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Abstract: In order to make progress on Intelligent Tutoring in ill-defined domains it is helpful
to start with a definition. In this paper we consider the existing definitions and select one for the
basis of our discussion. We then summarize some of the more salient characteristics of ill-defined
domains from a tutoring standpoint and some human and ITS strategies that have been employed to
cope with them. We conclude with some challenges to the ITS community to spur further research.
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INTRO

Intelligent Tutoring Systems (ITS) have made great strides in recent years. Many of these gains have
been made in well-defined domains such as geometry, Newtonian Mechanics, and system maintenance.
In recent years similar gains have been made in ill-defined domains such as law, design, and composition.

In this paper we present an overview of ITSs for ill-defined domains. Our goal is to provide a
framework for discussion and research in this area by synthesizing past efforts. We begin by providing a
working definition of the term. We then highlight the relevant characteristics of ill-defined domains as
they pertain to tutoring. Following this, we summarize past research in this area in terms of some of the
human and ITS tutoring strategies that have proven successful.

In order to frame our discussion we will illustrate our points using the following domains:

Physics: What is the airspeed velocity of an unladen swallow? !

Ethics: Is it morally justified to raise swallows for food?

Law: If I raise swallows on my property am I liable for damage to my neighbors’ property?
Architecture: Design a residential building with housing for swallows.

Music Composition: Write a fugue based upon a swallow’s song.

This is not an exclusive list. Rather it is a representative sample meant to motivate further discussion.

For the purposes of this workshop we have chosen the term ill-defined domain. The terms ill-structured
and ill-defined are used interchangeably in the literature. To avoid confusion we will only use the former.
Much of AI and education literature is framed in terms of problems rather than domains. Problem
typically connotes achieving a specific goal in a concrete scenario using methods amenable to state-space
search. Domain typically connotes an area of study such as physics or a set of problems. For the purposes
of our analysis, this distinction is immaterial. We have chosen ‘domain’ in order to emphasize that the
end goal of tutoring is typically general domain knowledge or problem solving skills, not problem-specific
answers. At the same time, we recognize that domains like physics have both well-defined and ill-defined
subdomains.

LSee: “Monty Python and the Holy Grail” (1975) Python et al.



DEFINITION

In order to have a serious discussion of ill-defined domains it is necessary to define the term. This will
be problematic as the term has been given a wide variety of definitions in the literature. Much of the
literature on this subject grows out of either AI, or Decision-Making under Uncertainty. We will begin
by discussing the historical Al-centric definition followed by a discussion of competing theories.

Tll-defined domains have a long history in AI. The earliest work by John McCarthy is referenced
in Marvin Minsky’s 1961 paper “Steps Toward Artificial Intelligence” [Minsky, 1995]. According to
McCarthy and Minsky, a well-defined domain is one in which there exists a systematic way to determine
when a proposed solution is acceptable. Ili-defined domains, by definition, lack such a procedure. This
residual definition underpins most of the subsequent work in this area.

Four subsequent definitions have influenced our analysis. They vary in style and meaning based
upon the questions that their authors were asked. Reitman [Reitman, 1964] followed Minsky’s definition
but sought to impose some structure on the implicit concept of ill-definedness to facilitate more serious
research. His work was based upon the composition of fugues by an expert composer. Among other
things, he noted that the sole requirement of this task was that the result “be a fugue.”

Newell [Newell, 1969] asked why a given domain might appear ill-defined to one problem solver and
well-defined to another. His definition was framed in terms of a solver’s ability to identify a “specific”
answer. Simon [Simon, 1973] by contrast sought to identify why ill-defined domains were not amenable
to state-space search.

Simon’s discussion was built upon his past work with the General Problem Solver [Newell and Simon, 1995].
He used this framework to consider classically ill-defined domains such as architecture. In this process he
highlighted some of the salient characteristics of such domains including the lack of a clean decomposition
and the relationship of scope to definedness. In chess, for example, the selection of a single move may
be well-defined while winning an entire game is not. This analysis led to similar work in other domains
such as design [Goel and Pirolli, 1992] and medicine [Pople, 1982].

This line of reasoning has found its way into the psychological literature. Voss and Post’s
[Voss and Post, 1988], paper considers several varying definitions of ill-definedness. These include the
work of Johnson [Johnson, 1988], and Lawrence [Lawrence, 1988]. Johnsons’ work drew on notions of
ill-definedness in the expert problem-solving literature while Lawrence chose the domain of law. Voss and
Post based their working definition on Reitman’s [Reitman, 1964]. It focused on the “open-constraints”
present in ill-defined problems and domains. They specifically emphasized the constraint-propagation
aspects of ill-defined problem solving. We will return to this aspect below.

Most recently, Ashley and Pinkus [Ashley et al., 2004] defined ill-defined domains as having the fol-
lowing key characteristics: 1) they lack a definitive answer; 2) the answer is heavily dependent upon the
problem’s conception; and 3) problem solving requires both retrieving relevant concepts and mapping
them to the task at hand. In identifying these characteristics, their goal was to motivate the development
of an ITS for applied ethics. Their analysis, like ours, is driven by a set of indicative examples.

Our goal in this paper is to present a summary of ITS research in ill-defined domains with a focus
on the characteristics of those domains that affect ITS design. For this reason we have chosen to follow
Ashley and Pinkus’ methodology in this paper.

RELEVANT CHARACTERISTICS

In this section we summarize five key characteristics of ill-defined domains that have been discussed in
the literature. We give an intuitive description of each one highlighted by examples from the sample
domains. This list is not intended to be exhaustive but to serve as a basis for subsequent discussion.

3.1 \Verifiability

“What is the airspeed velocity of an unladen swallow?” This is a classical physics problem (according
to Monty Python) that could be solved by applying the theory of Newtonian Mechanics. The answer
can be calculated programmatically and verified empirically to an arbitrary degree of precision. This is
not the case with domains such as law. Legal arguments may be judged functionally (win or lose) or
aesthetically (good or bad) but no unambiguous standard exists. While there are valid arguments for or
against some solutions there often is no one right answer.

Domains like architecture and music are even less verifiable. While arguments may be made for or
against a given instance, such arguments are necessarily qualitative. Brolin’s argument against modern



architecture [Brolin, 1976], while convincing, is based entirely on aesthetic value judgments, not on any
absolute or quantitative measurements. Ultimately, in such domains, one man’s masterpiece is another
man’s trash.

3.2 Formal Theories

Valid formal theories such as Newtonian Mechanics provide a means to determine a problem’s outcome
and test its validity. A formal theory in physics is considered valid if its predictions can be verified
empirically, that is, it accurately describes all relevant phenomena. Physicists are engaged in a continuous
process of theory formation. Their ultimate goal is to develop a single cohesive theory that explains all
physical phenomena.

This process becomes difficult in new regions of physics (e.g., astrophysics) where empirical verification
may be untenable. A number of competing theories may coexist and, while they stem from testable
phenomena, they may not be readily falsified. In the realm of scientific discovery, argumentation may
involve a degree of interpretation that approaches that in domains like law.

Lawyers, like physicists, are also engaged in a continuous process of domain structuring ([Levi, 1949],
[Radin, 1933], [Schauer, 1998]). The goal however, is typically prescriptive, not descriptive ([Schauer, 1998],
[Llewellyn, 1981]). More formal legal theories are typically based on statutes or case decisions and exist
to prescribe what should be done in a specific case, not necessarily what is. Such theories are relatively
specific and may not be expected to generalize across legal fields. While such prescriptions are norma-
tively based, the norms may change over time. Formal attempts to model the structure of the law are
usually in flux [Lehmann et al., 2005].

Physicists seek out formal theories. Lawyers invent such theories as needed but acknowledge their
limitations. Architects by contrast typically shun such theories as being overly restrictive. While such
theories may be accepted (e.g. [Alexander, 1977], [Alexander, 1979]), they are typically used to guide
intuitions, not to dictate results [Goel and Pirolli, 1992].

3.3 Task Structure

Physics is largely a descriptive domain. Most textbook physics problems are similar to the swallow
problem above. Given some information, compute a desired quantity using a formal theory. Research
physicists, by contrast, seek to formulate new theories that explain observed phenomena or to observe
phenomena that may be used to falsify existing theories. Both tasks involve elements of design and as
such are necessarily ill-defined.

Law is both an analytical and design domain. Legal analysis includes determining what laws or
theories are applicable to the current situation and what result they would prescribe ([Sergot et al., 1986],
[Radin, 1933], [Schauer, 1998]). Such tasks are necessarily ill-defined much like medical diagnostics
[Pople, 1982]. Legal design tasks include the formation of arguments that would necessitate or evade such
analysis to achieve their desired goal. The study of architecture, by contrast, is characterized primarily
by design tasks. In such cases novelty, not repetition, is the goal. While formal theories might be used
to teach or guide intuitions, practitioners typically shun such programmatic analyses.

3.4 Open-Textured Concepts

Open-textured concepts are abstract concepts such as “vehicle” and “space” that have an inherent inde-

terminacy [Gardner, 1987] and lack any absolute definition. Such concepts are a defining characteristic of
legal theories ([Ashley, 1990], [Berman and Hafner, 1985], [Sergot et al., 1986]) and architectural theories
like the Pattern Language. They become problematic when they must be applied to concrete elements.

In many ways this is also true of physics. While physicists seek to describe real-world phenomena,
physical theories still make use of concepts such as “time points” and “energy”. While these concepts
are defined within the physical theories, their applicability to new phenomena (e.g., black holes) is often
a matter of debate. As with law and architecture, the application of a theory depends on the definition
of its terms. This issue has been discussed by [Reitman, 1964], [Simon, 1973], and [Ashley et al., 2004].

Computational models of these domains typically handle open-textured concepts in one of four ways:
impose a definition arbitrarily; require that the user provide one; reason from case examples; or ignore
the issue entirely. In the last option, they are focusing on the theory alone. Each alternative constrains
the system in some way either to a limited well-defined domain or an ad-hoc set of cases.



3.5 Overlapping Subproblems

Human and non-human problem solvers typically decompose a given problem into separate subproblems
([Goel and Pirolli, 1992], [Pople, 1982], [Newell and Simon, 1995]). Problems in ill-defined domains how-
ever, do not necessarily decompose into subproblems that are independent or easier to solve [Simon, 1973].

The swallow problem, for example, may be solved using backward chaining ([VanLehn et al., 2005],
[VanLehn et al., 2004]). Given the sought quantity, we may identify a principle from Newtonian Me-
chanics that defines it in terms of other quantities such as the mass of the swallow and its acceleration.
Each of these quantities may be solved independently of the others. While their values are related, it is
unimportant how they are identified so long as it is done accurately.

Now consider the problem of designing a house for the swallow. We could divide it into subproblems
such as choosing a site, or determining the size of the house to be built. These problems, however, are
not independent. Selecting a given site limits us to houses that will fit on it. Selecting a given size in
turn limits the sites we may choose. The answer to one subproblem necessarily constrains the other, and
neither one may be solved without considering the effect it has on the other.

Several authors ([Pople, 1982] [Goel and Pirolli, 1992], [Simon, 1973], [Reitman, 1964]) have noted
that human problem solvers often cope with this by solving the subproblems in parallel. As each problem-
solving step is taken, it is evaluated both in terms of the current subproblem and the constraints it
imposes on the others. Unlike the independent decomposition of well-defined problems this decomposition
into interrelated subproblems does not reduce the complexity of the overall problem-solving process.
Nevertheless such behavior is important in domains such as writing, as illustrated here, where the paper
is organized into sections with each one framing and constraining the contents of the next.

HUMAN TUTORING STRATEGIES

Students in well-defined domains are commonly trained using batteries of practice problems followed by
tests which are solved by and checked against a formal theory. While there has been some effort to move
away from this approach [Callahan and Hoffman, 1995] it is still common practice. In this section we
briefly summarize several strategies employed by human tutors in ill-defined domains.

4.1 Case Studies

Engineering students who study applied ethics routinely study real cases faced by engineering practition-
ers ([Ashley et al., 2004], [Harris et al., 1995]). Law students study how legal rules have been applied in
past decisions, briefs, and arguments ([Llewellyn, 1981], [Aleven et al., 2005] [Ashley et al., 2005]). Ar-
chitecture students likewise examine real buildings to identify both successes and failures ([Brolin, 1976],
[Mullet and Sano, 1995]). Such examples can often highlight the constraints and nuances of an ill-defined
domain far better than any abstract model. They also provide the students with analogies on which to
base their own work [Llewellyn, 1981]. Williams [Williams, 1992] presents a conceptual analysis of this
style of learning in both the legal and medical domains.

Examples are also used for instruction in well-defined domains. However those cases are unambigu-
ously correct or incorrect and do not require any interpretation. By contrast, in ill-defined domains, the
process of interpreting case examples is often carried out by means of a Socratic dialogue where students
are guided by the instructor’s questions.

This process of interpretation is often carried out by means of a Socratic dialogue where students are
guided by the instructor’s questions.

4.2 Weak Theory Scaffolding

Architecture students at the University of Oregon are directed to read A Pattern Language and The
Timeless Way of Building ([Alexander, 1977] [Alexander, 1979]). They then describe existing buildings
in terms of the language and design new ones according to its precepts. They do so with the knowledge
that the theory itself is incomplete. As they advance, the theory’s restrictions are faded out until students
need not follow them at all.

This process is advantageous in that it gives the students a conceptual framework to structure the
ill-defined domains. It enables them to ignore some challenges, while tackling others. In this way the
domain is made more tractable without being entirely constrained. Similar strategies have also been
employed in well-defined domains such as physics and probability [VanLehn et al., 2004].



4.3 Expert Review

Students in well-defined domains such as physics may test their results against a formal theory. In
ill-defined domains no absolute theory exists. Students in these domains typically submit their work
to domain experts for comment. Law students routinely engage in “moot court” sessions where they
present arguments in a real case before judges or law professors, who critique the sessions and provide
the students with immediate feedback. Students in architecture likewise typically submit their designs
to faculty panels for review.

4.4 Peer Review/Collaboration

The “Crit” is a longstanding practice in architecture education. Like “brown-bag talks” in research fields,
it is a chance for students to learn from their peers. During a crit, students present finished work to their
peers for comments. While their peers may not be experts in the field, they have unique perspectives on
the problem and can often provide novel feedback. While such advice may not be objectively verifiable,
experience has shown that it is often quite valuable.

ITS STRATEGIES

In this section we will describe some ITS techniques that have been employed in ill-defined domains. We
provide representative examples of systems employing each strategy. Although some of the strategies
lack any apparent “artificial intelligence”, they have proven successful in past studies. As Burke and
Kass astutely noted, it is possible for a relatively ignorant system to teach complex ideas:

“It is important to keep in mind that the domain knowledge, which must be con-
veyed to the student, does not have to be the same knowledge base that the system
uses to diagnose the student’s misconceptions. It is possible to build teaching sys-
tems that can effectively convey domain knowledge that is much richer and more
complex than the system itself can understand. It is crucial to build upon this in-
sight if intelligent tutoring is going to move beyond the easily-formalized domains,
such as arithmetic” [Burke and Kass, 1996].

5.1 Model-Based

In a model-based ITS, instruction is based upon ideal solution models. These models represent one or
more acceptable solutions to a given problem, or a general model of the domain as a whole. The model is
used both to check the students’ actions and provide help. Model tracing tutors may be loosely classified
as either strong or weak. Strong tutors force the students to follow the model exactly so that each entry
matches it in some way. The Andes ITS for physics uses this methodology. FEach problem is represented
by a solution model that contains all correct entries. Every student entry must be represented in the
model in order to be accepted. Such systems are typically called model-tracing tutors. Weak methods
use the model as a guide but do not require strict adherence to its contents.

Strong model-based tutors have proven successful in well-defined domains such as physics
[VanLehn et al., 2005]. They have not yet achieved the same success in ill-defined domains. Doing so
would require formalizing some model of the domain such as an analogous game [Allen and Saxon, 1998]
or a subdomain model ([Ashley, 2000], [Aleven, 2003], [Gardner, 1987]). Such a tutor would then be
operating in a comparatively well-defined subset of the domain. As Burke and Kass suggest, it still may
be possible for that tutor to teach skills in the subset in a way that leaves open key ill-defined elements
so as not to mislead students.

Such ‘weaker’ model-based approaches have achieved some success in ill-defined domains. The CATO
system ([Aleven, 2003], [Ashley, 2000]) used a model of the domain to relate real cases and argument
models to present to students. PETE [Goldin et al., 2001] uses a weak domain model to teach engineering
ethics. While neither of these are model-tracing systems, they do make use of formal models as guides
and show that such models may be useful in ill-defined domains.

5.2 Constraints

While model-tracing systems are based upon a complete solution or domain model, constraint-based
systems are built from sets of constraints. These constraints specify what characteristics a solution should,



or should not have. These requirements may be sufficient to provide a complete solution specification
or only a partial description. Constraints may be classified as either strong or weak. Strong constraints
represent absolute requirements or prohibitions. Weak constraints represent preferences, or warnings.
Unlike model-based systems, these constraint-based systems are not based upon complete, or necessarily
consistent models of the domain in question.

Strong constraints have been employed in music [Holland, 1999] and [Brandao, 2005]. These systems
permit students to define unique musical combinations but prevent them from violating well-accepted
rules of harmony and tone. This work echoed Reitman’s intuition [Reitman, 1964] that, while it is
difficult to tell what is a fugue, it is often easy to tell what is not.

Weak constraints have been employed in ill-defined domains but to a lesser degree. We have begun
work on a legal mark-up system that employs weak constraints to guide students [Pinkwart et al., 2006].
While students are largely free to specify the relationships they wish, the system will coach them on
“optimal” choices using a set of solution preferences. Suthers [Suthers, 1998] used a similar approach
but based his constraints upon expert solutions.

Simon [Simon, 1973], Reitman [Reitman, 1964], and Goel [Goel and Pirolli, 1992] all speak of problem
solvers propagating constraints as they work. This process allows them to bound and narrow the search
space to manageable dimensions. This view mirrors Alexander’s comments in A Pattern Language and
The Timeless Way of Building ([Alexander, 1977] [Alexander, 1979]) that individual patterns such as ap-
propriate housing locations necessarily constrain the design of housing. The Pattern Language in effect
introduces a set of constraints that a practitioner may choose to follow. As the practitioner makes deci-
sions those decisions “activate” an individual pattern and propagate its constraints for future decisions.
This similarity may be an indication that constraint-based tutoring is pedagogically more appropriate
for ill-defined domains than model-tracing methods. The question remains whether a constraint-based
tutor can provide all of the feedback that is appropriate.

5.3 Discovery Learning

Instruction in many domains consists of reifying or formalizing domain knowledge and then transmit-
ting it explicitly via texts or lectures. Researchers like Seymour Papert have long argued for a more
constructivist approach. This approach is variously known as LOGO ([Resnick, 1998], [Holland, 1999]),
Discovery Learning ([Veermans et al., 2006], [van Joolingen, 1999], [de Jong and van Joolingen, 1998]
[Veermans and van Joolingen, 2004]), or Discovery Microworlds [Trafton and Trickett, 2001]. For the
purposes of this paper we will group these under the heading of “Discovery Learning.” De Jong
[de Jong and van Joolingen, 1998] and van Joolingen [van Joolingen, 1999] have provided some useful
comparative analyses of discovery learning. Their comparisons indicate that, although the method can
be successful, students may have difficulties with the methodology nullifying their learning gains.

Discovery Learning approaches can be classified into three general tracks: discovery support; model
exploration; and model building. Discovery Support systems operate by providing the user with sup-
port as they work on a task in an unconstrained domain. Such systems do not attempt to model the
domain itself. Rather they seek to assist the students in exploring the domain by providing intelligent
support. The HYPO system provides users with intelligent case-retrieval tools to help in issue spot-
ting [Ashley, 1990]. Other systems have focused on providing intelligent suggestions for data mining
tasks [Bernstein et al., 2005] and hypothesis support for basic science education [Suthers, 1998]. In gen-
eral, any decision support system could qualify as a discovery support model so long as it helped the
users better understand the domain and did not supplant their own actions.

Model Ezxploration systems also focus on helping students to explore a domain. Unlike discovery
support systems the domain in question is represented by a formal model. Here students interact with a
model of the domain rather than conducting real-world searches or experiments, drawing conclusions from
it that are appropriate to the real domain. This technique has been used in some well-defined subdomains
of physics ([Veermans et al., 2006], [Veermans and van Joolingen, 2004], [Trafton and Trickett, 2001]).
Apart from some work in music [Holland, 1999], it has yet to be applied to any ill-defined domains, due
in large part to the challenges of modeling such domains.

Model Building by contrast focuses on the development of domain models. Model building sys-
tems supply users with a suite of model building tools such as a formal development language and
(optionally) some support in their use. The most prevalent such tools are descendants of Papert’s orig-
inal LOGO programming language such as StarLogo [Resnick, 1998] and Music Logo [Holland, 1999).
Recent work by Yoshino and Sakurai has extended this principle to law via a logic-programming lan-



guage [Yoshino and Sakurai, 2005]. Model building has a long history in psychological research including
the study of problem-solving in ill-defined domains [Voss and Post, 1988].

By providing an open-ended basis for experimentation, these systems enable users to test their own
intuitions about a domain and to perform arbitrary experiments. In so doing it is believed that students
will better understand nuances of the domain and the challenges of modeling it that a premade system
would hide. LOGO-like languages are also easier to develop than full-scale domain simulations.

Of these three methodologies, Model-Building and Discovery Support seem to hold the most promise
for ill-defined domains. Both follow Burke and Kass’ intuition above and permit the user to explore the
nuances of a domain without limiting them or hiding the relevant aspects.

5.4 Case Analysis

As stated above, the examination of past cases is a primary teaching tool in ill-defined domains such as
law, architecture and music. Systems that facilitate this process by providing cases, highlighting their
relationships or otherwise facilitating analysis have long been a part of ITS research.

Ashley’s HYPO [Ashley, 1990] and it’s descendant CATO [Aleven and Ashley, 1996] were built on a
relatively formal, though nondeterministic, model of trade secret law. This model was used to encode
real cases in terms of their relevant legal factors. A hierarchy of factors was then used to categorize
cases and present them to the students as they developed an argument structure. The CATO-Dial
system [Ashley et al., 2002] built upon this to engage the students in court-like arguments.

Burke and Kass [Burke and Kass, 1996] also developed an automatic case-retrieval system to select
cases in order to present feedback based upon the most recent student action. While their domain model
was quite limited, the use of real cases enabled them to give more nuanced feedback than the system
could otherwise describe.

Relatively simple techniques such as self-explanation prompts ([Schworm and Renkl, 2002],

[Aleven et al., 2005], [Pinkwart et al., 2006]) have also been shown to boost student performance on case-
analysis tasks. We believe that these techniques may be fruitfully combined with case retrieval systems
such as those above to improve learning gains.

5.5 Collaboration

Education researchers such as Vygotsky have long argued that social support for learning is as or more
important than instructional factors ([Chan and Baskin, 1990] [Chan et al., 1993]). Engaging students
with similarly-situated peers can encourage their own learning and that of their peers. Using Crit-
like techniques in design tasks, can give students the benefit of alternate, sometimes intensely critical,
perspectives. Existing collaborative ITSs have provided this support either by casting the system as
collaborator, or by using the system to facilitate interactions among human peers.

The former method has been championed by Tak-Wai Chan ([Chan and Baskin, 1990] [Chan et al., 1993])
and his colleagues. In this approach the system is equipped with a user model and cast as a student
alongside the real student. The virtual student is designed to be as mistake-prone as its human peers
and to learn alongside them. The challenge lies in developing a rational student model for the virtual
student. While this may be easier than an expert model, it is just as critical. An irrational or unbeliev-
able student model may, over time, cancel out any purported benefits. Although this approach has yet
to be applied to ill-defined domains, it seems to us that the approach is applicable in that it resembles
Socratic Dialogue.

The second approach, while relatively Al-free, has gained acceptance in recent years. The role of the
system is to facilitate user interaction and leverage the users’ collective knowledge for learning. This
approach follows Burke and Kass’ intuition that a relatively ignorant system can nevertheless support
learning gains. Soller et al. [Soller et al., 2005] provides a nice summary of the state of the art in this area.
In recent years systems have been developed along these lines for writing [Cho and Schunn, 2005], collab-
orative discovery [Suthers, 1998], linguistics [Weisler et al., 2001], and mediation [Tanaka et al., 2005].
Our own group has begun working on just such a system for legal argument formation and analy-
sis [Pinkwart et al., 2006].

CONCLUSION

Given the distinct characteristics, teaching techniques, and ITS strategies, discussed above, it is our opin-
ion that there are substantive differences between well-defined and ill-defined domains. Those differences



should be taken into account by researchers in this area. Having said that, we believe that the future is
promising. Research in this arena has already begun to establish a solid (though ill-defined) foundation
for future work. Given the nature of this arena it seems inappropriate to draw any “final” conclusions
at this time. Rather we will close with two key challenges.

Firstly, the community should continue to develop new tutoring strategies and seek out ways to
combine existing strategies. In our opinion, hybrid systems hold the most promise for ITSs in ill-defined
domains, especially those that build upon Burke and Kass’ intuitions.

Secondly, and most importantly, we urge the community to consider focusing across domains. Ill-
defined domains share many common characteristics such as open-textured concepts and a lack of absolute
verification. Each individual domain such as law or architecture may possess these characteristics to a
different degree. Moreover, such domains are themselves quite amorphous. They contain many distinct
“tasks” or subdomains, such as the formation of legal arguments, and the deciding of legal cases, that
each have their own characteristics and requirements.

In our opinion, asking what ITS strategies are appropriate for “the law” is too narrow a question.
Rather, researchers should focus on tutoring strategies that are appropriate for general characteristics
such as overlapping subproblems and open-textured concepts. It is our belief that framing research
questions in this way will lend itself to the development of strategies that can be “ported” across ill-
defined and even well-defined domains. Of course, insights can be gained by looking at particular domains
and tasks, but the true significance of these insights can best be appreciated by looking at characteristics
that cross domains.

We do not expect this to be the last word on the subject. There are other challenges facing the
ill-defined ITS community. Rather we hope that this survey will guide strategies that can spur research
in new directions.
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