
Naughty Agents Can Be Helpful:

Training Drivers to Handle Dangerous Situations in Virtual Reality

Yongwu Miao*, Ulrich Hoppe*, and Niels Pinkwart**

* Institute for Computer Science and

Interactive Systems

The University of Duisburg-Essen, Germany

(miao, hoppe)@collide.info

** Human Computer Interaction Institute

Carnegie Mellon University, USA

nielsp@cs.cmu.edu

Abstract

Recently many car driving simulators have been

developed and used for educational purposes. They

can provide special training opportunities that are not

available frequently in reality. However, currently

existing simulators often rely on predefined situations

and scenarios. Training students to deal with

spontaneously occurring dangerous traffic situations is

difficult when using hard wired “emergency”

situations that occur in a predictable manner. In this

paper we present a new approach to provide special

learning opportunities. We adopt intelligent agent

technologies to develop the “problem creator”, a

pedagogical agent who can deliberately cause

dangerous situations. Introducing the problem creator

into our collaborative 3D virtual car driving

environment makes it unpredictable when, where, and

what type of abnormal situations the students will be

confronted with. These irregularly occurring

challenges model the reality of car driving well.

1. Introduction

Car driving is a kind of high-performance task

where the driver must continuously adjust his behavior

to changes in his environment. Sometimes, a driver has

to make decisions and take actions quickly to handle

unfamiliar and even dangerous situations that occur

spontaneously. Without any skill to react to such an

urgent event once it occurs, the driver may cause (or at

least be involved) in serious accidents and even pay his

life. Therefore, training to handle (and intuitively

anticipate) abnormal situations should be a very

important part in car driving training programs.

However, it is currently impossible or too expensive to

set up such training situations in reality.

The advantages of simulators for training high-

performance tasks like car driving have been pointed

out in literature [5, 10]. Using a simulator, a trainee is

able to practice the handling of potentially dangerous

emergency situations in virtual reality. Because these

“emergency scenarios” are usually hard coded or

scripted [3, 11], a simulator can repeatedly present

traffic situations to students, replay driving failures to

learners, and repeat exercises in a training course until

the trainee can handle them successfully. Yet, the

problem is that if the same “emergency situation”

occurs repeatedly, a trainee can easily predict what will

happen and thus prepare for the situation. This is

unrealistic, since in the reality of car driving emergency

situations occur unpredictably.

In this paper, we present a new approach to train

learners to handle abnormal situations. We employ the

problem creator, a kind of pedagogical agent that can

deliberately create abnormal situations within a

collaborative 3D car driving simulation environment.

When, where and in which order the abnormal

situations will be created is unpredictable. In this

paper, we will give an overview of our collaborative

3D car driving simulation. Then the design and

implementation of a problem-creator will be described.

We also discuss the usage of the problem-creator and

compare related systems. Finally, we draw conclusions

of our work and point out future directions.

2. A Collaborative Car Driving Simulation

Environment

This section provides an overview of our

collaborative 3D car driving simulation environment.

In this learning environment, multiple users can drive

cars in a shared virtual driving place. Thus, specific

traffic situations can involve the cars of multiple

learners. A detailed description of the technical

approach is available in [7, 8].

In order to support multiple users to virtually drive

their cars in a shared driving place, we developed a

real-time groupware application. Figure 1 shows the

principles of information flow within our collaborative

car driving simulation system, which employs a

classical server/client architecture. We use the TSpace

system [6], a tuple space based solution, to develop the

server. The server maintains the current state of a

driving place as a set of tuples, some of which are static

while others are dynamic. Each client application,

running on user’s local machines, interacts with the

remote space.

Figure 1: Interaction between tuple space,

learners, and intelligent agents

Each learner controls his virtual car and views the

shared driving place through a car driving simulator

(locally running application). The state of his car is

represented as a tuple in the space. The elements of

such a moving car tuple are position, orientation,

direction, speed, and the state of the brake and

indicator lights. As the learner takes actions (e.g.,

speeding up, braking, changing direction, and turning

on/off a light), the state of the car will change in the

local data, and the responsible client application will

remotely rewrite the corresponding tuple in the server.

Other clients that are interested in knowing the update

of the tuple will be informed. These clients will then

read the tuple and update their local data. Thus,

consistence of the dynamic data is preserved.

As shown in figure 1, each learner’s application

client includes a coach agent, a pedagogical agent that

can provide the learner with situated instructions

(feedback on the user’s driving performance, warnings,

etc.). Conceptually, the described static and dynamic

objects in a driving place are elements of so-called

“situations”. A situation is defined as an identifiable

configuration of a set of static and dynamic objects

surrounding a user’s car. We used JESS [4], a rule-

based logic programming system, as the technical

platform to encode these objects as facts. The

production rules used within the JESS engine represent

the following knowledge: situation detection, expert

knowledge, and pedagogical knowledge. In summary, a

coach agent can “look over the shoulders” of a learner

and provides advice when detecting a mistake. Note

that the performance data of a learner (e.g., how many

times the learner committed a certain type of errors) is

stored in the server as a tuple as well, and has an

impact on the feedback given by the coach agent.

While a coach agent does not appear directly in the

shared driving place, a situation creator, another

pedagogical agent represented as a car in the virtual

driving place, can move around in the shared driving

place. He drives according to traffic rules and can

intentionally create situations for learners. As described

in [9], a situation creator has special knowledge to

create situations according to the needs of learners. The

created situations are normal and often occur in the

real world – e.g., a situation creator is able to bring

learners into situations where they have to respect

certain rules about right of way at traffic junctions. The

situation creators are opportunistic and intentionally

look for chances to create such “normal” situations that

offer learning opportunities to trainees.

3. The Design of the Problem Creator

The purpose of the work described in this paper is to

train learners how to handle abnormal situations by

setting up dangerous situations in virtual reality. We

extend the concept of the situation creator and develop

the problem creator, a pedagogical agent that can

intentionally create abnormal situations which

challenge learners. In contrast to the normal situation

creator, the problem creator will not always respect the

traffic rules (thereby causing abnormal situations).

Another difference is that, while the situation creator

continuously attempts to create “standard” traffic

situations (in order to make students get used to them

and handle them adequately), the problem creator has a

large degree of unpredictability and just spontaneously

creates few but highly abnormal and dangerous

situations. Together, these two agent types model quite

well realistic traffic situations.

A problem creator, represented in the shared driving

place e.g. as a vehicle, a pedestrian, a bicycler, a

motorbike, or an animal, sometimes behaves

irrationally. Its behavior intends to confront learners

with an emergency. Learners will be trained to make

decisions and take actions quickly in order to avoid

accidents. Three examples: a problem creator could be

designed as a boy who walks along the street. This boy

may suddenly dash forward onto the road immediately

in the front of the learner’s car. Another example is a

simulation of a drunk driver who cannot control his car

properly and leaves his lane, frontally approaching the

learner’s car. This puts the learner into a dangerous

situation where he has to react immediately to avoid a

crash. A third example is a so-called crazy-driver,

which we will describe in detail in the next section.

Similar to all problem creators, a crazy-driver moves

on the roads rationally most of the time. However, it

may brake suddenly and without any reason in front of

a learner’s car.

A problem creator is generally designed with two

states. In the rational state, it behaves normally and

according to the traffic rules. The learner can not

distinguish it from other learners’ vehicles or normal

situation creators. For example, a child walks along the

sidewalk, a drunk driver stays on his lane, and also the

crazy-driver does not brake without reasons. In the

irrational status, they all behave abnormally and

intentionally cause trouble. It is important to note that a

problem creator is not always in the irrational status,

thereby retaining the spontaneous character of the

situations they invoke.

A problem creator has domain knowledge, specific

knowledge, pedagogical knowledge, and access to user

models. While the domain knowledge is used to control

the behavior of the simulated object in rational state,

the specific knowledge is used to create dangerous

situations in the irrational state. Note that both domain

knowledge and specific knowledge are not directly

taught to learners by the agent. The pedagogical

knowledge is represented as a set of pedagogical

strategies that determine when, how urgently, and how

frequently to create dangerous situations. The user

model maintains information about how often a learner

has already encountered dangerous situations of a

specific type, about his past performance in these

dangerous situations, and the time of the last abnormal

situation.

Since a problem creator does not communicate

directly with users, it has no explicit interaction model

(in contrast to typical pedagogical agents). However, a

problem creator indirectly communicates with learners

through the simulation environment. Technically, it

works as a repeated process which starts by capturing

the current state of the environment and ends by acting

on the environment. This cycle is similar to the

perception/action cycle of human users who also

continually adjust their driving actions based on

changes in the environment.

4. The Implementation of a Crazy-driver

As a special situation creator, a problem creator has

the same system architecture and generic work

procedure as a situation creator. These are described in

[9]. In this section, we describe the implementation of

the crazy-driver, a particular problem creator. Figure 2

shows its algorithm. The two large gray rectangles

represent the crazy-driver agent and the simulation

environment. Inside the agent rectangle, each white

rectangle represents a functional component and each

diamond represents a decision. Each solid line arrow

indicates the control flow, and a dashed line arrow

indicates the interaction between the agent and its

environment. A processing cycle consists of two phases

separated by a dashed line in the diagram. The task in

the first phase is seeking or maintaining a goal, and in

the second phase the agents attempts to reach the goal

through making and executing an action plan. Note that

a crazy-driver has an independent process thread that

randomly switches the state of the agent between

rational status and irrational status.

In each processing cycle, the crazy-driver first

monitors the state of the driving place and the

performance of the learners. The crazy-driver then

checks its current status. If in rational status, it will

behave like a skilled driver and take a random route on

the streets. Otherwise, it will check whether it already

has a goal or a goal has been achieved. A goal of a

crazy-driver is to brake in front of a specific target car

controlled by a learner. If a goal has been achieved or

no goal exists yet, the crazy-driver seeks a new goal.

To do so, it looks for learner-controlled cars. The

crazy-driver puts all candidates in a queue sorted by

distance between the agent’s car and learners’ cars and

by driving direction. The agent then first selects the

learner whose car is closest to and behind his own car.

When a candidate is selected, the crazy-driver looks up

in the learner model whether the candidate needs

training in reacting to the emergency situation (braking

of the front car) according to his past performance. If

the candidate needs training, the agent will treat this

candidate as the target (set a new goal). Otherwise, the

agent considers the next candidate until the queue is

empty. If no candidate can be found in the queue, it

means that the agent fails to seek a goal in this cycle

and will behave just like a skilled driver (i.e., drive

correctly with no specific destination). However, it will

try to seek a goal in the next processing cycle.

Figure 2: Flowchart of the agent processing

If a crazy-driver already has a goal, the goal will be

evaluated in each processing cycle. Due to the nature of

the dynamic simulation, it may happen that the goal

cannot be realized any more. Whether the goal is still

realizable or not depends on the current state of the

learner’s car (e.g., position, direction and velocity), the

driving place (e.g., road network) and the state of the

agent’s car. E.g., if a target car, for any reason, moves

away and it is too difficult for the agent to get in front

of the target car, the goal is not realizable any more.

The agent then gives up the goal and behaves like a

normal driver in this cycle. For the crazy-driver, a

simple rule is: as long as the target car is moving in the

same direction on the same road and is behind the

agent car, the goal is still realizable.

If an agent has a realizable goal (newly set or not), it

performs actions to achieve it. To do this, it first

creates an action plan that can be adjusted later if

needed. For example, if there are other cars in between

the agent car and target car, the crazy-driver agent will

slow down and let other cars overpass. It will always

try to reach the position just in the front of the target

car. Having achieved this, it then adopts certain

strategies (e.g., speeding up or slowing down) to

seduce the target to violate the safety distance rule.

Whenever the target car is close to a distance of

unsafety, the agent will then brake suddenly.

5. A Usage Scenario

In this section we describe a brief usage scenario

that shows how the problem creator and the other

agents work from the perspective of a learner.

When a learner logs into the system and chooses a

driving place, he can see a lot of other vehicles moving

in the driving place through his simulator. However, he

does not know which of these cars are controlled by

other learners and which are controlled by agents. He

can navigate his car through the driving place.

Whenever a situation occurs that the trainee does not

handle well, the coach agent provides advice. It also

gives feedback on successfully mastered situations.

Occasionally, abnormal situations may take place (e.g.,

a child runs onto the road or a car enters his lane and

approaches him frontally). Such abnormal situations

may be caused by co-learners since they often make

mistakes. However, it is more probable that the

abnormal situations are caused by the problem creators

because they deliberately create dangerous situations.

For example, when a learner moves the car on the

way, suddenly the brake-light of the car in the front

goes on, and the learner has to stop immediately to

avoid a collision. If he is successful, he can continue

driving in the shared driving place. Note that his

sudden braking creates an emergency for the cars

behind him, which may be the cars of other learners. If

a driver does not solve this situation and collides with

the car of the problem creator, as a consequence the

learner will be informed by the coach agent how

serious the accident is and what he should do in such a

situation. Then he will resume from a parking place.

After some training time, the learner has understood the

importance of, while driving in “normal” traffic, still

being always prepared for unpredictable dangerous

situations, and has practiced how to react in these

situations.

6. Related Work

This section discusses related work in two aspects.

We first compare our approach to other car driving

simulators, and then compare the problem creator with

the “trouble-maker”, a similar pedagogical agent.

As mentioned in the introduction, abnormal

situations in existing car driving simulators are usually

hard coded or scripted [3, 11]. Repeated and

predictable occurrences of the same predefined

“emergency” in a training program may lead the trainee

to a false impression. He may well be able to handle

the repeatedly occurring emergency situation

successfully. However, this does not imply that he can

deal with the same type of situation occurring in

different circumstances, particularly if he has trained

the same repeated process with the simulator a lot of

times. Our agent-based approach ensures that similar

situations will occur unpredictably and in different

contexts. In addition to the unpredictable behavior of

the agents, also the multiple participating human users

who practice in the same virtual driving place make it

impossible for a learner to foresee exactly how they

will be challenged and how they will have to react.

Conceptually, the problem creator is similar to the

trouble-maker agent, a special learning companion [1,

2] that sometimes disrupts learners deliberately by

giving incorrect answers and by simply contradicting

them. Such kinds of learning companions confront

students with other’s opinions and urge them to justify

their own ideas. However, the problem creator has no

direct interaction with the learner. Instead, it indirectly

creates dangerous situations for learners in a 3D

collaborative simulation environment.

In summary, our approach as presented in this paper

can be distinguished from existing systems through its

use of intelligent agent technology to provide special

training situations in a collaborative 3D simulation

environment.

7. Conclusion and Future Work

While simulation can not and should not be used to

completely replace driving in a real car, the hours spent

on the simulator can reduce the number of hours the

learner needs to spend in a real car. Using the simulator

for training can save time and costs. In particular, the

learners can learn to handle dangerous situations (e.g.,

children, gap acceptance, dangers of alcohol, changing

lines, open doors, and so on) without taking risks.

Currently, car driving simulators are mainly used for

training learners to react to emergencies by repeatedly

using predefined scenarios. In this paper, we presented

a new approach. An intelligent agent named problem

creator was developed which can deliberately create

dangerous situations within a collaborative simulation

environment. The design and implementation of a

problem creator, which can confront learners with

abnormal situations unpredictably, has been described.

We have implemented a prototype system, which

currently can only create three types of situations. We

will extend it for creating more kinds of abnormal

situations. Also, we are planning studies which measure

the effect of the different agents (coach, situation

creator, and problem creator) on the learner’s skill

gains.

References

[1] Aïmeur, E., Dufort, H., Leibu, D., & Frasson, C., (1997).

Some justifications about the learning disturbing strategy. In

Proceedings of AI-ED’97, Japan, pp. 119-126.

[2] Aïmeur, E., & Frasson, C. (1996). Analyzing a new

learning strategy according to different knowledge levels.

Computers & Education, 27(2). pp. 115-127.

[3] Allen, R. W., Rosenthal, T. J., Parseghian, Z., &

Markham, S. (2001). A scenario definition language for

developing driving simulator research, evaluation and

training courses. In Proceedings of the 6th Driving

Simulation Conference, September 5 - 7, 2001, Nice, France.

[4] Friedman-Hill, E. (2003). Jess in Action : Java Rule-

Based Systems. Manning Publications.

[5] Hays, R. T., & Singer, M. J. (1989). Simulation Fidelity

in Training System Design. New York: Springer-Verlag.

[6] Lehman, T., McLaughry, S., & Wyckoff, P. (1999).

TSpaces: The Next Wave. In Proceedings of Hawaii

International Conference on System Sciences (HICSS-32),

January 1999.

[7] Miao, Y. (2004). Supporting Situated Learning for

Virtual Communities of Practice: Representation and

Management of Situated Knowledge. In Proceedings of

ICALT’04, pp. 490-494, Joensuu, Finland.

[8] Miao, Y., Pinkwart, N., & Hoppe, U. (2006). Conducting

Situated Learning in a Collaborative Virtual Environment. In

Proceedings of the 5th International Conference on Web

Based Education, pp. 7-12. Anaheim, CA: ACTA Press.

[9] Miao, Y., Hoppe, U., Pinkwart, N., Schilbach, O., Zill,

S., & Schloesser, T. (to appear). Using Agents to Create

Learning Opportunities in a Collaborative Learning

Environment. In Proceedings of the 8th International

Conference on Intelligent Tutoring Systems, June 26 - 30,

2006, Taiwan.

[10] Patrick, J. (1992). Training: Research and Practice.

London: Academic Press Limited.

[11] Wolffelaar P., Bayarri S., & Coma, I. (1999). Script-

based definition of complex scenarios. In Proceedings of the

4th Driving Simulation Conference, July 7 - 8, 1999, Paris,

France.

