
Communication-free Detection of Resource
Conflicts in Multi-Agent-based Cyber-Physical

Systems
Nguyen-Thinh Le∗, Lukas Märtin†, Christopher Mumme∗, Niels Pinkwart∗

∗Department of Informatics
Clausthal University of Technology, Germany

Email: {nguyen-thinh.le, christopher.mumme, niels.pinkwart}@tu-clausthal.de
†Institute for Programming and Reactive Systems

TU Braunschweig, Germany
Email: l.maertin@tu-bs.de

Abstract—Multi-agent approaches can be applied to model
behaviour and relations of entities in cyber-physical systems.
Here entities frequently compete on insufficient resources (e.g.,
hardware) at the same time. Hence, resource conflicts between
several agents are one of the most important conflict types in
such multi-agent systems. These conflicts can significantly slow
the operation of a system down, or in the worst case, might lead
to a system halt. In this paper, we investigate the challenge of
efficiently detecting resource conflicts. For this purpose, we in-
troduce a conflict detection model based on beliefs of BDI agents.
One benefit of our approach is that conflicts are detected using
local belief state information of agents without communication.
For evaluation purposes we apply our conflict detection model
to a multi-agent system representing a transportation service
with moving robots on a fictitious airport to measure the rate
of collisions and completed transportation tasks. The evaluation
study showed that the system deploying the conflict detection
model can avoid collisions between moving agents and agents
execute tasks successfully.

conflict detection, resource conflicts, multi-agent systems,
BDI agents, cyber-physical systems

I. INTRODUCTION

In multi-agent systems, conflicts between agents on re-
sources are often unavoidable. This is due to the inherent char-
acteristics of cyber-physical systems that include heterogeneity
and autonomy of the entities on the one hand and insufficiency
of (hardware) resources available in the system on the other
hand. Resource conflicts represent one of typical conflicts in
such systems and occur when two or more autonomous agents
compete on the same resource at the same time. In this paper
we consider conflicts of this type.

In order to ensure reliable and effective operation of sys-
tems, potential conflicts between agents in an environment
need to be handled. A prior to conflict resolution, conflicts
need to be detected and analysed. Thus, an appropriate for-
malism for modeling and detecting conflicts is necessary.

This paper proposes a conflict model to detect potential
resource conflicts between agents and a mechanism of conflict
detection based on belief state information of Belief Desire
Intention (BDI) agents [9] in a multi-agent system. Our

conflict model assumes that agents cannot perceive the whole
environment at once, because the view range of each agent
is restricted. Hence, each agent has a unique local belief.
The model has been developed for agent environments which
have a predefined, fixed road grid without specific traffic rules,
supervision or global coordination.

The conflict model has been evaluated to test the following
hypothesis: A multi-agent system which deploys the resource
conflict model will execute given tasks more successful than
a system without it.

In Section II, we review briefly the notion conflict and
existing approaches for conflict modelling. Subsequently, in
Section III we propose our conflict model and describe its ap-
plication to detect conflicts within an environment of a multi-
agent system. Then, in Section IV, we present a case study
from the NTH Focused Research School for IT Ecosystems1:
a transportation service at an fictitious airport. In Section V,
the implementation of a multi-agent system which deploys
the proposed conflict model to the case study is described.
The conflict model is evaluated in Section VI. We discuss the
limitations and advantages of the model in Section VII. In the
last section, we summarize our conclusions and propose future
work.

II. RELATED WORK

To classify conflicts in multi-agent systems, several authors
distinguish between action, plan and goal conflicts [7], [8],
[10]. An action conflict arises on the level of individual
actions. For the execution of actions certain resources are
needed, which are unavailable in sufficient quantity or with
exclusive access. In this process, plans and goals do not stand
in conflict. A plan conflict arises if plans of multiple agents
contain action-related conflicts. When goals of agents lead to
plan conflicts, at least one conflicting goal exists. Hence, the
goals of a group of agents are not compatible and only one
goal is executable.

1http://www.it-ecosystems.org

978-1-4673-1703-0/12/$31.00 ©2013 IEEE

Furthermore, conflicts in multi-agent systems can be catego-
rized into physical and epistemic conflicts. Physical conflicts
occur when agents’ interests are affected by insufficient re-
sources, which are not shareable at the same time (e.g., a road
element) [11]. Thus, physical conflicts can also be referred
to as resource conflicts. Epistemic conflicts, where agents’
have different interpretations of a context and their desires,
are called knowledge conflicts [7]. These conflicts results from
differences in locations, sensory systems, or general skills of
the agents (e.g., addictions).

Common approaches for detecting and solving conflicts
use communication to deal with sharing knowledge between
agents. In this way, identical information of belief bases from
several agents are combined to a union of all individual
interpretations of the same context. The belief bases are
subsequently shared by agent-to-agent communication (n:m)
and the determination of a compromise is done by each agent
separately. Thangarajah et al. [12] sum up information about
resources of multiple agents to detect and avoid resource
conflicts. This resource summary process depends significantly
on communication structures. The authors in [1] exchange
intended goal structures (IGSs) to eliminate goal conflicts
between agents. Furthermore, they use pattern matching to
detect plan conflicts and conflicting conditions (contradicting
pre-/postconditions of oppositional actions). The integration of
divergent plans is done by plan integration through merging
individual E-PERT diagrams. The work of [5] is related to ac-
tual merging of several belief bases with integrity constraints.
The exchange of beliefs is also done by direct communication.
All of these approaches need communication in the phase of
conflict detection. Depending on the number of agents in a
system, efforts for communication and determination might
increase intensively.

Our approach for conflict detection, does not require com-
munication between agents. Instead, agents individually build
up the belief about their environment by perception. Hence, an
agent perceives all objects in its environment within its view
range and based on this belief information, the agent is able
to determine potential resource conflicts if other agents con-
stantly move towards the same resource. Thus, our approach
significantly reduces communication effort.

III. CONFLICT MODEL

To handle resource conflicts between multiple entities in
a multi-agent system, a formal computational conflict model
is required. Here, we assume that the environment, in which
agents execute their tasks, describes a 2-dimensional grid-
based world (x, y coordinates).

Let the environment be described by a triple of three finite
non-empty sets: 1) a set of agents α={A1, . . . , An} existing
in the environment, 2) a set of environment elements, and 3)
a set of resource types β={R1, . . . , Rn}, where elements of
an environment are defined formally as follows:

Definition 1 (Env. Element): Given an environment in
which agents move, an environment element E is a tuple
〈X,Y,R,C, αE , T 〉 where

scope(2)

2

1
H

scope(1)

H

Fig. 1. Scopes of Agents

• X and Y represent the coordinates of the element within
the environment,

• R ∈ β,
• C ∈N indicates the capacity of this environment element,
• αE ⊆ α are agents occupying this environment element,

and
• T is the time when this environment element is observed.
According to Definition 1, the occupation of an environment

element E at the observed time T is |αE |. Each agent is
capable to see its peers within its view range, therefore, we
define the scope of an agent formally as follows.

Definition 2 (Scope): A scope of an agent A is a set of
environment elements which A can see within its visibility
H: scope(A)={〈Xi, Yi, R, αE,i, T 〉| X − H ≤ Xi ≤ X +
H,Y −H ≤ Yi ≤ Y +H , 0 ≤ i ≤ (2H + 1)2, X and Y are
the coordinates of the agent A}.

We assume that the scope of agent A is a square whose
length is 2H+1, that is because the view range (horizon) can
be stretched to north/south (or west/east) including the agent’s
position. Thus, the length of scope(A) is (2H + 1)2. Fig. 1
shows two agents at a crossing with common horizon H = 2.

Each agent has a belief about the last, current, and next
possible position of other agents existing within its scope.

Definition 3 (Belief): The belief of an agent A about
other agents in its scope is defined by: belief(A) =
{〈Ai, lastX , lastY , currentX , currentY , nextX , nextY 〉|Ai ∈
αE , E ∈ scope(A)}, where lastX/Y , currentX/Y , and
nextX/Y are the last, current, and next positions of agent Ai.

The next position of each agent Ai within the scope of A
is calculated using information about the current and the last
position of that agent. The calculation of the next position
is based on the assumption that when an agent is moving,
then it is probable that this agent will move straight forward.
Let lastX(Ai) and currentX(Ai) be the last and the current
X coordinate of Ai, the difference between the last and the
current X coordinate of Ai is diffX (Ai) = lastX(Ai) −
currentX(Ai). As a result, the next X coordinate of Ai will
be nextX(Ai) = currentX(Ai) − diffX (Ai). Similarly, the
next Y coordinate of Ai can be determined. The next possible
position of Ai is composed of the next X and Y coordinates of

978-1-4673-1703-0/12/$31.00 ©2013 IEEE

Ai. Note that the horizon H of agent A must have a minimum
size of 2, because A needs to see both the last and the current
position of another agent within its scope.

To enable the calculation of next possible positions of other
agents within the scope of agent A, the belief of A about the
current and last positions of these agents needs to be updated
dynamically. For this purpose, A may use a collection to keep
trace of known agents, i.e, that have been once in the scope
of A. If an agent in this collection has changed its position,
its last and current position will be updated accordingly. Is an
agent Ai in the scope of A at the first time, then Ai will be
added to the collection of known agents and the last position
of Ai will become the current position (diffX (Ai) = 0).

Based on the belief about the next possible position of other
agents and the agent’s scope, an agent A is able to identify the
agents that will release/require an environment element which
is also required by A. Such a potential conflict for A is defined
formally as follows.

Definition 4 (Potential Conflict): Let A be an agent, its
current position is 〈X,Y 〉 and its next action is to require
an environment element E at position 〈nextX , nextY 〉 . Let
αE be the set of agents that are occupying E, αrelease,E

and αrequire,E be the set of agents (excluding A) that will
release/require E, respectively, A has a potential conflict, de-
noted as conflict(E, scope(A), αE , αrelease,E , αrequire,E),
iff |αE | − |αrelease,E | + |αrequire,E | + 1 > C, where C is
the capacity of E.

Since A also requires the environment element being ob-
served, the condition for checking potential conflicts must
include the value 1 on the left hand-side of the comparative
term: |αE | − |αrelease,E |+ |αrequire,E |+ 1 > C.

If the sets of agents which are (1) occupying, (2) releasing,
and (3) requiring an environment element being observed
can be determined, the potential conflict of consuming this
environment element is calculated by applying Definition 4.

IV. CASE STUDY: SMART AIRPORT

In order to illustrate the conflict model proposed in this
paper, we use an airport departure transportation scenario as
a representative for a cyber-physical system of moving robots
on a fixed grid. The airport consists of static objects (roads,
entrances, check-in counters, plane parking positions, and
charging stations) and moving objects (autonomous transporta-
tion vehicles (ATVs)). When there is a request of a passenger
to be transported, an agency will provide ATVs and manage
the passenger’s order. A transportation order consists of start
and end positions, pickup time, and a latest time for drop-
off. The start and end positions represent a route, e.g., from
an entrance to a check-in counter. Since ATVs need energy to
move, they are equipped with batteries which need to recharge
regularly at charging stations. In this scenario, typical resource
conflict situations are:

1) At least two ATVs are moving on a road element. One of
the ATVs needs the priority to occupy the road element
first. The insufficient resource is the road element.

2) Several ATVs are running out of energy and need to be
recharged, while the charging station might be occupied.
The resource required by ATVs is the charging station.

3) ATVs have to take passengers to unoccupied check-
in counters. The resource is a check-in counter. Here,
a check-in counter is manned by one or two staff
members, and thus has a maximal capacity of two units.

This application scenario of a cyber-physical system can
be described by a multi-agent system in which ATVs are
implemented as autonomous agents. To enrich agents with
intelligent behaviour, we choose a BDI architecture [4]. Agents
have a set of goals (Desires) which they pursue based on the
current world state (Belief). Furthermore, agents possess a
plan database from which they can select plans (Intentions)
that lead them to goals. A plan consists of a set of atomic
actions which are achieved simultaneously or successively. In
this scenario, an action is moving one road element further.

V. IMPLEMENTATION

Besides a simplified hardware realisation with NXT-robots,
we implemented the airport scenario using the JRep simulation
platform [3] for analysis proposes. JRep is an integration of
Repast Symphony and the JADE Framework. Repast provides
a tool kit for visual simulations of multi-agent systems. JADE
supports developing intelligent behaviours for agents and
provides communication protocols according to FIPA-ACL.
The capacity for each environment element in this simulation
platform can be parametrised. Since Repast supports thread-
based simulation, each simulation step underlies a time tick.
Here, one tick represents a movement and an agent may need
several ticks to perform a task (i.e., to move from a start
position to an end position). For each task, a shortest path
is calculated based on Dijkstra’s algorithm. Repast provides
an implementation library of this algorithm. There are cases
where no shortest path can be determined. For example, when
several agents are moving forward and encountering a queue
of agents moving in the opposite direction. Fig. 2 shows this
situation. Agents 2 and 3 are moving to the right while other
agents are moving in another direction. For agents 2, 3, and
4 no shortest path can be calculated because they are blocked
by agents 1 and 5. In this case, agents 2, 3, and 4 have to stay
on the same road field until they have a free way to move.

1 2 3 4 5

Fig. 2. No shortest path available

Another case is when two agents have two paths whose
distance is equal and the two paths have at least one destination
in common. Fig. 3 illustrates this problem. Agent1’s and
Agent2’s destination positions are F1 and F2, respectively (see
Fig. 3a). Agent1 and Agent2 have a conflict because they
have to move in the opposite direction (see Fig 3b). Then,
the direction, which leads to a conflict, is removed from the
agent’s map (marked as crosses) and two new shortest path

978-1-4673-1703-0/12/$31.00 ©2013 IEEE

9
ticks

Agent1 moves to F1; Agent2 moves to F2

(a) (b) (e) (d) (c)

8
ticks

20
ticks repeat

12
ticks

Fig. 3. No shortest path available

are calculated (see Fig. 3c). Again, these two routes lead to
a conflict and new two paths have to be generated (see Fig.
3d and Fig. 3e). As result, Agent1 and Agent2 move back
to the original positions (see Fig. 3a). Hence, the process of
detecting conflict and choosing a path is non-deterministic in
this case. To solve this problem, we propose to choose one of
the agents randomly and to delay the movement of this agent.
While an agent is delayed and renew its map (because on the
current map, all conflicting positions have been marked as not
moveable), another agent can move along its path.

Our framework uses a scheduler to iterates all agents to
perform three steps: scanning an environment to build up
belief, detecting conflicts, and moving. The simulation of a
conflict situation at a crossing in the grid is shown in Fig. 4.

Fig. 4. The simulation framework

VI. EVALUATION

The goal of the evaluation is to prove that the conflict
detection mechanism is beneficial for multi-agent systems. For
this purpose, we evaluate the hypothesis mentioned in Section

I: A multi-agent system which deploys the proposed conflict
model will execute given tasks more successful than a system
without it.

A. Design

To carry out the evaluation study, we use the simulation
framework described in the previous section. Since we in-
tended to provoke resource conflicts on roads, the capacity
of road elements is set with the value 1. The simulation
framework is used in two versions: one deployed the proposed
conflict model and another one did not. In the first version,
every time when an agent notices a resource conflict, it looks
for a new shortest path leading to the destination position
specified for its task. Using this version, all tasks assigned
to agents will be executed. However, agents will need a lot of
time to execute their tasks because they have to calculate a new
route whenever they encounter a potential resource conflict. In
the latter version, agents do not have the capability to detect
a resource conflict. Thus, they can move to an environment
element, i.e., consume a resource, without noticing whether
the capacity of that field allows it. In case the capacity of
an environment element is overloaded, the system kills every
agents occupying that environment element. That is, tasks
assigned to these agents can not be executed any more. The
evaluation will investigate how many tasks can be executed
successfully using the version without the resource conflict
detection and how much time agents need to execute all tasks.
For this purpose, the two system versions are parametrized
with 10, 20, and 30 agents in order to find out how the number
of agents impact on the behaviour of the whole system. For
each parametrization, the two versions are simulated five times
to determine time required to finish tasks in average, because
the tasks of agents (i.e., moving from a position to another one
in a smart airport) are created randomly for each simulation.

B. Results

TABLE I
WITH CONFLICT DETECTION: TIME (IN TICKS) REQUIRED TO COMPLETE

AGENTS’ TASKS

#Agents Test1 Test2 Test3 Test4 Test5 Avg.(s.d.)
10 37 96 93 39 55 64(28.7)
20 97 95 95 74 81 88.4(10.3)
30 155 146 129 154 213 159.4(31.7)

978-1-4673-1703-0/12/$31.00 ©2013 IEEE

TABLE II
WITHOUT CONFLICT DETECTION: TIME (IN TICKS) REQUIRED TO

COMPLETE AGENTS’ TASKS

#Agents Test1 Test2 Test3 Test4 Test5 Avg.(s.d.)
10 18 23 21 22 18 20.4(2.3)
20 19 25 21 27 24 23.2(3.2)
30 22 18 24 21 24 21.8(2.5)

Table I and Table II show statistical results of five simula-
tions using the framework version with and without conflict
detection, respectively. From the seventh column of these
tables, we can notice that using the version with conflict
detection, the time required to execute all tasks increases (from
64 to 159) with the number of simulated agents, while using
the version without conflict detection, the time required for
executing tasks remains constant (21 ticks in average) between
the variation of agents. This can be explained by the fact that
with more agents more resources conflicts have been detected,
and when a conflict is detected a new route for executing
a given task is created. Even on a new route, conflicts still
can happen. Using the version without conflict detection, no
resource conflicts can be detected, agents are killed when
conflicts occur.

From Table III we notice that the percentage of successfully
executed tasks decreases (72% to 43%) with an increasing
number of agents. In average, about 59% of assigned tasks can
be executed successfully using a simulation without conflict
detection. This result can confirm our hypothesis that deploy-
ing conflict detection more tasks are executed successfully (but
more time is required) than without using it. Note, with conflict
detection 100% of the tasks have been executed successfully.

TABLE III
WITHOUT CONFLICT DETECTION: SUCCESSFUL TASKS

#Agents Test1 Test2 Test3 Test4 Test5 Avg.(s.d.)
10 6 8 6 8 8 72%(1.1)
20 11 12 14 10 14 61%(1.8)
30 13 10 8 15 18 43%(4.0)

Exceptionally, Table I shows in the first row that the
standard deviation of time required to execute ten tasks of
ten agents is high. This is caused by the second and the third
simulation runs in which an agent had to create a new long
route after noticing a conflict. Fig. 5 illustrates this problem.
At Tick 13, Agent6 has noticed a conflict when trying to move
from position (8,5) to (8,4), at Tick 25 from position (3,7) to
(3,6), at Tick 29 from position (2,9) to (1,9), and at Tick 31
from position (3,9) to (4,9) (these directions are represented
as short arrows in the figure). As a result, this agent cannot
create a route which leads through these directions any more.
At Tick 50, Agent6 is occupying the environment element of
position (1,6) and wants to move from that position to (5,4).
Agent6 has to choose a long route between position (1,6) and
(5,4) (this route is indicated by the white line with arrows in
the figure), although the distance between these positions is
short.

Tick = 13.0: agent6 tried to move to (8, 4) and noticed Conflict
Tick = 13.0: agent6 new Route: Route from 8,5 to 5,4: 8,5
> 8,6 > 8,7 > 8,8 > 8,9 > 7,9 > 6,9 > 5,9 > 4,9 > 3,9
> 3,8 > 3,7 > 3,6 > 3,5 > 3,4 > 4,4 > 5,4 >

Tick = 25.0: agent6 tried to move to (3, 6) and noticed Conflict
Tick = 25.0: agent6 new Route: Route from 3,7 to 5,4: 3,7
> 3,8 > 3,9 > 2,9 > 1,9 > 1,8 > 1,7 > 1,6 > 1,5 > 1,4
> 2,4 > 3,4 > 4,4 > 5,4 >

Tick = 29.0: agent6 tried to move to (1, 9) and noticed Conflict
Tick = 29.0: agent6 new Route: Route from 2,9 to 5,4: 2,9
> 3,9 > 4,9 > 5,9 > 6,9 > 7,9 > 8,9 > 9,9 > 10,9 >
11,9 > 12,9 > 13,9 > 13,8 > 13,7 > 13,6 > 13,5 > 13,4
> 12,4 > 11,4 > 10,4 > 9,4 > 8,4 > 7,4 > 6,4 > 5,4 >

Tick = 31.0: agent6 tried to move to (4, 9) and noticed Conflict
Tick = 31.0: agent6 new Route: Route from 3,9 to 5,4: 3,9
> 3,10 > 3,11 > 3,12 > 3,13 > 3,14 > 3,15 > 2,15 >
1,15 > 1,14 > 1,13 > 1,12 > 1,11 > 1,10 > 1,9 > 1,8 >
1,7 > 1,6 > 1,5 > 1,4 > 2,4 > 3,4 > 4,4 > 5,4 >

Tick = 50.0: agent6 tried to move to (1, 5) and noticed Conflict
Tick = 50.0: agent6 new Route: Route from 1,6 to 5,4: 1,6
> 1,7 > 1,8 > 1,9 > 1,10 > 1,11 > 1,12 > 1,13 > 1,14
> 1,15 > 2,15 > 3,15 > 3,16 > 3,17 > 4,17 > 5,17 >
6,17 > 7,17 > 8,17 > 8,16 > 8,15 > 8,14 > 8,13 > 8,12
> 8,11 > 8,10 > 8,9 > 9,9 > 10,9 > 11,9 > 12,9 > 13,9
> 13,8 > 13,7 > 13,6 > 13,5 > 13,4 > 12,4 > 11,4 >
10,4 > 9,4 > 8,4 > 7,4 > 6,4 > 5,4 >

X

Fig. 5. An agent has to choose a long route due to encountering a prior
resource conflicts

VII. DISCUSSION

Although the conflict detection approach proposed in this
paper has been shown to be effective, it has several limitations.

In the previous section, we could determine that the time
required to complete all tasks in a multi-agent system which
deploys the resource conflict model increases with the number
of agents. This can be critical if the tasks given to agents
are limited in a time frame. For example, if the transportation
tasks in the airport scenario are limited within 100 seconds and
we assume that each tick represents a second (the tick delay
can be parametrised), then not all agents in the simulations
with 30 agents would execute their tasks successfully. This
phenomenon can be compared with the reality of traffic
situation. If there are many vehicles, traffic could become
full and hinder the drivers to reach a destination on time.
Hence, we have to made a trade off between using the conflict
detection model and the number of agents.

The proposed conflict detection model will be problematic
if the simulation framework starts with two agents that want
to move to the same road element (see Fig. 6). The conflict
detection model requires at least two ticks to determine the
last and the current position of other peer agents. Thus, at
the first tick (when the system starts), the system is not able
to detect resource conflicts. As a consequence, two agents
from the opposite direction move into the same road element,
which results in a collision. In order to work around with this
problem, we need an additional mechanism. In every tick, the
system checks whether a road element exceeds its capacity.

Fig. 6. Two agents move to the same road field at the system’s start

The second problematic situation of this conflict model
is that the calculation of the next position is based on the

978-1-4673-1703-0/12/$31.00 ©2013 IEEE

assumption that when an agent is moving, then it is probable
that this agent will move straight forward. This assumption can
result in a position which lies outside the environment as Fig.
7 shows. The dotted square is the field for the next possible
position calculated using the conflict model. However, the real
path of the agent is to move up. To fix this problem, we need
an additional check to determine whether the calculated next
position is an element outside of the environment.

Fig. 7. Next possible position is outside the environment

In case that an agent A detects a potential conflict, but the
belief of A is not correct, e.g., Ai moves to another position
which is not in accordance with the belief of A, then the
worst case is that A has to wait for a time tick until its belief
is updated.

At the moment we do not consider the erosion of resources
by consumption. When a resource is losing quality over time,
the order of its assignment will become more important.
Hence, erosion might lead to new conflicts and we have to
extend our model for dynamic resource states (more than free
or occupied).

Despite of its limitations, the proposed conflict model
is advantageous. Most current work on conflicts in multi-
agent systems proposed approaches of using communication
between agents and focused on resolving conflicts. This nor-
mally requires a hard-coded framework of coordinating plans
(e.g, [13]), or runtime protocols for coordinating negotiations
between agents (e.g., [2]). The approach adopted in this paper
is to accumulate the belief of an agent about next possible
position of other agents in its scope. This approach has the
advantage that no communication between agents is required,
belief information of an agent can serve the purpose of
detecting potential conflicts. In a large system where many
agents exist and interact with each other, computing the
communication between agents might become very resource
intensive. In general, agents using this conflict model can
detect potential resource conflicts with other objects that might
be not able to communicate with agents. Therefore conflict
detection without deploying communication between agents is
advantageous. Exploiting the advantage of this resource con-
flict model, Le and Pinkwart [6] developed an algorithm that
allows autonomous agents to learn problem solving strategies
in resource conflict situations through communication with
humans.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a model for detecting
resource conflicts in a multi-agent system, representing a

cyber-physical system. Our approach has the advantage that it
makes use of agents’ belief, and no communication between
agents is required. We have evaluated this conflict model using
a scenario of transportation service in an fictitious airport. The
evaluation study showed that the conflict model is effective in
improving the rate of successful executed agents’ tasks.

In future, a comparison between the communication-free
conflict detection approach and a communication-based one
can be conducted to find out the difference in effectiveness
(i.e., successful tasks). The conflict model proposed in this
paper will serve as the pre-step for conflict analysis and
resolution. In addition, it is a goal of our research to make use
of conflicts to build a cyber-physical system that can evolve
over time.

ACKNOWLEDGMENT

This work was funded by the NTH School for IT Ecosys-
tems. NTH (Niedersächsische Technische Hochschule) is a
joint university consisting of Technische Universität Braun-
schweig, Technische Universität Clausthal, and Leibniz Uni-
versität Hannover.

REFERENCES

[1] K. S. Barber, T. H. Liu, and S. Ramaswamy. Conflict Detection
during Plan-Integration for Multi-Agent Systems. IEEE Transactions
on Systems, Man, and Cybernetics, 31:616–628, 2000.

[2] J. Chu-Carroll and S. Carberry. Communication for Conflict Resolution
in Multi-Agent Collaborative Planning. In Proceedings of the 1st
International Conference on Multi-Agent Systems, pages 49–56, 1995.

[3] J. Görmer, G. Homoceanu, C. Mumme, M. Huhn, and J.-P. Müller. JRep:
Extending Repast Simphony for Jade Agent Behavior Components. In
Proceedings of the 10th IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pages 149–154, 2011.

[4] M. Huhn, J. Müller, J. Görmer, G. Homoceanu, N. T. Le, L. Märtin,
C. Mumme, C. Schulz, N. Pinkwart, and C. Müller-Schloer. Autonomous
Agents in Organized Localities Regulated by Institutions. In Proceedings
of the 5th IEEE Digital Ecosystems and Technologies Conference, pages
51–61, Los Alamitos, CA, 2011. IEEE Computer Society Press.

[5] S. Konieczny and R. P. Pérez. Merging Information Under Constraints:
A Logical Framework. Journal of Logic and Computation, 12:773–808,
2002.

[6] N.-T. Le and N. Pinkwart. Strategy-based Learning Through Com-
munication With Humans. In Proceedings of the 6th International
KES Conference on Agents and Multi-agent systems - Technologies and
Applications. Springer, 2012. (to appear).

[7] T. H. Liu, A. Goel, C. E. Martin, and K. S. Barber. Classification and
Representation of Conflict in Multi-Agent Systems. Technical report,
The Laboratory for Intelligent Processes and Systems Electrical and
Computer Engineering, University of Texas at Austin, USA, 1998.

[8] J. Müller. The Design of Intelligent Agents: A Layered Approach.
Springer, 1996.

[9] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice. In
Proceedings of the 1st International Conference on Multi-Agent Systems,
pages 312–319, 1995.

[10] A. Sathi and M. Fox. Constraint-directed negotiation of resource
reallocations. In Distributed Artificial Intelligence, pages 163–193.
Morgan Kaufmann, 1989.

[11] C. Tessier, L. Chaudron, and H. Müller, editors. Conflicting agents: Con-
flict management in multi-agent systems. Kluwer Academic Publishers,
2001.

[12] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding
Resource Conflicts in Intelligent Agents. In Proceedings of the 15th
European Conference on Artifical Intelligence, pages 18–22. IOS Press,
2002.

[13] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2nd
edition, 2009.

978-1-4673-1703-0/12/$31.00 ©2013 IEEE

