamic inclusion of system extensions should be as easy as

8.3. PROGRAMMER’S VIEWS 197

Table 8.13: Programmer’s statements about serialization and cooperation support
functions

P. Serialization Cooperation

XML serialization
1 works smoothly, library

Better documentation

decreases work.
of MatchMaker details needed.

Rather helpful and
transparent library, but could

Intuitive interface, but difficult
2

be lighter. Inheritance might
to debug. Problems with event

bring problems.
cycles (local and remote events)

Basic functionality is there
3

Very easy. The basic
for free. For more advanced things,

features are all there.
a better documentation would help.

Clear structure and interfaces,
4

Knowing DOM,
works fine when used consistently.

this is very easy.
Debugging is problematic.

Problems at the beginning, Very easy, also for non-
5

but got into it quickly. experienced programmers.

possible for the developers of the extensions, in order to not require them to know
details about the internals of the embracing framework.

Therefore, one topic in all the interviews was whether the programmers had any
problems integrating their work into the framework. Here, the answers were very
positive and substantiated the quality of the dynamic Plug-In mechanism and the
management of multiple Plug-Ins by the framework (cf. subsection 7.1.2): Program-
mers 2, 3, and 4 did not report on any encountered problems . Programmers 1 and
5 mentioned only minor issues (errors caused by wrong specifications of resource
locations, requests for better debugging options), but also expressed that they had
no general problems.

The third subtopic discussed in this subsection is which specific propositions for
extensions (in order to simplify the use of the system) were given by the program-
mers. Here, the following three points were addressed:

• Programmer 2 demanded a ”Reference Frame Builder” to simplify the de-
velopment. He can imagine a visual environment to specify the basics of a
Reference Frame and its Palette, generating a code template. Programmer 1
and 4, however, believe that such an option is not useful.

• Programmer 2 suggests a more elaborated document model: currently, all
workspaces and loaded Reference Frames make up the document. He proposes
an extended model, allowing a Cool Modes instance to contain multiple
documents, each associated to a set of Reference Frames and workspaces.

• Programmer 4 and 5 addressed lacking archive functions not only on the
document level, but also for Plug-Ins and for other resources: according to
them, central places to store and retrieve system extensions could facilitate
interoperability and reusability of the framework.

These topics are all relevant and should be considered for further system de-
velopments (cf. next chapter). Yet, evaluating the quality of the Reference Frame
approach and the architectural framework proposed within this thesis, an impor-
tant factor is also what is not mentioned: none of the programmers spoke about

198 CHAPTER 8. APPLICATIONS AND EVALUATION

Table 8.14: Programmer’s estimations of requirements for developing a Plug-In

1 2 3 4 5

General Java skills ◦ ◦ ◦ + ◦
Concepts of Object Orientation + + + + +

Distributed Systems techniques ◦ +

XML handling ◦ ◦
Design Pattern: MVC + + + +

Design Pattern: Observer + +

User Interface programming ◦ ◦
Graph concept +

improvements concerning the specification of visual languages as such, the collabora-
tion support interfaces were not mentioned, and neither were the model integration
or interoperability functions criticized from a usability point of view (yet, this has
to be seen in the light that the amount of complex and interoperable Reference
Frames is not very large). This lack of criticism about the core parts, seen in the
light of a generally open attitude of the programmers in the interviews, strengthens
the hypothesis that the framework is indeed not too complicated to use.

This is supported by the estimations that the programmers gave concerning the
requirements for successfully developing a Plug-In for Cool Modes. These are
listed in table 8.14, with + standing for ”good knowledge of the concept”, and ◦
standing for ”basic knowledge”. Similar to the other comparable aspects in the
interviews, the questions were asked in an open manner, i.e. no specific categories
were suggested.

An analysis of the table yields two things: first, the concepts mentioned most
frequently are on a general level (programming skills, object orientation, design pat-
terns). Specific skills, which would definitely be needed for building a collaborative
modeling tool ”from scratch” (e.g., knowledge about programming distributed sys-
tems, or user interface design) were rarely mentioned, or even not mentioned at all
(e.g., language integration issues). In combination with table 8.12, which lists the
important elements of the framework as conceived by the programmers, this result
emphasizes the impression that the framework serves the purpose of relieving the
programmers from ”lower level” tasks by certain architectural constructs (which, in
turn, explains the object orientation and design patterns as required knowledge),
and allows them to concentrate on the task of specifying the modeling language as
such, which can then be used in the application framework in an integrated manner.

A particularly surprising detail result comparing table 8.14 with table 8.10,
which contains the skills of the programmers as they identified them (usually at the
very beginning of the interviews), is that indeed none of the five programmers stated
that his personal weak fields (typically user interface programming or distributed
systems technologies) were an important requirement essential for developing a
Plug-In for Cool Modes. There are several alternative explanations for this effect:
e.g., they might simply not want to admit that their weaknesses were in important
areas. Yet, considering the answers given to the used system functionality (table
8.12) and the finally successful outcome of the programming work (cf. section 8.1),
a clear guidance and helping function of the framework can be noticed.

8.4. SUMMARY 199

8.4 Summary

This chapter evaluated the Reference Frame approach and its proposed architec-
ture and system implementation with respect to the ”soft criteria”, which, being
related to the concrete usage of the system, could not be proved or shown by logical
arguments.

The intended flexibility and expressiveness was addressed both in section 8.1,
presenting some usage scenarios of the Cool Modes system, and also in the state-
ments that the programmers gave during the interview. The results in terms of
both variety of usage scenarios and programmers feedback are fully in line with the
design decisions taken (flexibility as an essential criterion), and substantiate the
fulfilment of the flexibility criterion.

8.4.1 Programmer’s Interviews

In general, the statements of the programmers were not uniform. This is not sur-
prising, as they have different backgrounds and experience, and have implemented
very differently targeted Plug-Ins prior to the interviews. A number of propositions
for potential improvements have been made, related to both functional aspects of
the framework, and structural changes to improve usability. The core topic of inter-
operability was seen critically by one interviewed programmer, who believed that
a more guided approach (versus the delegation of algorithmic control and parts of
the interface specification to the Plug-Ins) might be beneficial. Indeed, this alter-
native approach, which is taken by comparable systems (cf. discussion in chapter
3) might contribute to a more controlled and centralized management of data flow
in heterogeneous models, but it risks reducing expressiveness and flexibility.

Despite these negative points, the general outcome of the interviews with the
programmers conveys a positive image: the Reference Frame concept as such was
considered useful and well suited for the implementations, and a convenient use
of the framework was attested. The programmers appreciated the functionality
provided by the system (in particular through the abstract base classes). According
to their statements, the structural design of the system does indeed both facilitate
the development of single Plug-Ins in many respects, and also easily allow for an
integration of the Plug-In with others. These interoperability and wiring options,
together with the dynamic Plug-In mechanism, meet the ”soft” programming level
criteria listed by Roschelle et al. (1999) (page 20).

8.4.2 Teacher’s Interviews

Apart from the experiences of the programmers, which serve as an indication for
the quality of the approach and the system implementation, the second source of
information used in this chapter were the teachers who have used the Cool Modes
software in their regular lessons, with varying topics (from biology, mathematics,
and computer science), Plug-Ins, and classes.

A formal evaluation of these usages was not conducted. Such an approach
would have helped clarifying concrete detail questions. Yet, the largely uncontrolled
character of the lessons (in the sense of a high number of uncontrolled variables)
and the lack of data, in particular control groups, prevented such an approach - in
addition, the inevitable dependency on the concrete Plug-Ins used would have been
a problem.

Instead, the feedback of the teachers as given in the interviews has been used
as a source of information, which turned out to be very valuable. Uniformly, they
confirmed the theoretical positions discussed in the introduction to this thesis (usage
of modeling and collaborative modeling in education) from their practitioner’s point

200 CHAPTER 8. APPLICATIONS AND EVALUATION

of view. They also reported on a sufficiently high usability of the system (i.e., the
system can be used successfully in classrooms), going in line with a high degree of
flexibility concerning its usage.

The general attitude the teachers convey differs: two of the teachers adopt ex-
tremely positive positions and criticize only details of the software system, whereas
one teacher reports on mixed experiences: the computers in his school were too old
to allow for a reasonable work, and in addition he was also lacking other equipment
he considers essential for a really successful use of the system (e.g., handwriting
tablets and an electronic whiteboard). Apart from these quite technical, but prac-
tically important aspects, this teacher shares the positive attitude of the others.

In particular, all three teachers state that they see task interoperability and
social interoperability supported through the Cool Modes system: they report
on differently designed collaborative settings, from very simple forms (with stu-
dents sharing a computer) to advanced ones which make use of partial model shar-
ing mechanisms, and confirm the appropriateness of the available synchronization
mechanism as a form to foster collaboration via shared visual languages (or models)
in the classroom use. In addition, they report on usages of various task interoper-
ability functions of Cool Modes. In particular, the dynamic simulation options
and the mixture of elements from different languages were positively mentioned.

Despite aspects of criticism (e.g., a lack of asynchronous storage mechanisms,
help mechanisms, and functional limitations of the Plug-Ins used), these positive
statements together with the number of system usages in classrooms and the con-
tinuing interest of the teachers indicate that the Reference Frame approach and its
implementation in form of the Cool Modes system can indeed contribute to social
and task interoperability in the targeted educational scenarios.

8.5 Conclusions

Supplementing the descriptive interview summary as contained in the previous parts
of this section, this final subsection of the evaluation chapter presents some assess-
ments and conclusions that can be made based on the evaluation results. In order
to keep this list short and readable, these are not fully justified here (see the corre-
sponding sections in this chapter for details).

• The Reference Frame approach and its Cool Modes implementation have
proven to be highly flexible and expressive, both through the variety of existing
usage scenarios and also as an outcome of the programmers interviews.

• The openness of the system, achieved by means of the easy-to-use Plug-In
approach, is an important success factor. Although the external interfaces
of Cool Modes (i.e, the data exchange with other applications) can still be
improved, the existing level of interoperability already allows for using the
tool quite flexibly.

• Both from the programmers and the teachers point of view, the system is
characterized through a high usability. Yet, improvements are still possible
here (e.g., integrated help functions, or additional services in the system ar-
chitecture).

• According to the teachers assessment of the lessons they conducted using
Cool Modes, the system can indeed contribute to supporting learning through
its provision of collaborative modeling functionality. A typical effect of using
the tool in the classroom was a teacher role change towards a more observing
attitude, leaving more time for individual care for the needs of single students.

8.5. CONCLUSIONS 201

• The collaboration support functions in the system architecture are easy to
use and facilitate the task of developing a modeling language for networked
use. The flexibility of the collaboration options (e.g., using phases and syn-
chronization contexts) have been assessed positive by the teachers. However,
there judgements were only partially based on their own classroom experi-
ences (some had more the character of opinions). More detailed and/or sub-
stantiated results will require further intensive usage of the advanced system
options.

• The theoretically proven options for syntactic and semantic interoperability
between modeling languages have been used by the programmers in a variety
of ways. The opinions about the ”loose coupling” paradigm in the system
architecture differed considerably. Therefore, the question if a more guided
and controlled implementation of the Reference Frame concept can facilitate
interoperability even more can not be finally answered.

Apart from these (largely positive) conclusions that can be drawn based on the
interviews, further issues which rather have an outlook character than being directly
related to the core parts of this thesis are discussed in the next chapter.

202 CHAPTER 8. APPLICATIONS AND EVALUATION

Chapter 9

Summary and Discussion

The Reference Frame approach and implementation to support collaborative mod-
eling with graph based representations is the main contribution of this thesis. Moti-
vated from potential applications in education, the work is methodologically rooted
in computer science, at the intersection of fields like metamodeling, software design,
distributed systems, and visual languages in HCI contexts. In this combination of
computer science methods applied with a view towards educational scenarios, the
work is in the tradition of research fields like groupware, AIED, and CSCL.

This final chapter of the thesis is organized as follows: section 9.1 summarizes
the major line of argumentation and the main contributions of this work, and section
9.2 discusses certain important aspects in the light of possible alternative solutions
and further research opportunities.

9.1 Summary

The motivation for the work within this thesis is sought from the field of education
and educational technology: different lines of argumentation suggest that computer
support for collaboration using graph based dynamic representations (”models”)
might significantly support learning.

Based on this background and initial motivation, a list of criteria for a suitable
and flexible computational approach and system implementation has been derived.
The criteria can be split into two categories, both dealing essentially with different
notions of interoperability:

Requirements concerning the conceptual and algorithmic approach.

Independent of the initial educationally oriented motivation, these can be sum-
marized as flexibility concerning the supported graph based modeling languages,
syntactic and semantic interoperability among the graph based representations (in
particular, allowing for mixed heterogeneous structures), and a robust and easily
extensible framework which is able to dynamically handle multiple modeling lan-
guages, generically supports work phases, and considers the specific requirements
of partially shared models.

Requirements concerning the educational usage.

Most parts of the approach and system development are independent of particular
usage scenarios, and so is the major part of work described in this thesis. Yet,
with the initial motivation coming from the field of education, also some ”softer”
usage oriented criteria must be considered in order to stay conform with the origins.

203

204 CHAPTER 9. SUMMARY AND DISCUSSION

Accepting the premise of not aiming at the development of a computer based learn-
ing environment as such (i.e., a system whose usage is claimed to lead to learning
largely irrespective of the usage context) but at a tool that can be easily and flexibly
used to orchestrate educational scenarios, these criteria can be noted as support for
social and task interoperability : though its various degrees of flexibility (e.g. multi-
ple representations, usage modes, partial sharing mechanisms), the system should
enable learners to stay in their task and social context while interacting with each
other and with the shared, dynamic artefact. Of course, also a high usability is a
requirement that goes along with the intended practical usages.

A review of currently existing dynamic modeling tools (both educationally ori-
ented ones and also generic ones) shows that there are no available solutions that
meet both collaboration requirements and representational flexibility. In addition,
there is currently no theory of graph based dynamic representations which takes
into account both interoperability (this alone is already a wide field), visual aspects
of the representation, and specific requirements of partially sharing these represen-
tation - the latter being a non-trivial issue under the requirement of retaining a
shared semantics.

Building upon this problem analysis and review of state-of-art concerning theory
and existing technologies, the major contributions of this thesis can be summarized
as follows:

• Taking up concepts and approaches from graph theory, visual language theory,
and metamodeling approaches (chapter 2), the concepts of visual typed graphs
and Reference Frames represent formal notations for models and modeling
languages used in collaborative contexts. Here, the basic notion of a Reference
Frame is introduced in chapter 4. This concept comprises node and edge types,
visual attributes, syntax and semantics of the language, and a synchronization
context definition, which specifies the ”semantic contexts” of elements that
should be retained in partially shared models.

• Based on this elementary concept of a Reference Frame, several types of in-
teroperability between Reference Frames (including the import of primitive
types and the extension of Reference Frames) have been proposed, and differ-
ent conceptual approaches for integrating multiple model interpretations (i.e.,
semantic mappings) have been discussed and compared (sections 4.5 and 4.6)

• Based on a detailed criteria list, a graph library (the JGraph) and a library for
application synchronization (MatchMaker) have been identified as suitable
technical foundations for an implementation of the Reference Frame approach
(chapter 5). Using these libraries and an object oriented design approach, an
abstract software architecture as one possible implementation of the Reference
Frame approach has been proposed (chapter 6). The system offers rule based
syntax specification options and support for the definition of synchronization
contexts. Furthermore, it contains a lightweight event based mechanism for
model interpretation (here, the simulation of models can be conceived as a
side effect of the semantic mapping function), and some options for Reference
Frame interoperability also on the implementation level, the latter correspond-
ing to the relationships exemplified on the conceptual level.

• The central design decisions, in particular the trade-off between expressiveness
and flexibility on the one hand, and central control on the other hand, have
been discussed - in general, the conceptual approach allows for various imple-
mentations with different characteristics. The choices made in the proposed
architecture were guided by the principles of striving for high expressiveness
and freedom in the design of Reference Frames first, and therefore delegates

9.1. SUMMARY 205

some central aspects (in particular the algorithmic control of the interpreta-
tion mechanism) to the single Reference Frames.

• The software architecture allows for different concrete applications to be built
on top of it. One of these, the Cool Modes modeling framework, has been
presented in detail in chapter 7. This system manages multiple Reference
Frames (called Plug-Ins) and relies on the ”shared workspace” metaphor.
Through specific user interfaces for Reference Frames (called Palettes), the
users are provided with an easy means to build heterogeneous models using
the primitives that the languages provide. Cool Modes as a tool which offers
multiple work phases and several forms of partial synchronization (relying on
the synchronization contexts) has been described.

• In the Cool Modes system description context, different options for the def-
inition of Plug-Ins have been discussed. Both code centered (Java interfaces)
and document centered (XML files) forms are supported, and also mixtures
of these forms are possible. The Cool Modes framework is capable of re-
trieving the differently located and defined Plug-Ins, and transparently offers
them for dynamic and integrated use. The system is indeed unique in that it
offers

– fine granular synchronization options that allow for sharing model parts
across different applications,

– the external specification and dynamic inclusion of flexibly defined mod-
eling languages, and

– their integrated use, allowing the user to build heterogeneous structures.

• The fulfilment of the functional criteria that were related to formal charac-
teristics of the approach and system implementation (e.g., syntactic interop-
erability allowing for heterogeneous graph structures, or expressiveness of the
Reference Frame concept) has been shown or even formally proved. Some
other more usage-related criteria needed an evaluation, which was conducted
using focused interviews (chapter 8):

– Programmers that developed a number of Plug-Ins confirmed the flex-
ibility of the approach, the suitable design of the framework including
appropriate reusable service libraries, and the working Plug-In mecha-
nism. Contributions of the framework to model interoperability were
discussed controversially (cf. next section).

– Going back to the initial motivation for the system, it is interesting to
see whether the expected benefits (social and task interoperability) are
observed by the teachers: can the system really be used to orchestrate the
lessons in the anticipated way?. Under the prerequisite of appropriate
hardware technology, this was confirmed by teachers who used the system
in their lessons.

Table 9.1 takes up the system review from chapter 3, and classifies Cool Modes
according to the criteria used in the comparison. In accordance with the points dis-
cussed above, the table shows the strengths of the system with respect to supporting
synchronous collaborative modeling tasks (last column) with rich and active com-
putational representations (+ in the criterion ”interoperability” and ”operational
semantics”). As was argued in the evaluation chapter of this and will be discussed
in the next section, the Cool Modes framework does indeed leave room for im-
provement in the area of guidance for authoring Plug-Ins, which is the reason for
the (+) symbol in the first column of table 9.1. The ”-” assessment in the criterion

206 CHAPTER 9. SUMMARY AND DISCUSSION

Table 9.1: Cool Modes in the comparison of graph based modeling tools

Exten- Inter- Operational Collaboration
sibility operability Semantics Support

sync: +
Belvedere (+) (+) -

async: ◦
sync: (+)

Cardboard + - ◦
async: -

Co-Lab - + ◦ +

sync: +
Cool Modes (+) + +

async: -

sync: -
Daidalos + ◦ ◦

async: ◦
DOME + (+) + -
GME + (+) (+) -

sync: -
MetaEdit+ + ◦ (+)

async: (+)
ModelIt ◦ (+) ◦ -

ModellingSpace (+) (+) ◦ +
MULTIGRAPH (+) (+) (+) -

Ptolemy (+) + + -
sync: ◦

Visio + ◦ ◦
async: (+)

of asynchronous collaboration support will be discussed in the next section as well
- ongoing research activities (which are beyond the subject of this thesis) deal with
this issue.

9.2 Discussion

The approach presented in this thesis is new, and its implementation (both on the
abstract architectural and the concrete system level) is a genuine contribution to
the scientific field: it allows for flexible collaboration support via heterogeneous and
partially shared dynamic visual structures. The work is finished and has a natural
closure in the resulting framework system (whose functionality is either proved or
confirmed in the evaluation), but at the same time raises several new issues and
opens possible lines of research:

Reference Frame Specification.

In the interviews, both one teacher and some programmers have expressed the wish
for a that a system to facilitate the development of Reference Frames and their
Palettes. Such visual editors are not beyond critique from the programmers point
of view - yet, in particular for non-programmers (and most teachers belong to this
group!), an easy-to-use Plug-In-editor will be helpful. The basics for such a tool,
however, are there: the XML based Reference Frame specification together with the
template class parametrization mechanism is a suitable foundation upon which a
”Reference Frame Builder” can act: the output format of this could in this case be
the input XML format of the Cool Modes Plug-Ins. This would allow for an easy
and comfortable specification of Plug-Ins at least with respect to attributes whose
values can be declared in a simple declarative manner, comparable to the options
available in the Cardboard system (Hoppe et al., 2000). On the research level, it
would be interesting to investigate in how far a definition of Reference Frames can be
done visually. This question is related to the field of visual programming languages,
yet adds the degrees of complexity that behavior of partially synchronized and

9.2. DISCUSSION 207

heterogeneous structures with (a priori) unknown ”other” components would have
to be specified by (usually restricted) visual means.

Alternatives for Model Interoperability.

The Reference Frame approach presented in this thesis has been dealt with on three
different layers, resulting in a conceptual framework, an abstract architecture, and a
complete software system. Though these layers build upon each other, they are in-
dependent. For the two top layers, the different applications FreeStyler (Gaßner,
2003) and Cool Modes demonstrate this. Yet, the conceptual approach also allows
for different architectural implementations. This enables different design decisions
using the same underlying conceptual notions. In particular, the development of
a more controlled or guided variant is possible, which prescribes, e.g., fixed model
interpretation or language interoperability mechanisms (as was demanded by one
of the interviewed programmers). Such an approach, as e.g. taken in the Ptolemy
system (Hylands et al., 2003) or adopted in many theoretical approaches (Wang
& Liu, 2003; Geoffrion, 1987; McBrien & Poulovassilis, 1999), potentially risks a
loss of expressiveness. Alternative implementations of the Reference Frame ap-
proach could help further clarifying this ”guidance and control vs. expressiveness
and flexibility” dilemma. The + in the ”interoperability” column of table 9.1 was
put due to the flexibility of the current implementation, which allows for a whole
range of interoperability approaches. However, more guidance might be beneficial,
as discussed in chapter 8.

Model Checking.

An issue not addressed within this work is the question of model correctness and
the mechanisms required to check this. Obviously, the step is not too far at first
sight: the Reference Frame approach offers support for model syntax and semantics,
and the implementation does already do some restricted model checking in that it
ensures the fulfilment of the syntax rules. However, the case is much more compli-
cated when it comes to semantics: with the heterogeneity of the visual typed graph
structures and the dynamically usable Plug-Ins, the question of specifying ”model
solutions” (i.e., abstract representations which would allow for an automated task
assessment) is not trivial. Considering the flexible but mostly uncontrolled distri-
bution of the semantics attributes in the current architecture, the case is even more
complicated. In addition, specification methods for ”correct solutions” (in the best
case, even in a visual form) are a challenging task. First steps in this direction
have been proposed by Herrmann et al. (2003) - however, final answers are not yet
available.

Asynchronous Collaboration Support.

The collaboration support methods discussed in this thesis were focused on syn-
chronous cooperation support. However, in practice a lot of collaboration processes
are asynchronous. Here, different approaches are required and have (partially) been
demanded by both the teachers and the programmers in the interviews: model and
Plug-In archives are one possible step in this direction. Here, some work has been
undertaken by Pinkwart, Jansen, Oelinger, Korchounova, and Hoppe (2004): the
heterogeneity of models (i.e., the Reference Frames ”involved” in a model) here
plays a role for the generation of metadata, which is in turn used for automated
retrieval functions and archive based community support techniques. Yet, also this
research is by far not finished: further asynchronous support functions operating
on Reference Frames and visual typed graphs associated to documents (e.g., peer

208 CHAPTER 9. SUMMARY AND DISCUSSION

recommender systems, or self-structuring community archives) are imaginable and
worth investigating.

Shared Dynamic Representations.

The evaluation parts in this thesis focused on the framework level, and therefore did
not concentrate on well-controlled studies with single Reference Frames (as, e.g.,
done by McLaren, Bollen, Walker, Harrer, and Sewall (2005) for the case of UML
diagrams within Cool Modes), but on interviews with people experienced in using
the system. As can be expected from the employed method of focused interviews
(Merton & Kendall, 1946), the interview results served both the purpose of test-
ing the initial hypotheses, but (due to their open character) also had hypothesis
building character. In particular, the qualitative analysis gives raise to a number
of concrete hypotheses concerning social and task interoperability that are worth
further focused investigations:

• The teachers observed that the sharing of representations did not always lead
to fruitful collaborative learning scenarios. This leads to the question about
the ”success” factors for using partially shared dynamic models in educa-
tional contexts. Some results in this field have been presented by Suthers and
Hundhausen (2003) and Joolingen and Löhner (2001) - however, in particular
the case of partial sharing in combination with dynamic models is currently
largely unexplored.

• In the interviews, the teachers show different opinions about whether an ex-
plicit phase support in the software is really a benefit, or an integrated mode
allowing the direct manipulation (construction of editing) of the model and
its simulation is advantageous. This topic cannot be dealt with in the scope
of this thesis: however, the question about the usefulness of explicitly fore-
seen tool-supported phases (vs. implicit phases manifesting in the actions of
the users, but not necessarily in the interface of the tool) seems to be worth
further research.

• Partial model synchronization has not been used largely by the teachers.
Though this is at least partially due to the fact that some of the lessons have
been conducted with older software versions which only had limited synchro-
nization features, a general question is if partially shared models can indeed
serve the purpose of allowing users to work with a shared understanding of
the jointly manipulated artefact. Margaritis et al. (2003) doubt this and only
allow for full model sharing in the ModellingSpace application - however,
one could argue that the shared formal semantics as guaranteed through syn-
chronization contexts can lead to the desired effect. Here, further studies are
needed to give answers.

Similar to this thesis itself, these discussion points range from educational as-
pects over collaboration support issues to concrete system design. For each of them,
the Reference Frame approach presented in this thesis can serve as a starting point
- either through the Cool Modes application being directly used or extended, or
in form of its conceptual and architectural foundations.

List of Tables

1.1 Mindtool examples - categories and applications 5

2.1 Classes of visual languages . 29
2.2 The core concepts of MODL . 38
2.3 Representation of an inter-model edge in the HDM Scheme 〈r, c, a〉 . 46

3.1 Comparison of graph based modeling tools 71

5.1 Comparison of graph libraries . 117

6.1 Visual attributes of AbstractNode and SimpleEdge 133

8.1 Guide for the teacher interviews . 177
8.2 Coding categories for the teacher interviews 178
8.3 Teacher’s usage contexts of the Cool Modes system 178
8.4 Usability problems identified by the teachers 180
8.5 Functional limits and the teacher’s workarounds 181
8.6 Teacher’s views on highly flexible synchronization options in Cool

Modes . 183
8.7 Teacher’s views on their role in lessons conducted using Cool Modes 186
8.8 Guide for the programmer interviews 188
8.9 Coding categories for the programmer interviews 188
8.10 Backgrounds of the interviewed programmers 189
8.11 Plug-Ins developed by the interviewed programmers 190
8.12 System functionality considered important by the programmers . . . 192
8.13 Programmer’s statements about serialization and cooperation sup-

port functions . 197
8.14 Programmer’s estimations of requirements for developing a Plug-In . 198

9.1 Cool Modes in the comparison of graph based modeling tools 206

209

210 LIST OF TABLES

List of Figures

1.1 A collaborative modeling tool supporting an educational face-to-face
scenario . 18

2.1 Visualization of the graph given in example 2.1 25
2.2 Visualization of the hypergraph given in example 2.2 26
2.3 Inclusion relations for visual language classes in the classification of

Bottoni et al. 30
2.4 Example graph grammar for Entity-Relationship diagrams 31
2.5 The RCC basic relations . 33
2.6 The basic relations of the Cardinal Direction Framework 33
2.7 A picture logic rule . 34
2.8 The MOF architecture with example meta models 37
2.9 Time setting modeled in DSM . 39
2.10 Structure of domain evolution tools 42
2.11 The association of models via inter-model edges 46
2.12 Example of a model definition in SML 47

3.1 References between threaded discussions and graph structures in
Belvedere . 57

3.2 External definition of a relation primitive int the Cardboard system 58
3.3 Synchronized predator-prey models in the Co-Lab environment . . . 60
3.4 Language specification and connection constraints in DOME 62
3.5 Modeling concepts in the GME environment 63
3.6 Examples for model execution options in MetaEdit+ 64
3.7 The entity editor of ModellingSpace 66
3.8 The ModellingSpace interface with a feedback message about a rela-

tion condition . 67
3.9 The basic model concepts in Ptolemy 69

4.1 Representation of the visual typed graph of example 4.1 78
4.2 A syntactically correct calculation tree (left) and two incorrect graphs

(center and right) . 79
4.3 The problems of partial synchronization 84
4.4 Illustration of integrative model interpretation: Petri Nets and Sys-

tem Dynamics . 100

5.1 Architecture of the Sourceforge JGraph 109
5.2 Architecture of the TouchGraph . 111
5.3 Architecture of the OpenJGraph . 112
5.4 Architecture of the Collide JGraph 114
5.5 A COLLIDE JGraph instance and the corresponding MatchMaker

synchronization tree . 115

211

212 LIST OF FIGURES

6.1 The technical ReferenceFrame interface 136
6.2 Synchronization contexts as strategies for Reference Frames 140
6.3 Node imports between Reference Frames 141
6.4 The user interface of a Basic and an Extended Reference Frame for

stochastics . 143
6.5 The event classes in the COLLIDE JGraph architecture 144
6.6 Basic algorithm for ensuring syntactic correctness of visual typed

graphs with respect to multiple Reference Frames 145
6.7 History-preserving variant of the algorithm for syntactic correctness 146
6.8 Strictly history-preserving variant of the algorithm for syntactic cor-

rectness . 147
6.9 The technical NodeListener interface 148

7.1 Reference Frames and Palettes in the Cool Modes system architecture156
7.2 Document type definition for data based Reference Frame descriptions157
7.3 Example of an XML based Reference Frame definition 159
7.4 The Plug-In dialog of Cool Modes 161
7.5 The Plug-In search algorithm of Cool Modes 162
7.6 Typical Palette design in Cool Modes 163
7.7 A synchronization tree for Cool Modes 166
7.8 Cool Modes partially synchronized 167

8.1 Cool Modes in classroom use: the stochastics scenario 173
8.2 Cool Modes in the COLDEX maze scenario 174
8.3 Palette of the feedback charts Plug-In 175

References

Aigner, M. (1993). Diskrete Mathematik (discrete mathematics). Braunschweig,
Germany: Vieweg.

Ainsworth, S. (1999). The functions of multiple representations. Computers and
Education, 33 (2-3), 131-152.

Alder, G. (2003). Design and implementation of the JGraph swing component.
Retrieved April 12, 2005, at http://www.jgraph.com/doc/paper/.

Aronson, E. (1978). The jigsaw classroom. Beverly Hills, CA (USA): Sage.

Avouris, N. (2004). Modellingspace software final version (ModellingSpace project
deliverable). Retrieved april 12, 2005, at http://www.modellingspace.net/
Documents/PublicDeliverables/D08_final_software.zip.

Avouris, N., Margaritis, M., Komis, V., Saez, A., & Melendez, R. (2003). Mod-
ellingspace: Interaction design and architecture of a collaborative modelling
environment. In Proceedings of the 6th International Conference on Computer
Based Learning in Science (CBLIS) (p. 993-1004). (Retrieved April 12, 2005,
from http://www.ee.upatras.gr/hci/papers/C66_Avouris_Margaritis_
Komis_Saez_M%elendez_CBLIS_2003.pdf)

Baker, M., & Lund, K. (1997). Promoting reflective interactions in a computer-
supported collaborative learning environment. Journal of Computer Assisted
Learning, 13 (3), 175-193.

Baloian, N., Breuer, H., Hoppe, H. U., & Pino, J. A. (2004). Collaborative learning
in distributed seismography. In Y. B. Kafai, W. A. Sandoval, N. Enyedy,
A. Scott Nixon, & F. Herrera (Eds.), Embracing Diversity in the Learning
Sciences: Proceedings of the 6th International Conference of the Learning
Sciences (ICLS) (p. 584). Mahwah, NJ (USA): Lawrence Erlbaum.

Baloian, N., Pino, J. A., & Motelet, O. (2003). Collaborative authoring, use and
reuse of learning material in a computer-integrated classroom. In J. Favela &
D. Decouchant (Eds.), Lecture Notes in Computer Science: Proceedings of the
9th International Workshop on Groupware (CRIWG) (p. 199-207). Berlin,
Germany: Springer.

Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ (USA): Prentice
Hall.

Berge, C. (1976). Graphs and hypergraphs. Amsterdam, The Netherlands: North-
Holland Publication Company.

Big Faceless Java Graph Library. (n.d.). Last visited april 12, 2005, at http:
//big.faceless.org/products/graph.

213

214 REFERENCES

Biswas, G., Schwartz, D., & Bransford, J. (2001). Technology support for complex
problem solving: From SAD environments to AI. In D. Forbus & P. Feltovich
(Eds.), Smart machines in education (p. 71-97). Menlo Park, CA (USA):
AAAI Press.

Bollen, L., Eimler, S., & Hoppe, H. U. (2004). SMS-based discussions technology
enhanced collaboration for a literature course. In J. Roschelle, T.-W. Chan,
Kinshuk, & S. J. H. Yang (Eds.), Proceedings of the 2nd IEEE International
Workshop on Wireless and Mobile Technologies in Education (WMTE) (p.
209-210). Los Alamitos, CA (USA): IEEE Press.

Bollen, L., Hoppe, H. U., Milrad, M., & Pinkwart, N. (2002). Collaborative mod-
elling in group learning environments. In P. I. Davidsen, E. Mollona, V. G.
Diker, R. S. Langer, & J. I. Rowe (Eds.), Proceedings of the 20th International
Conference of the System Dynamics Society (p. 53). Palermo, Italy: System
Dynamics Society.

Bonk, C., & Cunningham, D. (1998). Searching for learner-centered, constructivist,
and sociocultural components of collaborative educational tools. In C. Bonk
& K. King (Eds.), Electronic collaborators (p. 25-50). Mahwah, NJ (USA):
Lawrence Erlbaum.

Booch, G., Jacobson, I., & Rumbaugh, J. (1998). The unified modeling language
user guide. Boston, MA (USA): Addison Wesley Professional.

Borghoff, U. M., & Schlichter, J. H. (1998). Rechnergestützte Gruppenarbeit (com-
puter supported group work). Berlin, Germany: Springer.

Bottoni, P., Costabile, M. F., Levialdi, S., & Mussio, P. (1998). Specification of
visual languages as means for interaction. In K. Marriott & B. Meyer (Eds.),
Visual language theory (p. 353-375). Berlin, Germany: Springer.

Brandenburg, F. J. (1988). On polynomial time graph grammars. In R. Cori &
M. Wirsing (Eds.), Lecture Notes in Computer Science: Proceedings of the
5th International Conference on Theoretical Aspects of Computer Science (p.
227-236). Berlin, Germany: Springer.

Bredeweg, B., & Forbus, K. (2003). Qualitative modeling in education. AI Maga-
zine, 24 (4), 35-46.

Brooks, C., Lee, E. A., Liu, X., Neuendorffer, S., Zhao, Y., & Zheng, H. (2003).
Heterogeneous concurrent modeling and design in java (volume 1: Introduc-
tion to Ptolemy II). technical memorandum UCB/ERL M03/27 (Tech. Rep.).
University of California at Berkeley (CA), USA.

BSCW homepage. (n.d.). Last visited april 12, 2005, at http://bscw.fit.
fraunhofer.de.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad,
P., & Stal, M. (1996). Pattern-oriented software architecture, volume 1: A
system of patterns. Chichester, England: John Wiley & Sons.

Buzan, T. (2002). How to mind map. London, England: Thorsons/HarperCollins.

C# Corner. (n.d.). Last visited april 12, 2005, at http://www.c-sharpcorner.
com/Graphics.asp.

Carriero, N., & Gelernter, D. (1989). Linda in context. Communications of the
ACM, 32 (4), 444-458.

REFERENCES 215

Celms, E., Kalnins, A., & Lace, L. (2003). Diagram definition facilities based on
metamodel mappings. In J.-P. Tolvanen, J. Gray, & M. Rossi (Eds.), Com-
puter Science and Information Systems Reports TR-28: Proceedings of the
3rd OOPSLA Workshop on Domain-Specific Modeling (p. 25-34). Jyväskylä,
Finland: University of Jyväskylä Printing House.

Chen, P. P.-S. (1976). The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems, 1 (1), 9-36.

Chomsky, N. (1959). On certain formal properties of grammars. Information and
Control, 2, 137-167.

Cicognani, A. (2000). Concept mapping as a collaborative tool for enhanced online
learning. Educational Technology & Society, 3 (3), 150-158.

Co-Lab project homepage. (n.d.). Last visited april 12, 2005, at http://colab.
edte.utwente.nl.

COLDEX project homepage. (n.d.). Last visited april 12, 2005, at http://www.
coldex.info.

Collide JGraph Howto. (n.d.). Retrieved april 12, 2005, at http://www.collide.
info/howtos/jgraph_howto/.

Constantino-Gonzáles, M., & Suthers, D. D. (2001). Coaching web-based collab-
orative learning based on problem solution differences and participation. In
J. D. Moore, C. L. Redfield, & W. L. Johnson (Eds.), AI-ED in the Wired
and Wireless Future: Proceedings of the 10th International Conference on
Artificial Intelligence in Education (AI-ED) (p. 176-187). Amsterdam, The
Netherlands: IOS Press.

CORBA specification. (n.d.). Retrieved april 12, 2005, at http://www.omg.org/
technology/documents/corba_spec_catalog.htm.

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (1998). Subgraph transforma-
tions for the inexact matching of attributed relational graphs. In J.-M. Jolion
& W. G. Kropatsch (Eds.), Graph based representations in pattern recognition
(p. 43-52). Wien, Austria: Springer.

Costagliola, G., Delucia, A., Orefice, S., & Polese, G. (2002). A classification frame-
work to support the design of visual languages. Journal of Visual Languages
and Computing, 13, 573-600.

Coulouris, G., Dollimore, J., & Kindberg, T. (2000). Distributed systems: Concepts
and design. Boston, MA (USA): Addison-Wesley.

Coyle, F. P. (2002). XML, web services, and the data revolution. Boston, MA
(USA): Addison-Wesley.

Cristani, M., & Cohn, A. G. (2002). SpaceML: A mark-up language for spatial
knowledge. Journal of Visual Languages and Computing, 13, 97-116.

Dabbagh, N. (2001). Concept mapping as a mindtool for critical thinking. Journal
of Computing in Teacher Education, 17 (2), 16-24.

DATsys framework. (n.d.). Last visited april 12, 2005, at http://www.cs.nott.
ac.uk/~azt/research.htm.

216 REFERENCES

DCOM technical overview. (n.d.). Last visited april 12, 2005, at
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dndcom%/html/msdn_dcomtec.asp.

DeGroot, M. H. (1989). Probability and stochastics. Boston, MA (USA): Addison
Wesley.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1, 269-271.

Dillenbourg, P. (1999). What do you mean by ”collaborative learning”? In P. Dillen-
bourg (Ed.), Collaborative learning: Cognitive and computational approaches
(p. 1-19). Amsterdam, The Netherlands: Pergamon.

Dillenbourg, P., & Self, J. (1995). Designing human-computer collaborative learn-
ing. In C. O’Malley (Ed.), Computer-supported collaborative learning (p. 245-
264). Berlin, Germany: Springer.

Dinesh, T. B., & Üsküdarlı, S. (1998). Input and output for specified visual lan-
guages. In K. Marriott & B. Meyer (Eds.), Visual language theory (p. 325-351).
Berlin, Germany: Springer.

Distributed systems technology centre. (n.d.). Last visited april 12, 2005, at http:
//www.dstc.edu.au.

Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-computer interaction.
Harlow, England: Pearson Education Limited.

Dolk, D. R., & Kottemann, J. E. (1993). Model integration and a theory of models.
Decision Suupport Systems, 9, 51-63.

DOME Guide. (1999). Retrieved april 12, 2005, at http://www.htc.honeywell.
com/dome/DOMEGuide.pdf.

DOME homepage. (n.d.). Last visited april 12, 2005, at http://www.htc.
honeywell.com/dome.

Endsley, M. (1995). Toward a theory of situation awareness in dynamic systems.
Human Factors, 37 (1), 32-64.

Ferrucci, F., Tortora, G., Tucci, M., & Vitiello, G. (1998). Relation grammars: A
formalism for syntactic and semantic analysis of visual languages. In K. Mar-
riott & B. Meyer (Eds.), Visual language theory (p. 219-243). Berlin, Ger-
many: Springer.

Flenner, R. (2001). Jini and JavaSpaces application development. Indianapolis, IN
(USA): Sams.

Ford, L. R., & Fulkerson, D. R. (1962). Flows in networks. Princeton, NJ (USA):
Princeton University Press.

Forrester, J. W. (1968). Principles of systems. Waltham, MA (USA): Pegasus
Communications.

Fosnot, C. (1996). Constructivism: theory, perspectives, and practice. New York,
NY (USA): Teachers College Press.

Freeman, E., Hupfer, S., & Arnold, K. (1999). JavaSpaces principles, patterns, and
practice. Boston (MA), USA: Addison-Wesley.

REFERENCES 217

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns. elements
of reusable object-oriented software. Boston, MA (USA): Addison-Wesley Pro-
fessional.

Gansner, E. R., & North, S. C. (2000). An open graph visualization system and
its applications to software engineering. Software - Practice and Experience,
30 (11), 1203-1233.

Gaßner, K. (2003). Diskussionen als Szenario zur Ko-Konstruktion von Wissen
mit visuellen Sprachen (Using the discussion scenario for the co-construction
of knowledge with visual languages). Published online at http://www.ub.
uni-duisburg.de/ETD-db. (Dissertation at the University of Duisburg-Essen,
Germany)

Gaßner, K., Jansen, M., Harrer, A., Herrmann, K., & Hoppe, H. U. (2003). Analysis
methods for collaborative models and activities. In B. Wasson, S. Ludvigsen,
& H. U. Hoppe (Eds.), Designing for Change in Networked Learning Environ-
ments: Proceedings of the 5th International Conference on Computer Support
for Collaborative Learning (CSCL) (p. 411-420). Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Gaßner, K., Tewissen, F., Mühlenbrock, M., Loesch, A., & Hoppe, H. U. (1998).
Intelligently supported collaborative learning environments based on visual
languages: a generic approach. In F. Darses & P. Zaraté (Eds.), Proceedings
of the 3rd International Conference on the Design of Cooperative Systems
(COOP) (p. 47-55). Sophia Antipolis, France: INRIA.

Geoffrion, A. (1987). An introduction to structured modeling. Management Science,
33 (5), 547-588.

Geoffrion, A. (1989a). The formal aspects of structured modeling. Operations
Research, 37 (1), 30-51.

Geoffrion, A. (1989b). Integrated modeling systems. Computer Science in Eco-
nomics and Management, 2 (1), 3-15.

GigaSpaces Homepage. (n.d.). Last visited april 12, 2005, at http://www.
gigaspaces.com.

Glasersfeld, E. von. (1995). Radical concstructivism - a way of knowing and learning.
London, England: Falmer Press.

Goldman, S. V. (1996). Mediating microworlds: Collaboration on high school
science activities. In T. Koschmann (Ed.), CSCL: Theory and practice of an
emerging paradigm (p. 45-81). New York, NY (USA): Lawrence Erlbaum.

Gredler, M. E. (1992). Learning and instruction - theory into practice. New York,
NY (USA): Macmillan Publishing Company.

Gross, J., & Yellen, J. (1999). Graph theory and its applications. Boca Raton, FL
(USA): CRC Press.

Gutwin, C., & Greenberg, S. (2004). The importance of awareness for team cog-
nition in distributed collaboration. In E. Salas & S. M. Fiore (Eds.), Team
cognition: Understanding the factors that drive process and performance (p.
177-201). Washington, DC (USA): APA Press.

Haarslev, V. (1999). A logic-based formalism for reasoning about visual represen-
tations. Journal of Visual Languages and Computing, 10 (4), 421-445.

218 REFERENCES

Harel, D., & Naamad, A. (1996). The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5 (4), 293-333.

Harel, D., & Rumpe, B. (2004). Meaningful modeling: What’s the semantics of
”semantics”? Computer, 37 (10), 64-72.

Heiler, S. (1995). Semantic interoperability. ACM Computing Surveys, 27 (2),
271-273.

Herrmann, K., Hoppe, H. U., & Pinkwart, N. (2003). A checking mechanism for
visual language environments. In H. U. Hoppe, F. Verdejo, & J. Kay (Eds.),
Shaping the Future of Learning through Intelligent Technologies: Proceedings
of the 11th International Conference on Artificial Intelligence in Education
(AI-ED) (p. 97-104). Amsterdam, The Netherlands: IOS Press.

Herrmann, T. (2001). Kommunikation und Kooperation (communication and coop-
eration). In G. Schwabe, N. Streitz, & R. Unland (Eds.), CSCW-Kompendium
(p. 15-32). Berlin, Germany: Springer.

Hoeksema, K., Jansen, M., & Hoppe, H. U. (2004). Interactive processing of as-
tronomical observations in a cooperative modelling environment. In Kinshuk,
C.-K. Looi, E. Sutinen, D. Sampson, I. Aedo, L. Uden, & E. Kähkönen (Eds.),
Proceedings of the 4th IEEE International Conference on Advanced Learning
Technologies (ICALT) (p. 888-889). Los Alamitos, CA (USA): IEEE Press.

Honebein, P. C. (1996). Seven goals for the design of constructivist learning en-
vironments. In B. G. Wilson (Ed.), Constructivist learning environments:
Case studies in instructional design (p. 11-24). Englewood Cliffs, NJ (USA):
Educational Technology Publications.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2000). Introduction to automata
theory, languages, and computation. Boston, MA (USA): Addison Wesley.

Hoppe, H. U. (1995). The use of multiple student modeling to parameterize group
learning. In J. Greer (Ed.), Proceedings of the 7th World Conference on Ar-
tificial Intelligence in Education (AI-ED) (p. 234-241). Charlottesville, VA
(USA): AACE.

Hoppe, H. U. (2001). Collaborative mind tools for the classroom: Strategies for
pedagogical innovation. Keynote address. In Proceedings of the 9th Inter-
national Conference on Computers in Education (ICCE). (Presentation
slides available at http://www.collide.info/Projects/seed/Icce2001_
presentation/index.htm. Last visited April 12, 2005.)

Hoppe, H. U. (2002). Computers in the classroom - a disappearing phenomenon?
In A. Dimitracopoulou (Ed.), Proceedings of the 3rd Hellenic Conference with
International Participation on Information and Communication Technologies
in Education (HICTE) (p. 19-30). Rhodes, Greece: KASTANIOTIS Editions
- Inter@ctive.

Hoppe, H. U. (2004). Collaborative mind tools. In M. Tokoro & L. Steels (Eds.), A
learning zone of one’s own - sharing representations and flow in collaborative
learning environments (p. 223-234). Amsterdam, The Netherlands: IOS Press.

Hoppe, H. U. (2005). Educational information technologies and collaborative learn-
ing - anything new? In H. U. Hoppe, A. Soller, & H. Ogata (Eds.), New
technologies for collaborative learning (to appear).

REFERENCES 219

Hoppe, H. U., Gaßner, K., Mühlenbrock, M., & Tewissen, F. (2000). Distributed
visual language environments for cooperation and learning: Applications and
intelligent support. Group Decision and Negotiation, 9 (3), 205-220.

Hoppe, H. U., & R-Plötzner. (1999). Can analytic models support learning in
groups? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and com-
putational approaches (p. 147-168). Amsterdam, The Netherlands: Pergamon.

Hübscher-Younger, T., & Narayanan, N. H. (2003). Designing for divergence.
In B. Wasson, S. Ludvigsen, & H. U. Hoppe (Eds.), Designing for Change
in Networked Learning Environments: Proceedings of the 5th International
Conference on Computer Support for Collaborative Learning (CSCL) (p. 461-
470). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Hylands, C., Lee, E. A., Liu, J., Liu, X., Neuendorffer, S., Xiong, Y., Zhao, Y., &
Zheng, H. (2003). Overview of the Ptolemy project. technical memorandum
UCB/ERL M03/25 (Tech. Rep.). University of California at Berkeley (CA),
USA.

Ikeda, M., Go, S., & Mizoguchi, R. (1997). Opportunistic group formation. In
B. du Bulay & R. Mizoguchi (Eds.), Knowledge and Media in Learning Sys-
tems: Proceedings of the 8th International Conference on Artificial Intelli-
gence in Education (AI-ED) (p. 167-174). Amsterdam, The Netherlands:
IOS Press.

Jackson, S. L., Stratford, S. J., Krajcik, J. S., & Soloway, E. (1996). Making dy-
namic modeling accessible to pre-college science students. Interactive Learning
Environments, 4 (3), 233-257.

Jansen, M. (2003). MatchMaker TNG - a framework to support collaborative
java applications. In H. U. Hoppe, F. Verdejo, & J. Kay (Eds.), Shaping the
Future of Learning through Intelligent Technologies: Proceedings of the 11th
International Conference on Artificial Intelligence in Education (AI-ED) (p.
529-530). Amsterdam, The Netherlands: IOS Press.

Jansen, M., Oelinger, M., Hoeksema, K., & Hoppe, H. U. (2004). Exploring the
use of mobile devices to facilitate educational interoperability around digitally
enhanced experiments. In J. Roschelle, T.-W. Chan, Kinshuk, & S. J. H. Yang
(Eds.), Proceedings of the 2nd IEEE International Workshop on Wireless and
Mobile Technologies in Education (WMTE) (p. 83-90). Los Alamitos, CA
(USA): IEEE Press.

Jansen, M., Pinkwart, N., & Tewissen, F. (2001). MatchMaker - Flexible Synchroni-
sation von Java-Anwendungen (MatchMaker - flexible synchronization of Java
applications). In R. Klinkenberg, S. Rüping, A. Fick, N. Henze, C. Herzog,
R. Molitor, & O. Schröder (Eds.), Forschungsbericht 763: Tagungsband der
GI-Workshopwoche ”Lernen-Lehren-Wissen-Adaptivität” (p. 180-186). Dort-
mund, Germany: University of Dortmund.

Java Foundation Classes Homepage. (n.d.). Last visited april 12, 2005, at http:
//java.sun.com/products/jfc.

Java Imaging and Graphics Library. (n.d.). Last visited april 12, 2005, at http:
//rivit.cs.byu.edu/jigl/.

Java Open Source Graph Visualization Component Suite. (n.d.). Last visited april
12, 2005, at http://www.jgraph.com.

220 REFERENCES

Java Shared Data Toolkit Homepage. (n.d.). Last visited april 12, 2005, at https:
//jsdt.dev.java.net/.

Jensen, N., Seipel, S., Nejdl, W., & Olbrich, S. (2003). CoVASE: Collabora-
tive visualization for constructivist learning. In B. Wasson, S. Ludvigsen, &
H. U. Hoppe (Eds.), Designing for Change in Networked Learning Environ-
ments: Proceedings of the 5th International Conference on Computer Support
for Collaborative Learning (CSCL) (p. 249-253). Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Jermann, P., Soller, A., & Mühlenbrock, M. (2001). From mirroring to guiding:
A review on state of the art technology for supporting collaborative learning.
In P. Dillenbourg, A. Eurelings, & K. Hakkarainen (Eds.), Proceedings of the
European Conference on Computer-Supported Collaborative Learning (Euro-
CSCL) (p. 324-331). Maastricht, The Netherlands: McLuhan Institute.

Johnson, D. W., & Johnson, R. T. (1990). Co-operative learning and achievement.
In S. Sharan (Ed.), Co-operative learning: Theory and research (p. 23-37).
New York, NY (USA): Praeger.

Jonassen, D. H. (2000). Computers as mindtools for schools. Upper Saddle River,
NJ (USA): Prentice Hall.

Jonassen, D. H., Peck, K. L., & Wilson, B. G. (1999). Learning with technology: A
constructivist perspective. Columbus, OH (USA): Prentice Hall.

Joolingen, W. R. van. (2000). Designing for collaborative discovery learning. In
G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Lecture Notes in Computer
Science: Proceedings of the 5th International Conference on Intelligent Tu-
toring Systems (ITS) (p. 202-211). Berlin, Germany: Springer.

Joolingen, W. R. van, King, S., & Jong, T. de. (1997). The simquest author-
ing system for simulation-based discovery environments. In B. du Bulay &
R. Mizoguchi (Eds.), Knowledge and media in learning spaces (p. 79-87). Am-
sterdam, The Netherlands: IOS Press.

Joolingen, W. R. van, & Löhner, S. (2001). Representations in collaborative
modeling tasks. In Proceedings of the workshop on ”External represen-
tations in AIED: Multiple forms and multiple roles” at the 10th Interna-
tional Conference on Artificial Intelligence in Education (AI-ED). (Re-
trieved April 12, 2005, from http://www.psychology.nottingham.ac.uk/
research/credit/AIED-ER/vanjooli%ngen.pdf)

JUNG manual. (n.d.). Retrieved april 12, 2005, at http://jung.sourceforge.
net/doc/manual.html.

Kaul, M. (1982). Parsing of graphs in linear time. In H. Ehrig, M. Nagl, &
G. Rozenberg (Eds.), Lecture Notes in Computer Science: Proceedings of the
2nd International Workshop on Graph Grammars and their Application in
Computer Science (p. 206-218). Berlin, Germany: Springer.

Kay, A., & Goldberg, A. (1977/2001). Personal dynamic media. In R. Packer &
K. Jordan (Eds.), multimedia - from wagner to virtual reality (p. 167-178).
London, England: W.W. Norton & Company.

Koedinger, K. R., Suthers, D. D., & Forbus, K. D. (1999). Component-based
construction of a science learning space. International Journal of Artificial
Intelligence in Education, 10, 292-313.

REFERENCES 221

Koschmann, T. (2002). Dewey’s contribution to the foundations of CSCL research.
In G. Stahl (Ed.), Foundations for a CSCL Community: Proceedings of the
4th International Conference on Computer Support for Collaborative Learning
(CSCL) (p. 17-22). Hillsdale, NJ (USA): Lawrence Erlbaum.

Kuan, C. L., Lee, C. S., & Ho, C. K. (2003). Agent-assisted collaborative concept
map. In V. Devedzic, J. M. Spector, D. G. Sampson, & Kinshuk (Eds.),
Proceedings of the 3rd IEEE International Conference on Advanced Learning
Technologies (ICALT) (p. 282-283). Los Alamitos, CA (USA): IEEE Press.

Kuhn, M., Hoppe, U., Lingnau, A., & Fendrich, M. (2004). Evaluation of ex-
ploratory approaches in learning probability based on computational mod-
elling and simulation. In P. Isaias, Kinshuk, & D. G. Sampson (Eds.), Pro-
ceedings of the IADIS conference of Cognition and Exploratory Learning in
Digital Age (CELDA) (p. 83-90). Lisbon, Portugal: IADIS Press.

Kuhn, M., Jansen, M., Harrer, A., & Hoppe, H. U. (2005). A lightweight approach
for flexible group management in the classroom. In T. Koschmann, D. Suthers,
& T.-W. Chan (Eds.), Computer Supported Collaborative Learning 2005 - The
Next 10 Years! Proceedings of the 6th International Conference on Computer
Support for Collaborative Learning (CSCL) (p. 353-357). Mahwah (NJ), USA:
Lawrence Erlbaum Associates.

Kurtz dos Santos, A. D. C., & Ogborn, J. (1994). Sixth form student’s ability to
engage in computational modelling. Journal of Computer Assisted Learning,
10 (3), 182-200.

Kynigos, C. (2002). Generating cultures for mathematical microworld develop-
ment in a multi-organizational context. Journal of Educational Computing
Research, 1+2, 183-209.

Lara, J. de, & Vangheluwe, H. (2004). Defining visual notations and their manipu-
lations through meta-modeling and graph transformation. Journal of Visual
Languages and Computing, 15, 309-330.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science, 11, 65-99.

Lauer, M., Ueberall, M., Horvath, O., Matthes, M., & Drobnik, O. (2003). CLE: A
collaborative learning environment. In B. Wasson, R. Baggetun, H. U. Hoppe,
& S. Ludvigsen (Eds.), Community Events: Communication and Interaction.
Proceedings of the 5th International Conference on Computer Support for Col-
laborative Learning (CSCL) (p. 120-122). Bergen, Norway: Intermedia.

Law, N., & Tam, E. (1998). WORLDMAKER (HK) - an iconic modelling tool
for children to explore complex behaviour. In T. W. Chan, A. Collins, &
J. Lin (Eds.), Global Education on the Net: Proceedings of the 6th Interna-
tional Conference on Computers in Education (ICCE) (p. 466-472). Berlin,
Germany: Springer.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., & Volgyesi, P. (2001). The generic model-
ing environment. In Proceedings of the IEEE International Workshop on
Intelligent Signal Processing (WISP). (Retrieved April 12, 2005, from
http://www.isis.vanderbilt.edu/Projects/gme/GME2000Overview.pdf)

Lego Mindstorms Homepage. (n.d.). Last visited april 12, 2005, at http:
//mindstorms.lego.com.

222 REFERENCES

Lenard, M. L. (1993). A prototype implementation of a model management system
for discrete-event simulation models. In G. W. Evans, M. Mollaghasemi, E. C.
Russell, & W. E. Biles (Eds.), Proceedings of the 25th conference on Winter
simulation (p. 560 - 568). New York, NY (USA): ACM Press.

Liebold, R., & Trinczek, R. (2002). Experteninterview (expert interview). In
S. Kühn & P. Strodtholz (Eds.), Methoden der Organisationsforschung (p.
33-70). Reinbeck, Germany: Rowohlt Taschenbuch Verlag.

Ligozat, G. (1998). Reasoning about cardinal directions. Journal of Visual Lan-
guages and Computing, 9 (1), 23-44.

Linden, J. L. v. d., Erkens, G., Schmidt, H., & Renshaw, P. (2000). Collaborative
learning. In P. R. J. Simons, J. L. van der Linden, & T. M. Duffy (Eds.),
New learning (p. 37-55). Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Lingnau, A., Kuhn, M., Harrer, A., Hofmann, D., Fendrich, M., & Hoppe, H. U.
(2003). Enriching traditional classroom scenarios by seamless integration of
interactive media. In V. Devedzic, J. M. Spector, D. G. Sampson, & Kinshuk
(Eds.), Proceedings of the 3rd IEEE International Conference on Advanced
Learning Technologies (ICALT) (p. 135-139). Los Alamitos, CA (USA): IEEE
Press.

Littleton, K., & Häkkinen, P. (1999). Learning together: Understanding the process
of computer-based collaborative learning. In P. Dillenbourg (Ed.), Collabo-
rative learning: Cognitive and computational approaches (p. 20-30). Amster-
dam, The Netherlands: Pergamon.

Löhner, S., Joolingen, W. R. van, & Savelsbergh, E. R. (2003). The effect of exter-
nal representation on constructing computer models of complex phenomena.
Instructional Science, 31, 395-418.

Luchini, K., Quintana, C., & Soloway, E. (2003). Pocket PiCoMap: a case study
in designing and assessing a handheld concept mapping tool for learners. In
G. Cockton & P. Korhonen (Eds.), Proceedings of the conference on Human
Factors in Computing Systems (p. 321-328). New York (NY), USA: ACM
Press.

MacLean, A., Young, R. M., Bellotti, V., & Moran, T. (1991). Questions, options,
and criteria: elements of design space analysis. Human-Computer-Interaction,
6 (3&4), 201-250.

Margaritis, M., Fidas, C., Avouris, N., & Komis, V. (2003). A peer-to-peer ar-
chitecture for synchronous collaboration over low-bandwidth networks. In
K. Margaritis & I. Pitas (Eds.), Proceedings of the 9th Panhellenic Confer-
ence in Informatics (p. 231-242). (Retrieved April 12, 2005, from http:
//www.ee.upatras.gr/hci/papers/C74_Margaritis_etal_EPY9_v03.pdf)

Marriott, K., & Meyer, B. (1998). The CCMG visual language hierarchy. In
K. Marriott & B. Meyer (Eds.), Visual language theory (p. 129-169). Berlin,
Germany: Springer.

Marriott, K., Meyer, B., & Wittenburg, K. B. (1998). A survey of visual language
specification and recognition. In K. Marriott & B. Meyer (Eds.), Visual lan-
guage theory (p. 5-85). Berlin, Germany: Springer.

REFERENCES 223

McBrien, P., & Poulovassilis, A. (1999). A uniform approach to inter-model trans-
formations. In M. Jarke & A. Oberweis (Eds.), Lecture Notes in Computer Sci-
ence: Proceedings of the 11th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE) (p. 333-348). Berlin, Germany: Springer.

McLaren, B., Bollen, L., Walker, E., Harrer, A., & Sewall, J. (2005). Cognitive
tutoring of collaboration: Developmental and empirical steps towards realiza-
tion. In T. Koschmann, D. Suthers, & T.-W. Chan (Eds.), Computer Sup-
ported Collaborative Learning 2005 - The Next 10 Years! Proceedings of the
6th International Conference on Computer Support for Collaborative Learning
(CSCL) (p. 418-422). Mahwah (NJ), USA: Lawrence Erlbaum Associates.

Merton, R. K., & Kendall, P. L. (1946). The focused interview. American Jounal
of Sociology, 51, 541-557.

Meta-Object Facility Specification. (n.d.). Retrieved august 21, 2004, at http:
//www.omg.org/cwm.

Metacase technology whitepaper: Domain-specific modeling - 10 times faster than
UML. (n.d.). Retrieved april 12, 2005, at http://www.metacase.com/
papers/Domain-specific_modeling_10X_faster_than%_UML.pdf.

Meyer, B. (1994). Visuelle logische Sprachen zur Behandlung räumlicher Informa-
tion (Visual logic languages for spatial information handling). Dissertation at
the FernUni Hagen, Germany.

Meyers Enzyklopädisches Lexikon (meyers encyclopedic lexicon). (1976).
Mannheim, Germany: Lexikonverlag Bibliographisches Institut.

Microsoft Office Homepage. (n.d.). Last visited april 12, 2005, at http://office.
microsoft.com/en-us/default.aspx.

Microsoft Windows Server: Making collaboration the engine of team productiv-
ity. (2004). Retrieved april 12, 2005, at http://www.microsoft.com/
windowsserver2003/techinfo/overview/WSSvision.%mspx.

Milrad, M., Hoppe, H. U., Gottdenker, J., & Jansen, M. (2004). Exploring the
use of mobile devices to facilitate educational interoperability around digitally
enhanced experiments. In J. Roschelle, T.-W. Chan, Kinshuk, & S. J. H. Yang
(Eds.), Proceedings of the 2nd IEEE International Workshop on Wireless and
Mobile Technologies in Education (WMTE) (p. 182-186). Los Alamitos, CA
(USA): IEEE Press.

Milrad, M., Spector, J. M., & Davidsen, P. I. (2002). Model facilitated learning.
In S. Naidu (Ed.), Learning and teaching with technology: Principles and
practices (p. 13-27). London, England: Kogan Page Publishers.

ModelIt Homepage. (n.d.). Last visited april 12, 2005, at http://www.goknow.com/
Products/Model-It.

ModellingSpace project homepage. (n.d.). Last visited march 7, 2005, at http:
//www.modellingspace.net.

Morteo, G. L., & Mariscal, G. L. (2003). An electronic ludic learning environment
for mathematics based on learning objects. In D. Lassner & C. McNaught
(Eds.), Proceedings of the World Conference on Educational Multimedia, Hy-
permedia and Telecommunications (ED-MEDIA) (p. 849-852). Norfolk, VA
(USA): AACE.

224 REFERENCES

Mühlenbrock, M. (2001). Action-based collaboration analysis for group learning.
Amsterdam, The Netherlands: IOS Press.

Mühlenbrock, M., Tewissen, F., & Hoppe, H. U. (1997). A framework system for
intelligent support in open distributed learning environments. In B. du Bulay
& R. Mizoguchi (Eds.), Knowledge and Media in Learning Systems: Proceed-
ings of the 8th International Conference on Artificial Intelligence in Education
(AI-ED) (p. 191-198). Amsterdam, The Netherlands: IOS Press.

Mwakitalima, R. (2003). Asserting integrity in synchronous communication archi-
tectures. Unpublished master’s thesis, University of Duisburg-Essen.

NetMeeting Resource Kit. (n.d.). Last visited april 12, 2005, at
http://www.microsoft.com/technet/prodtechnol/netmting/reskit/
netmtg3/de%fault.mspx.

Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, England:
Cambridge University Press.

OpenJGraph Homepage. (n.d.). Last visited april 12, 2005, at http://openjgraph.
sourceforge.net.

Or-Bach, R. (2003). Design consideration for supporting collaborative modeling. In
V. Devedzic, J. M. Spector, D. G. Sampson, & Kinshuk (Eds.), Proceedings
of the 3rd IEEE International Conference on Advanced Learning Technologies
(ICALT) (p. 219-223). Los Alamitos, CA (USA): IEEE Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New
York, NY (USA): Basic Books.

Perkins, D. (1991). Technology meets constructivism: Do they make a marriage?
Educational Technology, 31 (5), 18-23.

Petri, C. A. (1962). Kommunikation mit Automaten (communication with au-
tomata). Bonn, Germany: Schriften des Rheinisch-Westfälischen Instituts für
Instrumentelle Mathematik.

Pinkwart, N. (2003). A plug-in architecture for graph based collaborative mod-
eling systems. In H. U. Hoppe, F. Verdejo, & J. Kay (Eds.), Shaping the
Future of Learning through Intelligent Technologies: Proceedings of the 11th
International Conference on Artificial Intelligence in Education (AI-ED) (p.
535-536). Amsterdam, The Netherlands: IOS Press.

Pinkwart, N., Hoppe, H. U., Bollen, L., & Fuhlrott, E. (2002). Group-oriented
modelling tools with heterogeneous semantics. In S. A. Cerri, G. Gouardères,
& F. Paraguaçu (Eds.), Lecture Notes in Computer Science: Proceedings of
the 6th International Conference on Intelligent Tutoring Systems (ITS) (p.
21-30). Berlin, Germany: Springer.

Pinkwart, N., Hoppe, H. U., & Gaßner, K. (2001). Integration of domain-specific
elements into visual language based collaborative environments. In M. R. S.
Borges, J. M. Haake, & H. U. Hoppe (Eds.), Proceedings of the 7th Interna-
tional Workshop on Groupware (CRIWG) (p. 142-147). Los Alamitos, CA
(USA): IEEE Press.

Pinkwart, N., Jansen, M., Oelinger, M., Korchounova, L., & Hoppe, U. (2004).
Partial generation of contextualized metadata in a collaborative modeling en-
vironment. In L. Aroyo & C. Tasso (Eds.), Workshop proceedings of the 3rd
International Conference on Adaptive Hypermedia (AH) (p. 372-376). Eind-
hoven, The Netherlands: Technische Universiteit Eindhoven.

REFERENCES 225

Ptolemy project homepage. (n.d.). Last visited april 12, 2005, at http://ptolemy.
berkeley.edu.

Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and
connection. In B. Swartout & B. Nebel (Eds.), Proceedings of the 3rd Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(p. 165-176). Los Altos, CA (USA): Morgan Kaufmann.

Read, T., Verdejo, F., & Barros, B. (2003). Incorporating interoperability into a
distributed elearning system. In D. Lassner & C. McNaught (Eds.), Proceed-
ings of the World Conference on Educational Multimedia, Hypermedia and
Telecommunications (ED-MEDIA) (p. 273-282). Norfolk, VA (USA): AACE.

Rekers, J., & Schürr, A. (1997). Defining and parsing visual languages with layered
graph grammars. Journal of Visual Languages and Computing, 8, 27-55.

Repenning, A. (1994). Programming substrates to create interactive learning envi-
ronments. Journal of Interactive Learning Environments, 4 (1), 45-74.

Roschelle, J., DiGiano, C., & Chung, M. (2000). Reusability and interoperabil-
ity of tools for mathematics learning: Lessons from the ESCOT project. In
F. Haghdy & F. Kurfess (Eds.), Proceedings of the International Congress
on Intelligent Systems and Applications (p. 664-669). Wetaskiwin, Canada:
ICSC Academic Press.

Roschelle, J., DiGiano, C., Repenning, A., Phillips, J., Jackiw, N., & Suthers, D.
(1999). Developing educational software components. Computer, 32 (9), 50-58.

Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in
collaborative problem solving. In C. O’Malley (Ed.), Computer supported
collaborative learning (p. 69-96). Berlin, Germany: Springer.

Savage, T., Sanchez, I. A., O’Donnel, F., & Tangney, B. (2003). Using robotic tech-
nology as a constructivist mindtool in knowledge construction. Los Alamitos,
CA (USA): IEEE Press.

Schümmer, J., & Schuckmann, C. (2001). Synchrone Softwarearchitekturen (syn-
chronous software architectures). In G. Schwabe, N. Streitz, & R. Unland
(Eds.), CSCW-Kompendium (p. 297-309). Berlin, Germany: Springer.

Schunk, D. H. (1991). Learning theories: An educational perspective. New York,
NY (USA): Macmillan Publishing Company.

SEED project homepage. (n.d.). Last visited april 12, 2005, at http://ilios.cti.
gr/seed.

Senge, P. M. (1990). The fifth discipline: The art and practice of the learning
organization. New York, NY (USA): Doubleday Books.

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just
one. Educational Researcher, 27 (2), 4-13.

Shneiderman, B. (1983). Direct manipulation. a step beyond programming lan-
guages. IEEE Transactions on Computers, 16 (8), 57-69.

Sierhuis, M. (2001). Modeling and simulating work practice. BRAHMS: a multia-
gent modeling and simulation language for work system analysis and design.
Amsterdam, The Netherlands: SIKS Dissertation Series.

226 REFERENCES

Sierhuis, M., & Selvin, A. M. (1996). Towards a framework for collabora-
tive modeling and simulation (Position paper for workshop on strategies for
collaborative modeling and simulation). In M. S. Ackerman (Ed.), Pro-
ceedings of the 5th ACM Conference on Computer Supported Cooperative
Work (CSCW) (p. 2). New York, NY (USA): ACM Press. (Retrieved
April 12, 2005, from http://www.compendiuminstitute.org/compendium/
papers/SierhuisSelvin-CSC%W-1996.PDF)

Silander, P., Sutinen, E., & Tarhio, J. (2004). Mobile collaborative concept map-
ping - combining classroom activity with simultaneous field exploration. In
J. Roschelle, T.-W. Chan, Kinshuk, & S. J. H. Yang (Eds.), Proceedings of
the 2nd IEEE International Workshop on Wireless and Mobile Technologies
in Education (WMTE) (p. 114-118). Los Alamitos, CA (USA): IEEE Press.

Skarmeta, A. F. G., Joolingen, W. R. van, Martinez, E., Celdrán, M., & Mora, M.
(2002). Co-lab basic architecture (Co-Lab project deliverable). Retrieved April
12, 2005, at http://colab.edte.utwente.nl/documents/d4.pdf.

Skiena, S. (1990). Implementing discrete mathematics. Reading, MA (USA):
Addison-Wesley.

Skinner, B. F. (1974). About behaviourism. London, England: Jonathan Cape Ltd.

Soller, A., & Lesgold, A. (2003). A computational approach to analyzing online
knowledge sharing interaction. In H. U. Hoppe, F. Verdejo, & J. Kay (Eds.),
Shaping the Future of Learning through Intelligent Technologies: Proceedings
of the 11th International Conference on Artificial Intelligence in Education
(AI-ED) (p. 253-260). Amsterdam, The Netherlands: IOS Press.

Soloway, E., Pryor, A. Z., Krajcik, J. S., Jackson, S., Stratford, S. J., Wisnudel,
M., & Klein, J. T. (1997). Scienceware’s Model-It: Technology to support
authentic science inquiry. T.H.E. Journal, 25 (3), 54-56.

Sprinkle, J., & Karsai, G. (2003). Model migration through visual modeling. In
J.-P. Tolvanen, J. Gray, & M. Rossi (Eds.), Computer Science and Infor-
mation Systems Reports TR-28: Proceedings of the 3rd OOPSLA Workshop
on Domain-Specific Modeling (p. 51-58). Jyväskylä, Finland: University of
Jyväskylä Printing House.

Steen, M. van, Homburg, P., & Tanenbaum, A. (1999). GLOBE: A wide-area
distributed system. IEEE Concurrency, 7 (1), 70-78.

Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., & Suchman, L.
(1987). Beyond the chalkboard: Computer support for collaboration and
problem solving in meetings. Communications of the ACM, 30 (1), 32-47.

Sun, C., & Ellis, C. (1989). Operational transformation in real-time group editors:
Issues, algorithms, and achievements. In S. Poltrock & J. Grudin (Eds.),
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW) (p. 58-68). New York (NY), USA: ACM Press.

Suppes, P., & Macken, E. (1978). The historical path from research and development
to operational use of CAI. Educational Technology, 18 (4), 9-12.

Suthers, D. D. (1999a). Effects of alternate representations of evidential relations on
collaborative learning discourse. In C. Hoadley & J. Roschelle (Eds.), Proceed-
ings of the 3rd International Conference on Computer Support for Collabora-
tive Learning (CSCL) (p. 611-620). Mahwah, NJ (USA): Lawrence Erlbaum.

REFERENCES 227

Suthers, D. D. (1999b). Representational bias as guidance for learning interactions:
A research agenda. In S. P. Lajoie & M. Vivet (Eds.), Frontiers in Artificial
Intelligence and Applications: Proceedings of the 9th World Conference on
Artificial Intelligence in Education (AI-ED) (p. 611-620). Amsterdam, The
Netherlands: IOS Press.

Suthers, D. D. (2001). Architectures for computer supported collaborative learning.
In J. R. Hartley, T. Okamoto, Kinshuk, & J. P. Klus (Eds.), Proceedings of
the 2nd IEEE International Conference on Advanced Learning Technologies
(ICALT) (p. 25-28). Los Alamitos, CA (USA): IEEE Press.

Suthers, D. D., Connelly, J., Lesgold, A., Paolucci, M., Toth, E., Toth, J., & Weiner,
A. (2001). Representational and advisory guidance for students learning
scientific inquiry. In D. Forbus & P. Feltovich (Eds.), Smart machines in
education (p. 7-35). Menlo Park, CA (USA): AAAI Press.

Suthers, D. D., & Dwyer, N. (2004). personal communication.

Suthers, D. D., & Hundhausen, C. D. (2003). An experimental study of the effects
of representational guidance on collaborative learning processes. Journal of
the Learning Sciences, 12 (2), 183-219.

Suthers, D. D., Toth, E. E., & Weiner, A. (1997). An integrated approach to im-
plementing collaborative inquiry in the classroom. In R. Hall, N. Miyake, &
N. Enyedy (Eds.), Proceedings of the 2nd International Conference on Com-
puter Support for Collaborative Learning (CSCL) (p. 272-279). Mahwah, NJ
(USA): Lawrence Erlbaum.

Suthers, D. D., Weiner, A., Connelly, J., & Paolucci, M. (1995). Belvedere: En-
gaging students in critical discussion of science and public policy issues. In
J. Greer (Ed.), Proceedings of the 7th World Conference on Artificial In-
telligence in Education (AI-ED) (p. 266-273). Charlottesville (VA), USA:
Association for the Advancement of Computing in Education.

Suzuki, H., & Funaoi, H. (2002). Community incubator: Supporting construction
of online learners’ community through visualization. In Kinshuk, R. Lewis,
K. Akahori, R. Kemp, T. Okamoto, L. Henderson, & C. H. Lee (Eds.), Proceed-
ings of the 10th International Conference on Computers in Education (ICCE)
(p. 399-403). Los Alamitos, CA (USA): IEEE Press.

Synergo homepage. (n.d.). Last visited april 12, 2005, at http://www.synergo.gr.

Sztipanovits, J., Karsai, G., Biegl, C., Bapty, T., Ledeczi, A., & Misra, A. (1995).
Multigraph: an architecture for model-integrated computing. In Proceedings
of the 1st International Conference on Engineering of Complex Computer Sys-
tems (p. 361-368). Washington (DC), USA: IEEE Computer Society.

Tanenbaum, A. S., & Steen, M. van. (2002). Distributed systems: Principles and
paradigms. Upper Saddle River, NJ (USA): Prentice Hall.

Tewissen, F., Baloian, N., Hoppe, H. U., & Reimberg, E. (2000). ”MatchMaker”
synchronizing objects in replicated software-architectures. In C. Salgado
(Ed.), Proceedings of the 6th International Workshop on Groupware (CRIWG)
(p. 60-67). Washington (DC), USA: IEEE Computer Society.

Tiller, M. (2001). Introduction to physical modeling with Modelica. Dordrecht, The
Netherlands:: Kluwer Academic Publishers.

228 REFERENCES

Tolvanen, J.-P., & Kelly, S. (2004). Domänenspezifische Modellierung (Domain
specific modeling). Objektspektrum, 4, 30-34.

TouchGraph Homepage. (n.d.). Last visited april 12, 2005, at http://www.
touchgraph.com.

Tsintsifas, A. (2002). A framework for the computer based assessment of diagram
based coursework. Retrieved April 12, 2005, at http://www.cs.nott.ac.uk/
~azt/papers/azt-phd.pdf. (Dissertation at the University of Nottingham,
England)

Veerman, A. L., & Treasure-Jones, T. (1999). Software for problem solving through
collaborative argumentation. In P. Coirier & J. Andriessen (Eds.), Founda-
tions of argumentative text processing (p. 203-229). Amsterdam, The Nether-
lands: Amsterdam University Press.

Wang, D., & Zeevat, H. (1998). A syntax-directed approach to picture semantics. In
K. Marriott & B. Meyer (Eds.), Visual language theory (p. 307-323). Berlin,
Germany: Springer.

Wang, J., & Liu, M. (2003). A formal model integration. In J.-P. Tolvanen, J. Gray,
& M. Rossi (Eds.), Computer Science and Information Systems Reports TR-
28: Proceedings of the 3rd OOPSLA Workshop on Domain-Specific Modeling
(p. 35-42). Jyväskylä, Finland: University of Jyväskylä Printing House.

Wang, S., Wang, W., & Huang, Q.-M. (2002). Using computers as mindtools to
learn time concept in elementary school. In Kinshuk, R. Lewis, K. Akahori,
R. Kemp, T. Okamoto, L. Henderson, & C. H. Lee (Eds.), Proceedings of
the 10th International Conference on Computers in Education (ICCE) (p.
808-812). Los Alamitos, CA (USA): IEEE Press.

Wang, S. P., Yeo, G. K., & Poh, K. L. (1998). An object oriented modelling
integration framwork in distribution systems. In J. Gu (Ed.), Proceedings of
the 3rd International Conference on Systems Science and Systems Engineering
(ICSSSE) (p. 75-80). Beijing, China: Scientific and Technical Documents
Publishing House.

Wang, W., Haake, J. M., Rubart, J., & Tietze, D. A. (2000). Hypermedia-based
support for cooperative learning of process knowledge. Journal of Network
and Computer Applications, 23, 357-379.

Weasenforth, D., Biesenbach-Lucas, S., & Meloni, C. (2002). Realizing construc-
tivist objectives through collaborative technologies: Threaded discussions.
Language Learning & Technology, 6 (3), 55-86.

Wild, M. (1996). Mental models and computer modelling. Journal of Computer
Assisted Learning, 12 (1), 10-21.

Wilson, B. G. (1996). Constructivist learning environments: Case studies in in-
structional design. Englewood Cliffs, NJ (USA): Educational Technology Pub-
lications.

Wilson, R. (2002). Four colors suffice. Princeton, NJ (USA): Princeton University
Press.

Winter, A., Kullbach, B., & Riediger, V. (2002). An overview of the GXL graph
exchange language. In S. Diehl (Ed.), Software visualization: International
seminar, dagstuhl castle, germany, may 20-25, 2001. revised papers. (p. 324-
336). Berlin, Germany: Springer.

REFERENCES 229

Wissenskommunikation project homepage. (n.d.). Last visited april 12, 2005, at
http://www.wissenskommunikation.de.

Wittenburg, K. B., & Weitzmann, L. M. (1998). Relational grammars: Therory and
practice in a visual language interface for process modeling. In K. Marriott
& B. Meyer (Eds.), Visual language theory (p. 193-217). Berlin, Germany:
Springer.

Zhang, J. (1997). The nature of external representations in problem solving. Cog-
nitive Science, 21 (2), 179-217.

Zumbach, J., Mühlenbrock, M., Jansen, M., Reimann, P., & Hoppe, H. U. (2002).
Multi-dimensional tracking in virtual learning teams. an exploratory study.
In G. Stahl (Ed.), Foundations for a CSCL Community: Proceedings of the
4th International Conference on Computer Support for Collaborative Learning
(CSCL) (p. 650-651). Hillsdale, NJ (USA): Lawrence Erlbaum.

