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I know who you are:

Deanonymization using Facebook Likes

Sylvio Rüdian1, Niels Pinkwart2 und Zhi Liu3

Abstract: This paper presents a method to deanonymize people using fanpages’ Likes of
Facebook users. The strategy shows that information of Likes can be easily crawled from
Facebook. Combined with an interactive version of browser-history-stealing it can be used to get
identities of users on a website. The attack is possible because of the existence of Facebook’ Likes
that can be used as a fingerprint. The claim was tested and discussed with real-world collected
data. With the assumption of at least 4 collected Likes per user, 99.91% of them can be
deanonymized through the fingerprint of Likes. Apart from that we provide potential solutions for
protection of identities in social media.
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1 Introduction

Social media like Facebook is one of the most widely used channel of people’s
worldwide communications. People share much information about their personality at
their social media profiles. Simultaneously, there is a missing understanding about issues
like privacy. A study has shown that “privacy settings match users' expectations [in]
only 37% of the time” [LI11]. Although Facebook has implemented mechanisms for
data protection, an attacker still can get much personal data that is accessible through the
social network. If these data will be combined with data of a third party, it is possible to
identify users by using their public information.

The paper is organized as follows. In section II we summarize related work regarding
deanonymization attacks. Section III gives a formal technical definition of the general
deanonymization approach and describes the technical methodology how to collect Likes
data from Facebook users. Section IV shows the results of our experiments and V
proposes some solutions for protection from different points of view. Due to the in-depth
privacy protection in Germany, this paper focuses on findings related to Germany.
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2 Related Work

In 2011, Weinberg et al. [WE11] developed an attack to show that memberships of users
belonging to groups can be used as a fingerprint. By a prepared website, the researchers
were able to get the information of previous visited websites using techniques of
browser-history-stealing [RU14]. They assumed that members of groups also visited
these groups with their browsers before so that the links of groups can be explored in the
users’ browser histories. Additionally, an attacker could use browser-history-stealing to
determine which groups a user has visited before. With that approach, the researchers
were able to deanonymize 22.9% of Facebook users.

Narayanan et al. used the structure of the social media graph to deanonymize people.
Researchers used the knowledge of the overlap between different social networks and
created an algorithm to "successfully de-anonymize several thousand users in the
anonymous graph" of social networks [SH08]. The researchers also have investigated
into deanonymization of a Netflix dataset [NA08]. They had shown that it was possible
to derive identities from anonymized datasets. With “contextual and background
knowledge, as well as cross-correlation with publicly available databases [they were
able] to re-identify individual data records” [NA08]. Ji et al. [JI14] investigated into
deanonymization of structural data that had been published. They created a general data
model for deanonymization and also conducted experiments with social networks.

3 Methodology

3.1 Theoretical approach

The following section describes the approach of deanonymization in a theoretical way by
using mathematical sets. In general, deanonymization is the process where firstly data
points of several people were collected. After the process of data collection, an attacker
tries to find specific values of data points by using a third party, e.g. a website. Values of
data points can be combined with the already known dataset of the attacker. Then he has
the possibility to derive the identity of persons, although he did not get this information
from the third party. To formalize this approach, the dataset consists of different
people with ∈ , , | | and a set D, where with ∈ , ,| | are specific data points in D, e.g. IDs of groups. There are some connections
between and , defined as : with , ∈ . This can be memberships of
persons to groups. Each person can be connected with different data points and
each data point can be connected with different persons . For each person there is
a set of ⊆ , where connections to are existing. This tuple is called fingerprint of
person . The attacker can use a third party like a website where he wants to identify
persons within the dataset, although he does not know the identity yet. Therefore, he has
to find out whether the different data points of belong to , e.g. whether the current
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person is a member of several groups. It can be tested with hacking techniques or
indirect requests to the user. This results in a new dataset , where only contains data
points that belong to the concrete person and where at least one connection
exists. Ideally, where is the fingerprint of person . While the number of hits
will be increased, becomes more detailed to derive the identity using . Fig. 1 shows
an example where could be deanonymized by the knowledge of two hits and (e.
g. being member of groups and ) using a prepared website, where { , }
and the user is a member of groups and .

Fig. 1: Preprocessing of the attackers dataset and
deanonymization attack to derive an identity.

Weinberg et al. [WE11] focused on memberships to groups as a fingerprint because
memberships of public groups are easy to access, without any limitations. Fig. 2 shows
the different amount of members of groups (blue) and fans of fanpages (red) for a
sample of 100,000 fanpages and 100,000 public groups. It shows that most fanpages
have a major amount of connections to users than to groups. “Likes represent one of the
most generic kinds of digital footprint. For instance, liking a brand or a product offers a
proxy for consumer preferences and purchasing behavior; music-related Likes reveal
music taste; and liked web-sites allow for approximating web browsing behavior.”
[YO15]

In Germany, users like 28 fanpages on average [SO13]. Worldwide, the average user
likes 40 pages [SO13]. At the same time, each user is only a member of 12 groups on
average [SA11]. This fact leads to the assumption that Likes are better qualified than
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memberships to groups since more data (Likes) lead to a fingerprint that can be much
more detailed. An attacker can collect a huge amount of Facebook’ Likes of fanpages.
We assume that one user which likes fanpages also visited the fanpages with his browser
before.

Figure 2: Comparison of the members of 100.000 Facebook’
groups and 100.000 fanpages, ordered by amount.

In this paper we use Facebook users’ Likes for deanonymization. We aim to answer the
question whether “Likes” of fanpages can be used as a fingerprint and how this
information can be used to identify peoples’ Facebook profiles in a real world scenario.
To do that, we prepared a website and used the browser-history-stealing attack to
determine previous visited fanpages. The information of previous visited fanpages can
be combined with the attackers’ dataset to derive identities. The following section
describes our approach of collecting data in detail. Additionally, we discuss how people
can protect themselves in general and which possibilities browsers and social networks
have to prevent their users from the deanonymization.

3.2 Crawling users’ profiles and Fanpages

First, we crawled Facebook and stored the connections between users and Likes of
Fanpages. Next to the regular website, Facebook also offers a version of the social
network for older browsers or Smartphone’s. It can be accessed by the URL
https://mbasic.facebook.com

This website can be easily used by a crawler [SE17]. After collecting public groups, an
attacker can download a list of each groups’ members. This can be done with a regular
Facebook login, which the crawler uses to get access to the social network. Since
Facebook uses predictable URLs for groups, a crawler could download the list of
members by downloading the URL
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https://m.facebook.com/groups/[group-ID] for each known group,
where the group-IDs from the last step could be used. The downloaded lists contain
usernames of members. If usernames are known, public Likes can be collected by
crawling the following URL: https://mbasic.facebook.com/[username]
?v=likes

This leads to a list of previously liked fanpages of the user and can be stored. It is only
accessible if the current profile is public or if there is an existing friendship relationship
between the crawler and the considered profile. A single crawler can get the Likes of
nearly 10,000 users after the crawler will get a restricted access for one week (7 days).

Another approach to get the Likes of users can be achieved by using fanpages’ lists of
users. According to Facebook, these lists only exist for administrators owned fanpages:
“You cannot get a list of all the fans of a Facebook Page” [FA14]. The fanpage-id can be
extracted by the Facebook-API. A crawler could visit the following URL, to get the list
of users that liked the fanpage with a given fanpage-id, although he is not an
administrator of the fanpage:
https://www.facebook.com/search/[Fanpage-ID]/

likers?ref=about

Our experiments have shown that the download of fanpages’ users needs 2m30s up to
3m30s (depends on Internet and browser speed), where up to 1.213 fans can be achieved.

3.3 Crawling of private Likes

Lists of fanpages’ fans are not complete due to privacy reasons. To improve the dataset,
reactions of posts from fanpages can be used. According to [GO15], only 0.11% of users
create a reaction to a post. With the following URL, the reactions of posts can be
crawled:
https://mbasic.facebook.com/ufi/reaction/profile/browser/?f

t_ent_identifier=[Post-ID]

The post-id can be extracted by the Facebook-API. The page lists the reactions of 10
users. By clicking on the link “show more”, next 10 users will be listed. The parameters
in the URL can be changed from “limit=10” to “limit=5000”4. This leads to the
listing of much more reactions. An analysis has shown that reactions for posts can also
be used to guess which fanpages were liked by people that marked their profile as
private. Therefore, a sample of 120 reactions had been tested manually to answer the
question whether people that interact with posts of fanpages also like them. The result
shows that 87.7% also liked the fanpages if they liked a post. 12.3% did not like the
fanpage.5 This result can be transferred to private profiles, so that 87.7% might like the

4 The maximum amount can change over time. This has to be tested.
5 Used sample with post-id: 10155544812097244
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fanpage if they liked a post. We confronted Facebook with the problem, that a simple
user can download up to 900.000 reactions per hour. It has not been fixed yet, the
security team of Facebook evaluated the approach as not being important for privacy.

3.4 Browser-History-Stealing and derive identity

For a successful attack, an attacker has to find out which fanpages a user has visited
before. To do this, he can use the browser-history-stealing-attack. This is a side channel
attack where an attacker can extract previous visited websites by using indirect access to
the browsers history [RU14]. The technical background for this attack is the possibility
to colorize letters depending on previous visited links. Coloring can be done with the
CSS-formatting “a:visited {color:blue;}”. An attacker could use this
information to decide whether an URL, in this scenario a fanpage, has been visited
before. The complete approach to create a fake-captcha can be found in [RU17].

If an attacker combines the knowledge of visited fanpages with the previously crawled
dataset of users’ Likes, he or she will be able to derive the identity of a person.
Therefore, the attacker has to prepare a website with the fake-captcha, which has to be
solved by visitors. The attacker assumes that (1) the visitor solves the captcha correctly,
(2) he/she has a Facebook profile, (3) he/she uses Facebook with the current browser, (4)
he/she used the Like button for fanpages before, (5) he/she visited the fanpages, (6) the
browser stored visited URLs and (7) the attacker has already crawled Likes of the user
so that his/her Likes could be found in the attackers’ dataset. If (1) to (7) are fulfilled, the
attacker can find a possible Facebook profile that might belong to the person. To do that,
the attacker needs several rounds of captchas to check which fanpages might be visited
before.

4 Results

During the research, we collected 7.092M Likes of 595,777 fanpages using two different
methods. First, we directly crawled 350,000 profiles and their lists of Likes. The starting
points to crawl profiles were 537 public groups whose header was in German language.
Then the friends of the members were also crawled, until 350,000 profiles were
achieved. This leads to a crawled popularity of ~300,000 German profiles and ~50,000
profiles, which are not located in Germany. Additionally, we collected Likes through the
crawling of fanpages and their corresponding Likes. Finally, we collected 7.092M Likes,
distributed over 927,803 people.

Tab. 1 shows the amount of users that can be identified using their Likes of fanpages.
The higher the minimal known amount of Likes per user is, the higher will be the
amount of identifiable users. If we consider that users made at least 4 Likes in the past,
over 99.91% can be identified using their Like fingerprint. In general, every German
user has left over 28 Likes on average [SO13]. Next to this, the general user creates two
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new Likes every month [SA11]. With the assumption of the amount of 28 Likes,
99.999% can be identified using their fingerprints.

Due to the direct crawling of fanpages and their Likes, each crawling process collects
one Like per corresponding user. From them, no complete list of fanpages had been
observed. This leads to a dataset that contains lots of users where only one Like of a user
is known. From a statistical point of view, the result where only one Like per user exists
( 1) is not relevant. Finally, the result of 1 does not reflect the popularity
because of missing values.

Minimal amount X of

known Likes per user

Amount of identifiable

profiles using X Likes

Absolute amount of

profiles with at least X

Likes

X >= 2 95.79% 665,488

X >= 3 99.81% 363,517

X >= 4 99.91% 205,463

Tab. 1: Fingerprint with Likes

For the experiments, a fake-captcha had been implemented to show the feasibility of the
browser-history-stealing-attack and to show that it is possible to get the information
whether someone likes a fanpage or not. It is also possible to use automatically
approaches to get the information of previous visited fanpages [RU14].

5 Protection

5.1 Protection by social networks

The crawling experiment has shown that an attacker has the possibility to determine
visited fanpages where users with a private profile interacted with. That is problematic
because users might assume that their interactions also were private. The limitation of
accessible profiles while the social network detects an unusual behavior, is one
possibility to protect users’ data. Another approach would be the limitation of users’
private data by default. If users have to decide which data they want to publish and
everything else stays private by default or is only accessible for friends, this would be a
better barrier against an attacker.

At Facebook, a crawler can access up to 10,000 profiles in a period of 12 hours. This
means that a user visits up to 14 profiles every minute during 12 hours. An attackers
profile could be suspended much faster because the visit of 10,000 profiles cannot be a
usual behavior. The time of the hold of 7 days could be increased.
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5.2 Protection by browsers

The concept of a fake-captcha still works in every current browser, where a browser
history will be stored. The problem is that the distinction between not-visited and visited
websites using colors is a very basic concept of browsers. As long as there is an existing
distinction, it can be used by an attacker to capture the information of previously visited
websites. Users could disable the distinction between previous visited URLs. For
instance at Mozilla Firefox, the setting in “about:config” of the parameter
“layout.css.visited_links_enabled” could be set to false. This disables the
distinction for all URLs. The disadvantage of this method is the deactivation of the
distinction of all URLs, not only social media URLs. The attack can be fixed by a
limitation of the distinction of previous visited social media URLs. If browsers do not
make a distinction between previous visited social media websites, the combination of
browser-history-stealing and the attacker’s dataset will not work. A browser extension
could do this as well.

5.3 Protection by users

“[Participants] may not see the information they provide as a threat to their future at
present” [WE11]. Only 40% use the possibility to make their profile private “and few
users change the default settings” [KO13]. One consequent protection would be not to
publish private data in social media profiles. This can be realized by avoiding social
media. But that is not a feasible solution for everyone. Before publishing data, users
should understand how the privacy mechanisms of the used social network work. The
first step is the maximization of the privacy by setting each kind of data to be private.
While using social media, users should leave as less data marks as possible. Apart from
the usernames and images, no other private data like mobile numbers, emails or dates of
birth should be published for everyone.

Next to this, the visibility in search engines should be disabled. With this setup, search
engines do not get a possible access to the private profile. Independently from the
privacy settings at Facebook, the names of users and their user images are generally
visible for other participants of the network. That should be changed by default. Another
clue is the accepted amount of friends at a social network. “The category ‘friend’ is very
broad and ambiguous in the online world; it may include anyone from an intimate friend
to a casual acquaintance or a complete stranger of whom only their online identity is
known” [DE09]. According to Rosenbury et al. [JU08], over 30% of users are willing to
accept friendship requests from foreigners. At Facebook, a profile has at least access to
his friends and to their friends. Users should always know that the visibility of data that
is explicitly marked to be for friends, is available for a much wider amount of users than
assumed.
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