Group-oriented Modelling Tools with Heter ogeneous
Semantics

Niels Pinkwart, H. Ulrich Hoppe, Lars Bollen, Eva Fuhlrott

Institute for Computer Science and Interactive Systems
Faculty of Engineering, University of Duisburg
47048 Duisburg, Germany
Phone: (+49) 203 379-1403
pi nkwart @ol | i de.info

Abstract. This paper describes an approach of how to support collaborative
modelling tasks. The presented system, Cool Modes, implements the approach
using “plug-in” reference frames encapsulating the semantics of the used
models. Details on the extensibility of the system and the definition and inter-
pretation of these reference frames and models in the framework are shown and
the co-operation support using the underlying MatchMaker communication
server is explained. Furthermore, two examples from the domains “ System Dy-
namics modelling” and “ Jewish Ceremonies’ are given.

1 Introduction

Currently, information technology or computer support for collaborative learning is
mainly based on computer-mediated communication such as, e.g., on conferencing
techniques and sharing of resources and materials as well as on digital archives. This
implies that the information exchanged, voice, text or images, is “passed through” the
system, but not semantically processed. On the other hand, originally motivated by the
limitations of conventional individualised computer tutors, there was another tendency
to have more interactivity in learning environments using rich and powerful “compu-
tational objects to think with”. This lead to the development of interactive cognitive
tools or “mind tools’ [1], which were essentially based on the direct manipulation of
visual objects by the user-learner but also based on the computational processing of
related symbolic objects and representations. Typical examples are visual languages
for argumentation and discussion as well as visual tools for smulation and scientific
modelling. A first suggestion of how to support collaboration with modelling tools in
“discovery learning” has been made by van Joolingen [2].

We see a new challenge in providing “computational objects to think with” in a col-
laborative, distributed computing framework. This is typically achieved through
shared workspace environments which allows a group of learners to synchronously co-
construct and elaborate external representations. Systems may differ considerably with
respect to the degree of semantics or structure that is explicitly captured by the com-
puterised representation: Whereas the internal structure of whiteboard (drawing) tools



is based on strokes, colours, and geometrical shapes, concept mapping tools constitute
“semantic” relations between certain objects or nodes. However, it is not clearly de-
fined in how far the semantics of the representation is really interpreted by the ma-
chine. Internally, a concept mapping tool may just be based on an abstract graph
structure, whereas more specific representations such as System dynamics models [3]
or visua programming languages come with a clearly defined and rich internal opera-
tional semantics. They provide a complete semantic definition of all objects and thus
allow for “running” the models. On the other hand, less specific systems like Belved-
ere [4] do not interpret the semantic content of the objects but the rhetorical or argu-
mentative types and relations between objects (e.g. “hypothesis’, “conclusion”). The
system is aware of the developed argumentation structure and points out missing rela-
tions via a support agent. A recent example of a collaborative learning environment
based on a domain-specific visual language is the COLER system [5] which supports
the co-construction of entity-relationship (ER) models for database modelling.

The CardBoard environment [6] alows for creating “collaborative visual languages”
by parameterising a general shared workspace environment. The particular language
profile specifies the syntax of the respective language, i.e. the given set of relations,
their argument slots, and the basic object types. To add semantics in terms of domain
models or knowledge bases, an interface is provided that transfers actions from the
visual language environment to the semantic plug-in component [7]. This architecture
allows for flexibly defining semantically enriched tools, such as e.g. a co-operative
editor and simulator for Petri Nets.

Our current work on the Cool Modes (COllaborative Open Learning and MODEIling
System) environment draws on the CardBoard experience, yet with an improved un-
derlying communication mechanism (Java MatchMaker TNG) and the new orientation
to provide multiple “language palettes’ to choose from and the possibility of mixing
different types of languages or representations, ranging form free-hand drawings over
concept maps to semantically defined modelling languages (Petri Nets, System Dy-
namics), in one workspace.

In our vision of future applications (and already starting in our own practice), we see
these multi-functional and multi-representational tools as digital, active extensions of
chalkboard and paper & pencil as demonstrated in the NIMIS project [8]. The tools
should ideally be used in networked ubiquitous and potentially mobile computing
environments to support modelling, interactive presentation and group discussion in a
variety of educational scenarios, including traditional lectures (presentation) as well as
tutorials and collaborative work in small groups.

2 Cool Modes—an Extensible Platform

Cool Modesis a collaborative tool framework designed to support discussions and co-
operative modelling processes in various domains. Like in some other environments
[4,9], this is achieved through a shared workspace environment with synchronised
visual representations. These representations together with their underlying semantics
can be defined externally which offers the option to develop domain-dependent “plug-



in” visual languages and interpretation patterns, encapsulated in so-called “palettes’.
The languages can differ considerably with respect to the underlying formal semantics
(e.g. System dynamics simulation vs. handwriting annotation) but yet be mixed and
used synchronously in the framework which from our point of view is a suitable ap-
proach for supporting open modelling tasks with potentially unknown means.

With the aim of having an extensible and useful platform suitable for the integrated
use in multiple domain contexts, Cool Modes offers some generic representation ele-
ments and co-operation support. These are shortly described in 2.1, the extensibility of
the system (“How can my favourite elements be integrated?”) is shown in 2.2. and 2.3.
These descriptions are mainly to outline the principles of realising semantically en-
riched extensions (e.g. simulations) in the framework, concrete examples are given in
chapter 3.

2.1 Generic System Functions

Cool Modes allows the use of multiple workspaces represented in different windows
which can be arranged freely. Each workspace consists of a humber of transparent
layers which can contain “solid” objects like e.g. handwriting strokes, images and
other media types. Four predefined layers with different functionality exist by default -
one for a background image, one for hand-written annotations and two for other ob-
jects - more can be dynamically added.
While the workspaces contain the results of the user’s work and interaction with the
system or other users, the elements for this interaction are available in “palettes’.
These can be dynamically added and removed and are the basic means of extending
the system (cf. 2.2 and 2.3). Yet, some standard palettes useful for any domain are
predefined: Cool Modes offers a “handwriting” palette allowing the user to directly
annotate anything within a workspace. The second more general palette consists of
different patterns for discussion support like “question” or “comment”. The elements
of this palette are designed to support the users in discussing their current work and
structuring their argumentation.
As mentioned, the co-operation support integrated in Cool Modes basically relies on
the provision of synchronously shareable representations. Technicaly, thisis realised
using the MatchMaker server [10,11] offering a replicated architecture, partial syn-
chronisation features and dynamic synchronisation. According to the system structure
with its workspaces and layers, the synchronisation of objects is flexibly possible, e.g.
in the following different ways:
e By workspace, allowing the users to co-operate by the means of completely syn-
chronised workspaces (and having private ones additionally).
* By layer, providing e.g. the option to have private hand-written annotations
on synchronised workspaces as shown in figure 1.



= 3 iz
Ehe ES1 Cowing Workssates AowWorkspace Pundes T e EOR Coupheg Wosspares Adveworspace Pabdes 7

o« E

»>ASK TvTOR

Fig. 1. Layer-wise synchronisation

¢ By Element. Inthis"low" level of synchronisation, the synchronised objects “to
be discussed co-operatively” can be explicitly defined; any other objects will be
private. It isimaginable to set up e.g. amodelling scenario in which only the
model elements are shared, but the rest of the user's workspace content (like an-
notations, images, supporting notes and experimental results) is kept private.

MatchMaker supports this partial synchronisation by providing synchronisation trees.
These trees normally reflect the structure of the coupled application, in the case of
Cool Modes the subdivision workspace-layer-element. Applications can join different
nodes in the tree and thus only receive and deliver synchronisation events concerning
the selected shared parts of the representation.

2.2 Definition of Domain-dependent Elements

The structures in Cool Modes containing the domain dependent semantics and thus
offering the possibility for simulations, modelling and, more generally, integrating
(potentially arbitrary) algorithms, are called reference frames. As outlined in [12] in
more detail, these reference frames serve as structures which

« list the representation elements together with their semantic relations

¢ Cool Modesrefersto in order to interpret the constructed results of user's work

e describe visual interfaces allowing the user to make use of the elements

The most important elements described in these reference frames are the visual ele-
ments it offers to the user, together with their semantics and, potentially, functions.
The single available elements are called “nodes’ and “edges’, their relations are de-
scribed in the reference frame itself whose visual interface isa“palette”.



Palettes

A palette provides access to the reference frame for the users. Using the menu bar, it

can at runtime be added and removed; the synchronous use of multiple palettes is

possible. The two basic functions of palettes are:

e The provision of the nodes and edges defined in the reference frame. Nodes in a
palette can be dragged into workspaces and connected via the edges

e The option of receiving and reacting to “global” events generated by the work-
spaces, nodes or edges (cf. 2.3).

Nodes

A node is a standard Java object extending a predefined class Abst r act Node. Itis

structurally divided in three parts:

e Thenode itself acting as controller, pointing to its reference frame and capable of
receiving, sending and processing events - in both senses of "standard" Java
events and internal, more semantically enriched, events within the Cool Modes
system or even the reference frame (cf. 2.3).

e The node model, with information according to the definition in the reference
frame. Due to the fact that the model is used by MatchMaker for coupling, it must
implement j ava. i 0. Seri al i zabl e.

e The view. Principally, any j avax. swi ng. JConponent can be used as a
view, yet Cool Modes offers some patterns like arbitrary-shaped views with auto-
resizing text input fields.

Edges

Edges serve as connections between the nodes in the constructed graph structures and,
similar to the nodes, consist of model, view and controller. Additionally, it is possible
to define rule sets describing allowed and forbidden connections.

2.3 Interpretation of Domain-dependent Semantics

While the principal way of defining custom semantically enriched components has
been described in the previous chapter, the following part tries to give a rough idea
about the general possibilities of interpreting the semantic relations within Cool
Modes. Basically, the approach relies on four foundations:

1. The reference frame defines the semantic relations (expressed in data model types
and associated algorithms) and is responsible for the objects of one domain "un-
derstanding” each other.

2. General events generated through user actions contain node and edge model as
parameter. These encapsulate the current state of the object, in terms of the asso-
ciated domain.

3. Thereare"loca" and "globa" events and, accordingly, the option of having local
and global listeners.

4. Specific, additional events can be freely defined in the reference frame.



Global Eventsand Control
A global event is fired upon a change in a workspace. Typicaly, the palettes and
therefore, indirectly, the reference frames, listen and react to it;

voi d nodeAdded( NodeEvent e);
voi d nodeRenpved( NodeEvent e);
voi d nodeMoved( NodeEvent e);
voi d edgeAdded( EdgeEvent e);
voi d edgeRenoved( EdgeEvent e);
voi d edgeMoved( EdgeEvent e);

As the listening component has access to the workspace, it can check the workspace
content upon reception of an event and can this way, e.g., check the following aspects:

Element presence / absence

As shown in chapter 3.2, the pure information about which nodes or edges are cur-
rently in a workspace might already be of interest. This type of "lightweight" model-
checking is useful for some modelling tasks with a more or less predefined solution:
the system can keep track if the required elements have already been added by the
users and, if desired, give hints.

Soatial relations in the workspace

Making use of one more piece of available information alows the system to react
upon the absolute or relative positioning of the nodes and edges in the workspace. An
example for this is shown in chapter 3.2, where only the correct relative arrangement
of four required images fulfils a task completely.

Abstract graph structure

In addition to the above point related to the visual positioning of workspace content, it
is also possible to run arbitrary graph algorithms. This alows, e.g., connectivity
checksin a Petri Net model or automatic testing of the correlation between topics of a
discussion.

Node and Edge models

While the three ways of reaction to events listed above have been rather independent
of a concrete domain, it is also possible for the global listener to interpret or change
the semantics embedded in the node and edge models. An application for this is the
global ssimulation of models through the use of control elements contained in the pal-
ette as shown in the System Dynamics example (chapter 3.1), although the "trigger"
for this simulation is in this case not the change of the workspace content but a spe-
cific user action (pressing the "step”-button). Potentially, any domain-dependent algo-
rithm that requires the whole graph structure as input, can be realised this way.



Local Eventsand Control

In addition to the global control and checking options and events pointed out above,
some local events are available. Any node can be a listener for these and thus be kept
up-to-date about changes within its direct neighbourhood in the graph. The events
cover information about which other nodes have been attached by what type of edge,
which nodes have been disconnected from the listener node and about model changes
in the neighbour nodes and edges. Two typica applications that make use of these
events are local graph algorithms and model changes (like e.g. the change of the
activation status of transitions in a Petri net simulation whenever the model of a place
or an edge has changed, or, more generally, searching or distance calculations in the
graph) as well as the provision of context-based feedback. Even in an open task with
no strict rules defined, it is possible to check the modified local structure against a
known "ideal" solution or heuristic rule set and give hints.

3 Examples

3.1 System Dynamics. The DynaBoard

In this example we will show the basic functions of the ,,DynaBoard", one of the ref-
erence frames included in Cool Modes at the moment. The creation of the DynaBoard
has been part of a master thesis [13] and prow d&s basc support for modelling and
Workspace (Golf Course) /i 1 i i |Z| - SmU|aI|ng a/S'
B Workspace (Golf Course) 0 — L ‘“W ’*f’* tem Dynamics
| - A ' ‘ e models [3].
Figure 2 shows
a group of
learners trying
to solve a
problem about
the growth of a
golf course area
o with limited
7‘ resources. Be-

InfoEdge e—>0
FlomEdge  (—0 sides bemg an
seeeege @—==<—0o example for the
: use of more than one palette at a
== time and in one shared workspace,
this figure shows the basic ele-
ments of the DynaBoard palette.
You can see a dstock (the
»golf_area'), a rate (,,development*) and a constant (,fraction*). By using different
types of edges, you can distinguish between the flow of information (thin, black,
cracked arrows) and the actual flow of values (thick, grey, straight arrows). The right

Fig. 2. Cool Modes: System Dynamics modelling



part of figure 4 shows the user interface of the DynaBoard palette with buttons to
control the simulation of the model.

3.2 Jewish Ceremonies

During an interdisciplinary project, students at the University of Duisburg developed
the " Jewish Ceremonies’ frame within Cool Modes. It addresses students at the age of
11-16 and, thought as addition to the curriculum of religious instruction, it gives the
opportunity to test and to intensify knowledge about Jewish life and ceremonies. This
task is inherently open like most things currently being supported by Cool Modes.
Y et, there are some defined instructions and tasks together with their solution implic-
itly defined in the corresponding reference frame.

Available palettes: “ Ceremonial Objects’ and “Hebrew”
The "Hebrew" palette can be used to write Hebrew words (from rlght to Ieft) in spe-
cia nodes. Consequently, the palette (see | -
figure 3) contains this node and the available |
letters. Writing is done by clicking the but-
tons. To practise aready known words and
their pronunciation, the program gives feed-
back by presenting a loudspeaker icon if the
word exists (in alocal database) and is written
correctly. Clicking the loudspeaker icon starts
the matching sound file. Writing in this | gace | om
framework includes functions such as deleting

a letter, inserting spacebars, changing letters
automatically to “sofits’ (if they appear at the
end of a word) or the decision Whe_:ther the Fig. 3. “ Jewish Ceremonies’ palettes
text box shall be active and thus editable or

not.

The selection of one of the Jewish (religious) ceremonies takes place on top of the
"Ceremonial Objects’ palette (see figure 3) and returns a specific assortment of items
on the palette. The names of the ceremonies are written in Hebrew. This palette shows
pictures of items belonging to jewish rites, with Hebrew tool-tips. Not all of the items
of one category are in correct context with the celebration. The user has to choose the
right ones and to arrange them.

As usual in Cool Modes, these two palettes can be combined, showing the arranged
items of both palettes at the same time in a workspace. An easy possible assignment
could be to show an item and to ask the user to write its name.

D

U o U
o

8 |— O|\J|B | — |
=9t

(Y| |— | || A%

Usage Scenario and Result checking

Several assignment scenarios exist for the "Ceremonia Objects’ palette. One assign-
ment is to build a lulaw, a bunch of branches for the celebration of Sukkot. Four
branches of plants must be arranged correctly in a workspace to fulfil the task. As
soon as the four items are in one workspace, a message box opens to report that they



are complete and now have to be @m0 7 5|
arranged (see figure 4). When the |
lulaw is built correctly, another
message box comments that the
task was completed successfully.
Technicaly, this check is done
using the events described in
chapter 2.3. The listener here just I
has a list which contains the mod- [ E |
els of al needed items and com-
pares it to al currently present
items in the workspace. If this
comparison succeeds, the internal
state "correct items” is entered and
presented to the user via a mes-
sage. If the internal state is already
"correct items' and an item is
moved, the second checking rou- Fig.4. Model-checking — constructing a lulaw

tine testsif the relative positions of

the items are correct and, if so, delivers the final output that the task is fully com-
pleted.

=10l

AR

4 Outlook

We see the Cool Modes environment with its example applications as a first step to-

wards providing collaborative mind tools in a variety of reaistic educational and

training settings. The flexible coupling model provided by MatchMaker allows for
flexibly supporting different co-operation modes with limited time and partial syn-
chronisation. Ongoing work is focused on the following extensions:

e astandardised parameterisable protocolling mechanisms to support "undo" and
several replay options on a general level, as well as the provision of action tran-
scripts for analysis and reflection

e the development of "lightweight Cool Modes clients' to be used as mobile inter-
active frontends on wireless PDAs or tablets

e the enhancement of the included XML support towards using XML not only for
data storage but also for synchronisation, e.g. by providing a SOAP interface.

References

1. Jonassen, D. H., Tessmer, M. & Hannum, W. H. (1999). Task Analysis Methods for In-
structional Design. New Y ork: Erlbaum.



10.

11.

12.

13.

Joolingen, W. R., van (2000). Designing for Collaborative Learning. In Gauthier, G.,
Frasson, C. & VanLehn, K. (Eds): Intelligent Tutoring Systems (Proceedings of ITS
2000, Montreal, Canada, June 2000) (pp. 202-211). Berlin: Springer.

Forrester, J. W. (1968). Principles of Systems. Watham, MA: Pegasus Communications.
Suthers, D. D., Weiner, A., Conndly, J., & Paolucci, M. (1995). Belevedere: Engaging
students in critical discussion of science and public policy issues. In Proceedings of the
World Conference on Artificial Intelligence in Education. Washington, DC: American As-
sociation for the Advancement of Computation in Education.

Constantino-Gonzélez, M. & Suthers, D. D. (2000). A Coached Collaborative Learning
Environment for Entity-Realationship Modeling. In G. Gauthier, C. Frasson & K. Van-
Lehn (Eds.), Intelligent Tutoring Systems, 51" International Conference, Montréal, Canada.
Berlin: Springer.

Hoppe, H.U., Gassner, K., Mihlenbrock, M. & Tewissen, F. (2000). Distributed visual
language environments for cooperation and learning - applications and intelligent support.
Group Decision and Negotiation (Kluwer), vol. 9, 205-220.

Mhlenbrock, M., Tewissen F. & Hoppe H. U. (1997). A Framework System for Intelli-
gent Support in Open Distributed Learning Environments. In B. du Boulay & R. Mizogu-
chi (Eds.), Artificial Intelligence in Education: Knowledge and mediain learning systems,
Proceedings of the 8" International Conference on Artificial Intelligence in Education ,
AIED-97. Amsterdam: |OS Press.

Tewissen, F., Lingnau, A., H. Hoppe, H.U. (2000). “Today's Talking Typewriter” - Sup-
porting early literacy in a classroom environment. In Gauthier, G.; Frasson, C.; VanLehn,
K. (Eds): Intelligent Tutoring Systems (Proceedings of ITS 2000, Montreal, Canada,
June 2000) (pp. 252-261). Berlin: Springer.

Wang, W., Haake, J. & Rubart, J. (2001). The Cooperative Hypermedia Approach to
Collaborative Engineering an Operation of Virtua Enterprises. . In Proceedings of
CRIWG 2001 (Seventh International Workshop on Groupware, Darmstadt, Oktober 2001)
(pp. 58-67). Los Alamitos: IEEE Press.

Tewissen, F., Baoian, N., Hoppe, H.U. & Reimberg, E. (2000). “MatchMaker” — Syn-
chronising objects in replicated software architectures. In Proceedings of CRIWG 2000
(Sixth International Workshop on Groupware, Madeira, P, Oktober 2000) (pp. 60-67). Los
Alamitos: |EEE Press.

Jansen, M., Pinkwart, N. & Tewissen, F. (2001). MatchMaker - Flexible Synchronisation
von Java-Anwendungen. In R. Klinkenberg, S. Ruping, A. Fick, N. Henze, C. Herzog, R.
Molitor & O. Schréder (eds.) LLWA 01 - Tagungsband der Gl-Workshopwoche "Lernen-
Lehren-Wissen-Adaptivitét". Forschungsbericht 763, Oktober 2001. Universitét Dort-
mund, Germany

Pinkwart, N., Hoppe, H.U., Galdner, K. (2001). Integration of domain-specific elements
into visual language based collaborative environments. In Proceedings of CRIWG 2001
(Seventh International Workshop on Groupware, Darmstadt, Oktober 2001) (pp. 142-47).
Los Alamitos; |EEE Press.

Bollen, L. (2001). Integration einer visuellen Modellierungsprache in eine kooperative
Diskussionsumgebung fiir den naturwissenschaftlichen Unterricht. Unpublished Master
Thesis, University of Duisburg, Institute for Computer Science and Interactive Systems.



