
To appear in: Proc. of 7th International Workshop on Groupware CRIWG 2001,
Darmstadt, Germany, 6 - 8 September 2001, IEEE CS Press.

Integration of Domain-specific Elements into Visual Language
Based Collaborative Environments

Niels Pinkwart, Ulrich Hoppe, Katrin Gaßner
University of Duisburg

pinkwart@informatik.uni-duisburg.de

Abstract

This paper presents an approach for the integration of
domain related elements and operational semantics into
collaborative environments based on visual languages.
This integration allows for supporting domain specific
collaborative tasks, e.g. in the area of “ collaborative
discovery learning” in science education, by integrating
data modelling with generic discussion support. A special
focus is set on flexibility and parameterisation of the
system which is achieved through providing the syntax
definition of the visual language as a separate resource
file.

1. Introduction

A central aim of delivering computer support to
collaborative learning activities is to facilitate co-
constructive activities. This is typically achieved through
shared workspace environments which allow the co-
learners to synchronously and jointly elaborate external
representations. Systems may differ considerably with
respect to the degree of semantics or structure that is
explicitly captured by the computerised representation:
Whereas the internal structure of whiteboard (drawing)
tools is based on strokes, colours and geometrical shapes,
concept mapping tools constitute “semantic” relations
between certain objects or nodes. However, it is not
clearly defined in how far the semantics of the
representation is interpreted by the machine. Internally, a
concept mapping tool may just be based on a graph
representation which is perfectly acceptable for many
purposes. On the other hand, more specific representations
such as Petri Nets or visual programming languages come
with a clearly defined and rich internal operational
semantics. In this paper, we present some ongoing work
within the European DiViLab project [1] focusing on an
approach of adding a semantic structure to co-operative
visual language environments without assuming a priori a
given specific domain semantics.

The main objective of this approach within this project
is to support a great portion of the typical laboratory
activities in science education: taking group decisions
about experiments, building and verifying hypotheses as
well as modelling data, integrated with discussing about
the results of experiments with partners. Yet, also co-
operative tasks in other domains, mainly those that require
both collaboration and domain dependent activities, can
easily be supported due to the flexibility of the approach.

2. Treatment of domain content in existing
environments

Concerning the treatment of domain content in existing
visual language environments, two extremes are currently
predominating: on the one hand, some specialised visual
languages like system dynamics models [2] provide a
complete semantic definition of each object and therefore
allow for detailed model based support. On the other
hand, flexible systems like Belvedere [3] or the
CardBoard [4] do not interpret the content of the objects
but only restrict the rhetorical or argumentative type of an
object (e.g. “hypothesis” , “conclusion”).

Most general purpose tools aim at obtaining easy-to-
communicate visualisations rather than at interpreting
semi-formal representations. The focus is on providing
interactive interfaces to represent a domain or support a
certain task, not on system-internal structure and
semantics. Mainly, the supported task is co-operative, e.g.
discussion [5] or scientific argumentation [6] or
knowledge elicitation [7]. The gIBIS System [8], is an
early example of using visual languages to represent and
elaborate arguments during a design process. The Sepia
System [5] was developed for the co-operative design of
hypermedia documents. It offers four types of visual
workspaces (planning, argumentation, content and a
rhetorical space), which are connected through a central
database. Belvedere [3] was designed to teach students
scientific argumentation. It offers two types of content
objects, data and hypotheses. The system is able to check
and criticise user input based on certain argumentation

rules like “do not formulate hypotheses without data
suporting them”.

The work reported here elaborates on the CardBoard
environment [4] which allows to create multiple visual
languages by parameterising a general shared workspace
environment. A special language profile specifies the
syntax of the respective language, in terms of a set of
relations, their argument slots, and of basic object types.
To add or plug in semantics in terms of domain models or
knowledge bases, an interface is provided that transfers
actions from the visual language environment to a
semantic module [9]. In this sense, CardBoard is of
general-purpose type, yet it is relatively easy to extend
with semantics.

Domain specific visual tools like STELLA [10] or
Rational Rose [11] provide visual interfaces for existing
model semantics, here “system dynamics” (STELLA) or
UML (Rational Rose). Although these tools can be shared
through general synchronisation mechanisms, there is no
special focus on supporting synchronous collaboration. A
recent example of a collaborative learning environment
based on a domain-specific visual language is the COLER
system [12]. COLER supports the co-construction of
entity-relationship (ER) models for database modelling.

3. Central ideas and challenges exemplified

For man applications it is desirable to have a system
which integrates multi-purpose structuring tools, e.g. for
discussion, with specialised domain-related functions.
This has recently been proposed by van Joolingen [13] in
regard of integrating simulations with argumentation
environments to support “collaborative discovery
learning” in science education.

Generalising this from the viewpoint of visual
languages leads to “partially formal” languages in which
some objects have a specified domain-related
functionality and semantics, enabling the system to
provide e.g. special tools, means of analysis or domain-
related support, mixed with other elements that represent
generic aspects of the environment (e.g. discussion state-
ments).

Dividing a visual language into content objects (nodes)
and relation objects (edges or connections between
content objects), the content objects typically contain
textual information or images although many other media
types are imaginable. The “meaning” or interpretation of
the content of an object can generally only be derived by
the system if a domain specific context is available, either
predefined, as e.g. within a UML tool like [11], or
dynamically assigned by the user.

Example 1: Enrichment of content objects

Imagine a brainstorming session in a group of
musicians, trying to find the theme for their next song.
Entering the text “ACE” in an “ idea” node of a shared
workspace is here meaningless for the system at first, but
a context-specification like “domain = music” provides a
semantic clue – probably similar to the one the users have.
Having this semantic information, the system is able to
offer further specific content objects like “ transpose” ,
“play” or “show as notes” (see Figure 1).

Figure 1. Domain-specific object spaces

Example 2: Enrichment of relation objects

Concerning the relation objects, we can state that in
most of the general-purpose visual languages, relations
between content objects are of a more or less general type
like “supports” or “contradicts” , sometimes just “ related
to” or “associated with” . Yet, the same idea as for the
content objects also holds here: having information about
the domain context of content objects and the necessary
input contexts of a relation object offers the possibility to
integrate highly specialised tools with general
environments.

Here, an example is the integration of data modelling
and argumentation in the domain of experimental
sciences. Figure 2 shows a possible result of a co-
operative discussion about an experiment on free fall
going hand in hand with the modelling of data. This
example is generalisable and clearly points out the major
advantage of this approach: remaining in a flexible
environment that supports the overall task, the users can
“plug in” the specific components they need without
loosing the domain context (here: analysis of an
experiment) or the social context (doing the analysis with
a partner).

Figure 2. Augmenting discussion spaces with
data modelling

4. Approaches for the definition of domain
content in visual languages

To implement our central idea – extension of co-
operative visual language environments towards a flexible
integration with domain content for reasons of
intelligently supporting workflow management and
reflection – we have identified the following challenges in
terms of representation, information and interpretation:
- How can varying but domain dependent content be

represented flexibly?
- How can a system interpret externally defined context

information following a “plug in” approach?
- Which levels of interpretation are imaginable?
- Which user interfaces are appropriate to support the

users’ handling the information?
- How should an application be structured into

components to reach these aims?

These questions can be broken down into two
categories - the first one dealing with the meta level of the
overall system structure, the second one with the micro
level around the topic “representation of domain
semantics in visual languages” .

4.1. System structure

The main function of the system component structure is
to facilitate the handling of varying visual languages. In
our approach, this is realised by the approach shown in
Figure 3.

Figure 3. System and controlling structure

The environment is able to manage several workspaces
represented in different windows. This offers the
possibility to have private and shared sessions
simultaneously or to clearly separate of independent
collaborative tasks.

Each workspace can contain a number of transparent
layers which can have “solid” objects like e.g. handwriting
strokes or images. Similar to the workspaces, layers can
be private or shared. A typical use case for this is a private
handwriting layer used for personal annotations (see
Figure 4).

Figure 4. Layer-wise synchronisation

The controller component is the central interface
between the static (application level) and the dynamic
(visual language level) components of the system. It
manages the assignment of visual languages to
workspaces and layers and controls the options for the
users, in particular the creation of new workspaces and
new layers in existing workspaces.

The example below shows a (simplified) declaration of
an environment named “Petri net discussion” with one
predefined workspace named “Petri net editor” . The user
is allowed to open other workspaces (“ type=extendable”
in environment tag). The predefined workspace has two
layers, one for handwriting and one containing two
palettes (representing visual languages), petri net symbols
and generic discussion elements. No more layers are
allowed here (“ type=fixed” in workspace tag).

<Envi r onment l abel =” Pet r i net di scussi on”
 t ype=” ext endabl e” >
 <Wor kspace l abel =” Pet r i net edi t or ”
 t ype=” f i xed” >
 <Layer l abel =” Gr aph l ayer ”
 mode=” gr aph” >
 <Pal et t e l ocat i on=” pet r i . xml ” / >

 <Pal et t e l ocat i on=” di scuss. xml ” / >
</ Layer >
<Layer l abel =” Annot at i ons”

 mode=” handwr i t i ng” / >
 </ Wor kspace>
</ Envi r onment >

4.2. Representation and interpretation of domain
dependent content in visual languages

A major problem in trying to build a system that uses
externally defined visual languages together with another
representation of domain dependent content or models is
due to the facts that (usually) the domain dependent
content
- might have a complex structure (model),
- might require a complex visual or other

representation (view),
- might have to be interpreted (controller).

An external definition of a visual language, however,
would usually allow for easily representing the model, e.g.
using XML. The controller part (and to some extent also
the view) is far more difficult as it typically contains the
operational semantics and thus involves active operations
- something that a pure data file is not designed for. Going
one step further, this leads to the question of how, if the
operational domain semantics cannot be captured in
external data files, the representation of the interpretation
can be linked to the representation of the model.

The solution we propose relies on reference frames.
Each object (at least those with defined domain dependent
semantics) provides a link to one of these and, in order to

interpret the content of an object, the system generally
performs three steps:
1. look for the appropriate reference frame,
2. consult the reference frame with the current content

of the object as parameter,
3. get as result the changes in the object structure.

So, basically interpretation here means interpretation in
a – or through a – reference frame. Yet, there remain some
possible ways of realising these frames which are
compared (using XML for data and Java for code) in the
following. The objects shown in Figure 5 serve as an
example, where one node is used for input of function
terms and one for visualising function graphs.

Figure 5. Example nodes

Approach A: XML file links to class files:

In this approach, the XML file contains only links to
Java classes that contain the complete code (model, view
and controller). The interaction between the two types of
nodes is externally defined in a reference frame expressed
in the class “Functions” .

<node t ype=” Funct i onTer mNode. cl ass”
 f r ame=” Funct i ons. c l ass” / >
<node t ype=” Funct i onDi spl ayNode. cl ass”
 f r ame=” Funct i ons. c l ass” >

While this approach is very general and covers a wide
variety of domains, the major disadvantage is the lack of
usability. In order to construct a visual language for a
specific domain, the user has to write Java classes which
implies that “non-programmers” will not be able to use the
system in the desired flexible way. But also for
experienced users, the task to build user defined languages
might be quite complex due to the necessity of
understanding the system internal code structure up to a
certain degree.

Approach B: Complete description within the XML file

Here, the classes needed for the content objects in the
visual language are compiled at runtime (or, optionally:
interpreted). In this approach, the reference frame is only
used as an identifier so that the environment can deal with
the connection of objects “belonging together” from a
domain semantics point of view like a field for formula
input and a graph plotting component.

In the description, there are three main parts - the view
with the appropriate parameters, a reference to the model
type, here MathML, and the controller. The function of
the latter here is mainly to give changed content of the
object to any “ interested” other component, e.g. the
function display.

<node t ype=” Funct i onTer mNode”
 f r ame=” f unct i ons” >
 <vi ew>
 <i con l ocat i on=” Funct i onI con. gi f ” / >

<shape t ype=” r ect angl e” / >
<col or r =” 255” g=” 255” b=” 255” / >
<i nput t ype=” st r i ng”

 cont ent =” x^2” / >
<si ze wi dt h=” 100” hei ght =” 50” / >

 </ v i ew>
 <model t ype=” Mat hML” / >
 <cont r ol l er >

<submi ssi on t i me=” onChange” / >
<r ecept i on t i me=” never ” / >

 </ cont r ol l er >
</ node>

In this approach, the representation of the display
component is impossible as there is a need of parsing the
MathML that the input component produces in order to
plot the function graph. This is also the main disadvantage
here - apart from some imaginable “easy” cases, no
interpretation of domain semantics is directly possible.

Approach C: An intermediate solution

The central idea in this approach is to describe the
suitable parts of the object in the data file. This will in
most cases be the model (that usually has a natural XML
representation) and - in some cases - the view. The
controlling part is a link to the reference frame which
itself points to a method in a class that realises the needed
operations on the models, in this case the parsing of the
MathML and the plotting of the function values.

<node t ype=” Funct i onTer mNode”
 f r ame=” f unct i ons. xml ” >
 <vi ew>

<i con l ocat i on=” Funct i onI con. gi f ” / >
<shape t ype=” r ect angl e” / >
<col or r =” 255” g=” 255” b=” 255” / >
<i nput t ype=” st r i ng”

 cont ent =” x^2” / >

<si ze wi dt h=” 100” hei ght =” 50” / >
 </ v i ew>
 <model t ype=” Mat hML” / >
 <cont r ol l er oper at i on=” submi t Model ” / >
</ node>

<node t ype=” Funct i onDi spl ayNode”
 f r ame=” f unct i ons. xml ” >
 <vi ew cl ass=” Di spl ayVi ew. cl ass” / >
 <model t ype=” Mat hML” / >
 <cont r ol l er oper at i on=” r ecei veModel ” / >
</ node>

<f r ame t ype=” f unct i ons” >
 <oper at i on name=” submi t Model ”
 c l ass=” Par ser . c l ass”
 met hod=” set Ter m” / >
 <oper at i on name=” r ecei veModel ”
 c l ass=” Par ser . c l ass”
 met hod=” par seTer m” / >
</ f r ame>

This approach seems suitable as it combines the
advantages of the previously presented ones, usability and
flexibility. In order to construct a visual language
description that embeds domain dependent semantics, the
user can describe most parts of the language in the XML
file. Only the needed components, here mainly the
interpretation of mathematical formulae, have to be
written in a programming language - the system-
dependent overheads are invisible to the user.

5. Collaboration support

As in many existing environments, our primary support
for collaboration relies on the use of shared workspaces.
Technically, this is realised using the MatchMaker server
[14] offering a replicated architecture, partial
synchronisation features and dynamic synchronisation.
According to the system structure as outlined in chapter
4.1 and the intended flexibility of the system, the
synchronisation of objects is possible in the following
different ways, each related to specific use cases and
outlined briefly in the following:

Coupling by application

The standard case used in most environments - the
complete application (all the workspaces) are
synchronised. This is useful e.g. for larger tasks involving
different sessions or for different synchronised views on a
discussion.

Coupling by workspace

In this case, the users can have multiple private and
shared workspaces simultaneously which is practical when
e.g. being in different user groups at the same time or in
order to realise jigsaw designs for co-operative tasks.

Coupling by layer

This way of coupling applications provides e.g. the
option to have private annotations on synchronised
workspaces. An example with a private handwriting layer
is shown in Figure 4.

Coupling by semantic unit

Here, the synchronised objects belong together
semantically, either as defined in a reference frame or as
selected by the user through the grouping of elements. A
characteristic use case of this way of coupling might be
the “publication” of a developed model (excluding the
private comments) in order to discuss it in a group.

Coupling by object

This is the “ lowest” level of synchronisation - here, the
synchronised objects “ to be discussed co-operatively” can
be explicitly defined; any other objects will be private.
This mode allows a highly detailed control and definition
of the co-operative task and its conditions.

7. Outlook

We believe that shared workspace environments will
be more and more integrated with semantic support
without giving up the provision of a very general
“syntactic” platform. In our current work, we are
redesigning and reimplementing the CardBoard environ-
ment on a Java basis to support the specific needs of
modelling and data analysis in science education. As a
next step, we plan to integrate graphically defined models
with complete operational semantics (based on system
dynamics) with the environment presented above. Another
extension focuses on augmenting workspaces with
archiving and retrieval functionality.

8. Acknowledgements

Parts of this work refer to the European IST project
No. 1999-12017, DiViLab.

9. References

[1] DiViLab. EU funded IST project (no. 12017) Distributed
virtual laboratory. http://www.divilab.org
[2] Forrester, J. W. (1968). Principles of Systems. Waltham, MA
(USA): Pegasus Communications.
[3] Suthers, D., Weiner, A., Connelly, J. & Paolucci, M. (1995).
Belvedere: Engaging students in critical discussion of science
and public policy issues. In Greer, J. (ed.), Proceedings of the
9th World Conference on Artificial Intelligence in Education
(pp. 266-273). Washington DC (USA).
[4] Gaßner, K., Tewissen, F., Mühlenbrock, M., Loesch, A. &
Hoppe, H. U. (1998). Intelligently supported collaborative
learning environments based on visual languages: a generic
approach. In Darses, F. & Zaraté, P. (eds.), Proceedings of 3rd

International Conference on the Design of Cooperative Systems
(pp. 47-55). Cannes (France).
[5] Streitz, N., Haake, J., Hannemann, J., Lemke, A., Schuler,
W., Schütt, H. & Thüring, M. (1992). SEPIA: A coopoerative
hypermedia authoring environment. In Proceedings of the 4th

ACM Conference on Hypertext (pp. 11-22). Milan (Italy).
[6] Buckingham Shum, S. & Hammond, N. (1994).
Argumentation-based design rationale: What use at what cost?.
In International Journal Human-Computer Studies, 40, 603-
652.
[7] Gaines, B. R. & Shaw, M. L. G.(1993). Knowledge
acquisition tools based on personal construct psychology. In The
knowledge engineering review, 8, 49-85.
[8] Conklin, J. & Begemann, M. L. (1987). gIBIS: A hypertext
tool for team design deliberation. In Proceedings of
Hypertext’87 (pp. 247-251). Chapel Hill, NC (USA).
[9] Mühlenbrock, M., Tewissen, F. & Hoppe, H. U. (1997). A
framework system for intelligent support in open distributed
learning environments. In du Boulay, B. & Mizoguchi, R. (eds.),
Artificial intelligence in education: Knowledge and media in
learning systems (pp. 191-198). Amsterdam (The Netherlands):
IOS Press.
[10] STELLA. http://www.hps-inc.com
[11] Rational Rose. http://www.rational.com
[12] Constantino-Gonzalez, M. & Suthers, D. (2000). A
coached collaborative learning environment for Entity-
Relationship modeling. In Gauthier, G., Frasson, C. & VanLehn,
K. (eds.), Proceedings of 5th International Conference on
Intelligent Tutoring Systems (pp. 324-333), Montréal (Canada).
Berlin, Heidelberg: Springer.
[13] Joolingen, W. R. van (2000). Designing for collaborative
discovery learning. In Gauthier, G., Frasson, C. & VanLehn, K.
(eds.), Proceedings of 5th International Conference on
Intelligent Tutoring Systems (pp. 202-211), Montréal (Canada).
Berlin, Heidelberg: Springer.
[14] Tewissen, F., Baloian, N., Hoppe, H. U. & Reimberg, E.
(2000). "MatchMaker" Synchronising Objects in Replicated
Software-Architectures“ . In Proceedings of 6th International
Workshop on Groupware, CRIWG 2000 Madeira, Portugal, 18 -
20 October 2000, IEEE CS Press.

