
Operationalizing the Continuum between
Well-Defined and Ill-Defined Problems

for Educational Technology
Nguyen-Thinh Le, Frank Loll, and Niels Pinkwart

Abstract—One of the most effective ways to learn is through problem solving. Recently, researchers have started to develop

educational systems which are intended to support solving ill-defined problems. Most researchers agree that there is no sharp

distinction but rather a continuum between well-definedness and ill-definedness. However, positioning a problem within this continuum

is not always easy, which may lead to difficulties in choosing an appropriate educational technology approach. We propose a

classification of the degree of ill-definedness of educational problems based on the existence of solution strategies, the implementation

variability for each solution strategy, and the verifiability of solutions. The classification divides educational problems into five classes:

1) one single solution, 2) one solution strategy with different implementation variants, 3) a known number of typical solution strategies,

4) a great variety of solution strategies beyond the anticipation of a teacher where solution correctness can be verified automatically,

and 5) problems whose solution correctness cannot be verified automatically. The benefits of this problem classification are twofold.

First, it helps researchers choose or develop an appropriate modeling technique for educational systems. Second, it offers the learning

technology community a communication means to talk about sorts of more or less ill-defined educational problems more precisely.

Index Terms—Ill-defined domains, ill-defined problems, ITS, CSCL, adaptive educational technology, classification

Ç

1 INTRODUCTION

ONE of the most effective ways to learn is through
problem solving. Numerous directions for technology-

enhanced learning have been devised, but just few are
intended to support problem solving, including intelligent
tutoring systems (ITS), computer-supported collaborative
learning (CSCL), or computer-aided instruction (CAI).
While ITSs primarily support students in solving problems
through providing feedback, CSCL systems are intended to
help students solve problems collaboratively using a
computer system as a communication means. However,
CSCL systems can also be enhanced with the capability of
providing feedback to individuals or groups. In this paper,
we refer to systems which can give feedback to student
solutions for a given educational problem as intelligent
educational systems. Researchers have successfully devel-
oped intelligent educational systems for well-defined
problems whose solutions can be verified as correct or
incorrect, for instance in algebra [1] or physics [2]. Recently,
this research area has started considering ill-defined
problems whose solutions are assessed subjectively (e.g.,
in categories such as usefulness, aesthetic quality, or
elegance) [3]. In this paper, we focus on the nature of ill-
definedness of educational problems and its impact on the
design of appropriate learning technology.

In the same domain, both well-defined and ill-defined
problems can exist [4]. In the domain of programming, for
example, human tutors may develop many types of
programming problems. The following two assignments
illustrate that:

1. Write a Java statement to sum the two numbers 4
and 5. Please fill in the missing operator:
S = 4 ___ 5;

2. Develop an investment simulation system.

The first assignment can be considered a very well-
defined problem, whereas the second one is very ill-
defined, because it remains unclear what the simulation
system should actually do and what the users would expect
from it. We will elaborate on the ill-definedness of these
example problems in the next section.

Most researchers agree that there is no sharp distinction
between well-defined and ill-defined problems, but that
there is a continuum between well-definedness and ill-
definedness [5], [6], [7]. However, up to now a more specific
classification or investigation of this “continuum” has not
been proposed. Jonassen [8] attempted to represent a
continuum between decontextualized problems with con-
vergent solutions to very contextualized problems with
multiple solutions using three types of problems: puzzle
problems, well-defined problems, and ill-defined pro-
blems,1 stating that these problem types do not represent
a classification of well- or ill-definedness. Mitrovic and
Weerasinghe [4] divided the space of problems into
four quadrants based on ill-defined and well-defined
instructional domains and tasks (the authors considered

258 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

. The authors are with the Human-Centered Information Systems Research
Group, Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany.
E-mail: {nguyen-thinh.le, niels.pinkwart}@tu-clausthal.de.

Manuscript received 13 May 2012; revised 5 Dec. 2012; accepted 15 Mar.
2013; published online 10 Apr. 2013.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2012-05-0069.
Digital Object Identifier no. 10.1109/TLT.2013.16.

1. Jonassen used the terms “well-structured” and “ill-structured” instead
of “well-defined” and “ill-defined.”

1939-1382/13/$31.00 � 2013 IEEE Published by the IEEE CS & ES



well-defined tasks within an ill-defined domain impossible
so that one quadrant remained empty).

Is there a way to more specifically classify the degree of
well- or ill-definedness of an educational problem, and
what would be its value? While for some sorts of
educational technology that do not provide intelligent
support and adapt to the user, such as learning manage-
ment systems, the classification would have little value, the
situation is different for intelligent educational systems
that need to interpret student solutions to give feedback.
Here such a classification could be very helpful to help
designers choose appropriate analysis and feedback provi-
sion techniques.

The classification of problems proposed in this paper is
based on two dimensions. On a qualitative dimension,
problems are classified based on the existence of alternative
solution strategies, the implementation variability, and the
solution verifiability. On a quantitative dimension, problems
are distinguished based on the number of alternative
solution strategies and the number of implementation
variants. As a result, the classification consists of five
classes of educational problems:

1. one single solution,
2. one solution strategy which can be implemented in

different variants,
3. a known number of typical solution strategies which

can be implemented in different ways,
4. a great variety of possible solution strategies

(beyond the anticipation of human tutors) where
each single solution can be assessed automatically as
correct or not, and

5. problems whose solution correctness cannot be
verified automatically.

In the next section, we review characteristics of ill-
defined problems. Then, we illustrate two levels of solution
variability for problems in three different example domains
(geometry, travel planning, and programming): solution
strategies and implementation variants. After that, we
propose to classify educational problems into five classes
according to the qualitative and quantitative criteria. Based
on this classification, we analyze which educational
technology approaches can be (or have been) applied to
the different problem classes, and we argue why the
classification is beneficial for educational technology
researchers in at least two ways.

2 ILL-DEFINED PROBLEMS

In the literature, several different definitions for the terms
“domain” and “problem” in the context of learning have
been proposed [4], [5], [6], [7]. In this paper, we adopt the
notions of “domain” and “problem” as suggested by
Lynch et al. [7]. According to these authors, domains are
considered as conceptual spaces or fields of study which
can be represented in declarative or procedural knowl-
edge. An educational problem within a domain has one or
more goals that a solver must achieve. To solve an
educational problem, the solver must apply relevant
(declarative and procedural) knowledge to achieve the
goals given initial knowledge. Thus, problems can be used

to teach students about the domain. This paper focuses on
problems rather than domains, following the argumenta-
tion of Fournier-Viger et al. [6] who suggested considering
whether a problem is ill-defined and how it is ill-defined
to choose appropriate domain knowledge modeling and
reasoning techniques.

Several different definitions for the term “ill-definedness”
have been proposed—indeed, one can argue that the term
itself is somewhat ill-defined. In their review of these
definitions, Lynch et al. [7] suggested that an ill-defined
problem typically possesses the following characteristics:

1. the existence of open-textured concepts,
2. the lack of generally accepted domain theories,
3. a problem cannot be decomposed into independent

subproblems,
4. the existence of prior cases which are facially

inconsistent,
5. an analogical reasoning process using cases and

examples is needed,
6. the existence of a large solution space,
7. the lack of formal methods to verify the correctness

of a solution,
8. the lack of criteria to judge solutions,
9. the possibility to discuss solutions from different

perspectives,
10. the disagreement among domain experts, and
11. the requirement to justify solutions.

The application of these criteria to the two programming
problems introduced in Section 1 yields a fairly differ-
entiated picture. For the first problem, regarding the first
criterion for ill-definedness, no open textured concepts can
be identified, because the problem statement is clearly
formulated: A Java operator for an arithmetic calculation is
required. The second criterion, the nonexistence of a
formal theory, is also not satisfied by this programming
problem. The underlying formal theory of programming is
exactly the semantics of the machine model at hand and
therefore directly available to all problems which address
the formal aspects of programming. With respect to the
third and sixth criterion, there is no possibility to “design”
a solution and to divide the problem because the solution
structure is already prespecified by an input slot, and thus,
this programming problem does not fulfill these criteria.
For such a programming problem, there exist no incon-
sistent prior cases because the syntax of a programming
language defines clearly which addition operators can be
used, and thus the fourth criterion is not fulfilled. The
seventh and eight criterion are not fulfilled either, because
the validity of the operator for an arithmetic calculation
can be verified by the set of constructs of the programming
language. In addition, to check whether the solution is
correct with respect to the requirements of the program-
ming problem, a set of test cases can be used. Since just a
correct addition operator is required to solve this problem,
no disagreement between domain experts may happen,
and further discussion and justification can be spared, thus
criteria 9, 10, and 11 are not satisfied. The fifth criterion
seems to be relevant for this problem: the solver of this
programming problem may compare some examples for
arithmetic addition to reason about a correct addition

LE ET AL.: OPERATIONALIZING THE CONTINUUM BETWEEN WELL-DEFINED AND ILL-DEFINED PROBLEMS FOR EDUCATIONAL... 259



operator. However, this process is not required once the
solver has learned the syntax of an addition operator or
knows where to find the syntax reference manual for the
programming language. We can conclude that the first
programming problem is clearly well defined: all criteria of
this definition suggest this.

For the second programming problem, the goal seems
to be quite obvious. However, the existence of unspecified,
open-textured concepts (criterion 1) is a phenomenon
typically associated with complex programming problems.
This is central and the source of other criteria of ill-
definedness. Here, terminological clarifications and the
development of a formal model are an integral part of
finding a solution. For instance, the concept of a “net
interest rate” is used to compute the return on investment
for a given amount of money and will, thus, be relevant for
the investment simulator. This concept, however, is
defined differently in many financial institutions (e.g.,
depending on the service cost and whether the return is
paid monthly, quarterly, or yearly), and thus needs to be
specified. Furthermore, a special kind of open-textured
concept can also be identified if metalevel aspects like
efficiency, simplicity, elegance, or ease-of-use are consid-
ered. As a result, not only can solutions be considered
from different perspectives (criterion 9), but even disagree-
ment between domain experts concerning the appropriate-
ness of solutions may occur (criterion 10), and the solver
thus needs to justify her solution (criterion 11). With
respect to verifying solutions, the validity of solutions
cannot be verified easily, because no widely accepted
formal theory can be applied. In the domain of investment,
many theories exist, ranging from formal principles such
as the return on investment to more informal ones such as
a hedge. But no single theory can be proven correct
(criteria 2, 7, and 8). Solving such a problem typically
requires several interactions (discussion, negotiation, and
agreements) with potential end users to clarify basic
requirements of the problem and the solver can take prior
cases or examples into account to reason about useful
functions for an investment simulation systems (criteria 4
and 5). For example, the range of functions that the
investment simulation system should offer may depend on
individual preferences and conceptions—it is, therefore,
open to debate. Similarly, evidence for ill-defined aspects
can also be found with respect to criterion 6: an ill-defined
problem has a large solution space. Obviously, program-
ming is a constructive activity, at least at the level of
complex programs such as an investment simulation
system, much less of course at the level of “toy examples.”
Faced with a problem, a programmer usually has to choose
between alternative ways of combining different program-
ming constructs. Although the set of programming con-
structs is limited, these can be combined in many different
ways to generate correct solutions. By looking at the
internal interdependences of a problem solution, criterion 3
also provides evidence in favor of considering more
ambitious programming problems as ill-defined. Decom-
posing a given problem into subproblems usually creates
many dependences between the latter—for instance, a
subroutine is usually used to solve a subproblem and the

interface of the subroutine needs to be taken into account
when using it. In summary, according to the criteria
suggested in [7], the second problem can be considered ill-
defined, whereas the first one is well defined.

Simon [5] considered the distinction between well-
definedness and ill-definedness not as properties of a
particular problem, but rather takes the perspective of the
problem solving process which is characterized as a
heuristic search procedure. To qualify as a well-defined
problem, the solution process for the problem must have
1) uniquely specified start and end points, as well as 2) a
formal procedure that describes the transition between the
start and the end points, and 3) an evaluation function which
verifies the correctness of the state transitions. Also accord-
ing to these criteria, the first programming problem is well
defined whereas the second one is not. In general, given a
programming problem, the start point is the information
given in the problem statement, and the end point is a
program code that satisfies the requirements specified in the
problem statement. To solve the first programming problem
above, the formal procedure is described by the insertion of
an appropriate operator for arithmetic calculation, and the
evaluation function is defined based on the rules of the
programming language being used. However, given a
programming problem like the second one, a formal
procedure cannot be specified easily because in addition to
the task of applying the constructs of a programming
language, the solver has to specify the requirements of an
investment simulation system.

The two problems above illustrate the two ends of the
continuum between well-defined problems and ill-defined
problems in the same domain. Obviously, the solution
space of the first problem (consisting of one solution) is
smaller and simpler than that of the second problem
(open-ended solution space). Can a more fine-grained
insight into the structure of the solution space for a given
problem be used to characterize the degree of ill-defined-
ness of this problem? We will argue that this is indeed the
case. Lynch et al. [7] pointed out that there is a causal
relationship between the different characteristics of ill-
defined problems. For example, due to the existence of
open-textured concepts or the lack of generally accepted
domain theories, many solution variants for a problem can
be developed. Then, the developed solution variants need
to be judged and discussed, where disagreements between
experts can happen. In this light, we believe that the
solution space to a problem is a key determining factor of
ill-definedness, because one of the challenges of develop-
ing intelligent educational systems is analyzing solutions
submitted by a student to provide appropriate feedback.
Here, the space of solutions that the analysis needs to
cover is an important aspect. It is connected to the
characteristics of ill-definedness as stated by Simon in
that this space becomes intractable if start or end state are
undefined or ambiguous, and that the existence of (or lack
of) transitions and evaluation functions have an impact on
the options for automated analysis of elements (and their
connections) within the space, and thus on the structure of
the solution space.

260 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013



3 THREE QUALITATIVE CHARACTERISTICS OF

SOLUTION SPACES

3.1 Alternative Solution Strategies

In the literature, the term “strategy” has been used to
describe problem solving methods or algorithms. For
example, Chi and VanLehn [9] identified forward chaining
and backward chaining as two common problem-solving
strategies in deductive domains.2 In this respect, a
“strategy” represents a general procedure to solve problems
and is domain-independent. For example, the target variable
strategy can be used to solve problems in many domains,
including mathematics and physics [9].

By contrast, a solution strategy in our sense is dependent
on domains and problems. It represents an approach or
way to solve a specific given problem. Researchers have
suggested that experts have knowledge about problem
categories and associated solution strategies [10]. That is,
when a problem is given to an expert, she will identify its
characteristics by associating it with previously solved
similar problems and apply the solution strategy which
might typically be applied to solve problems of that type
in the respective domain. A solution strategy differs from
the notion of “solution schemas” [11] in that while a
solution strategy represents just a general approach which
can result in different solution structures, a solution
schema represents the frame or a structure pattern of
solutions. We exemplify the term solution strategy in the
following three domains:

. In the domain of travel planning, a task could
consist in finding a route between two places.
Depending on available means of transportation,
different strategies can be applied or even be
combined: for instance, driving by car, taking a
train, or taking a flight.

. In the domain of programming, alternative solution
strategies are almost always available. If, for exam-
ple, a task is to write a program to calculate the return
on investment, a direct analytic computation or an
iteration can be used. The latter solution strategy can
be further refined into naive and tail recursion.

. In the domain of geometry, alternative solution
strategies are based on the available theorems which
have been proven. If a task is to prove that the
triangle ADE is isosceles given that angle dABC is
equal to angle dACB (see Fig. 1), we either have to
prove that DE is parallel to BC to apply the isosceles
triangle theorem, which states that the angles
opposite the two equal sides of an isosceles triangle
are equal, or apply the definition of isosceles
triangles (i.e., show that AD ¼ AE holds).

Since feedback on solutions submitted by students is a
means to help students improve their solutions, feedback
should not be in conflict with the solution strategy a student
is (apparently) applying. Otherwise, it could become
useless or even confusing. This happens, for instance, if a
student has planned a trip using the train, but an automated

feedback message in the context of a car-based solution
strategy is provided (note that using a car might well be
part of a solution strategy which predominantly relies on
railway connections).

In general, a solution strategy forms the basis for the
process of finding a solution. However, it might be difficult
to hypothesize the solution strategy a student applied from
the student solution itself if the latter contains too little
information about the solution process. For example, if a
task is to find a correct number to replace the question mark
in the equation: 12=15 ¼ ?=5, a typical wrong student
answer is “2” from which a solution strategy can hardly
be derived [12]. But if the solution to be provided by the
student is richer in information (e.g., a travel plan, a proof,
or a program), then there is a chance of inferring the
solution strategy directly from the solution structure.

3.2 Implementation Variability

Once a problem solver has decided to use a specific solution
strategy to solve a given problem, she is faced with the issue
of how available means of the domain can be used for the
implementation of that strategy. That includes finding out
how to apply and arrange constructs of a particular domain
in the context of the chosen solution strategy. We illustrate
this in the three domains mentioned above.

. If in the domain of travel planning, a problem solver
has chosen the strategy of using a car, she can find
many different routes by combining different roads.
Or, if traveling by train, the planner can also
combine different train connections to reach the
desired destination.

. In the domain of programming, a programmer has
to apply the primitives of the programming lan-
guage being used. Usually, there are many different
options to implement a high-level concept. For
instance, an arithmetic expression can be con-
structed using different combinations of arithmetic
operators (þ;�; �; :;¼; <;>, etc.). Within an imple-
mentation, the sequential order of statements can
sometimes be changed without changing the seman-
tics. As a result, a solution strategy for a program-
ming problem can be implemented in many ways.

. Similarly, if a solver has decided for a solution
strategy to solve the geometry problem above (e.g.,
using the theorem that the triangle ADE is isosceles
if DE is parallel to BC), there are multiple ways to
arrange argument statements within the proof.

LE ET AL.: OPERATIONALIZING THE CONTINUUM BETWEEN WELL-DEFINED AND ILL-DEFINED PROBLEMS FOR EDUCATIONAL... 261

Fig. 1. A sample task in geometry.

2. A task domain is deductive if solving a problem requires producing an
argument, proof, or derivation consisting of one or more inference steps,
and each step is the result of applying a domain principle, operator, or
a rule.



3.3 Solution Verifiability

Some problems have solutions that cannot objectively be
verified as correct or not. Rather, solutions of such problems
can achieve a certain acceptance from a target group with
respect to aspects such as aesthetics or usefulness. For those
problems, the solution space becomes open-ended, because
the acceptance of a solution can vary between individuals.
The second programming problem (see Section 1) about the
investment simulation system meets this attribute. Here,
solutions cannot be verified as correct automatically.

4 PROBLEM CLASSIFICATION

Using three qualitative attributes discussed in the previous
section and also considering quantitative aspects (the
number of alternative solution strategies and of implemen-
tation variants), we propose to classify educational pro-
blems into five classes (see Fig. 2). On the horizontal axis,
the qualitative criterion “verifiability” distinguishes the first
four classes of problems, which have verifiable solutions,
from Class 5 problems whose solutions are nonverifiable.
On the vertical axis, problems of Classes 1 to 4 are
distinguished by the number of solution strategies and the
variability of implementation options: one solution strategy
(Classes 1 and 2), a known number of typical solution
strategies (Class 3), and a great number of solution
strategies (beyond the anticipation of a human tutor)
(Class 4). These five problem classes represent an increasing
degree of ill-definedness (from “very well-defined” to
“highly ill-defined” (see Section 6 for a discussion of the
sharpness of the classification).

Class 1: One solution strategy, one implementation. Problems
of this class can be solved according to only a single solution
strategy and have only one solution. They are specified in a
way that the solution is unique, possibly enforced by a given
solution structure or a multiple choice templates. Such
problems are suited to recall basic knowledge of the domain
being taught. Giving automated feedback to students for
problems of this type is very easy: The system only needs to
know the correct input. For instance:

. How long is the shortest route for car driving from city
A to city B? ____.

. Write a Java statement to sum two numbers 4 and 5.
Please fill in the missing operator: S = 4 ___ 5;

. Given dABC ¼ dACB, what can we say about the sides of
the triangle? AB = ___.?

Class 2: One solution strategy, alternative implementation
variants. Problems of Class 2 can be solved according to a
single solution strategy which, however, can be implemen-
ted in many different ways. Similar to the first level,
problems on this level can typically be specified precisely so
that the space of possible solutions is narrowed down to a
single solution strategy, or the input is restricted by
prespecified solution templates, for example:

. Find a route for a car driving from city A to city B.

. Write a function to compute the return R of an
investment X after N years for a fixed interest rate Y
using a FOR-DO loop.

. Given dABC ¼ dACB, prove that the triangle ADE is
isosceles by applying the isosceles triangle theorem.

To solve these problems, a student is not allowed to
implement other solution strategies: The student is re-
stricted to use cars, to choose the FOR-DO loop, or to apply
the isosceles triangle theorem as the only single solution
strategy. These restrictions narrow down the need for
analysis of the student’s intention (i.e., which solution
strategy is pursued), and thus facilitate automated feedback
provision. Problems of this class can be considered similar
to “puzzle problems” [8] which have only one single correct
solution, but several implementation variants for reaching
this solution.

Class 3: A known number of typical solution strategies. For
this class of educational problems, the student is free to
choose among several known alternative solution strategies
(which can be anticipated by a human tutor) and can
implement the chosen solution strategy according to her
preferences, for example:

. Find a route from city A to city B (using one of several
given available means of transportation).

. Write a function to compute the return on investment after
a period for a fixed interest rate.

. Given dABC ¼ dACB, prove that the triangle ADE is

isosceles.

This kind of problems is more challenging for students
than problems of Classes 1 or 2, because they have to make
appropriate design decisions between solution strategies
and implementation variants while developing a solution,
instead of simply applying a predefined solution strategy.
This class of problems is not only challenging for students,
but also for designers of intelligent educational systems.
Feedback messages which are not in accordance with the
student’s solution strategy would be misleading—as such,
either techniques to generate a reasonable hypothesis about
the solution strategy pursued by the student correctly are
required, or the system needs to be able to give feedback
independent of solution strategies.

Class 4: A great variability of possible solution strategies while
the correctness of any given specific solution can be verified
automatically. Problems in this class are so complex that it
may not be possible to a priori enumerate (and to encode
into an intelligent educational system) all possible solution
strategies that a student may pursue. The number of

262 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

Fig. 2. Classification of educational problems.



possible solution strategies is beyond the anticipation of a
human tutor. Also, if a problem needs to be solved by
dividing it into (nonindependent) subproblems, where
each of the latter can be solved using different solution
strategies, the sheer number of subproblem solution
combinations may be very large and unknown a priori if
either the problem decomposition into subproblems or the
number of solution strategies for any of the subproblem
combinations is unknown. The following problems are
examples for this class:

. Develop a travel plan from city A to city B. This problem
can be solved by dividing a route into several parts
and by combining different transportation means for
parts of the travel route (including ones probably not
anticipated by the task designer, such as “using a
surfboard”). As a result, a great amount of combina-
tions of possible routes is expected. Yet, any
combination can be verified as correct if it leads
from A to B.

. Develop a calculator to calculate the return on invest-
ment. To solve this task, a great number of design
decisions have to be taken into account concerning
many issues: the choice of appropriate data repre-
sentations, the number and kind of input parameters
considered, the presentation of the output, defining
helper functions, and so on. Hence, the space of
combinations of design decisions becomes large.
However, the correctness of each solution can be
verified using test cases.

. Develop a formula to calculate the area of the triangle
ADE. In addition to the steps of applying possible
solution strategies (based on available theorems) to
prove the ADE is an isosceles triangle, the next task
is to develop a formula to calculate the area of ADE.
There are many ways to do this, including (but not
restricted) to the following three, each of them
derived from geometry theorems:

. Applying the formula to calculate the area of a
triangle directly: a ¼ 1

2 �DE � h, where h is the
height of ADE.

. Deriving the height of the isosceles triangle ADE
from the Pythagorean theorem:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AD2 � 1

4
�DE2

r
:

. Applying trigonometry to derive the height
of ADE: h ¼ AD � cosð12 � �Þ, where � is the
vertex angle.

As a common point, for all problems of this class, even
though there are many (possibly even unpredictably many)
solution strategies, each solution could still be checked
automatically (see McCarthy’s definition of well-defined
problems [13]). Providing appropriate feedback on an
erroneous solution in accordance with the student’s solu-
tion strategy, however, is more difficult than for solutions of
Class 3 problems, since that would require an intelligent
educational system to understand the solution strategy
pursued by the student without having a list of “typical”

strategies. That is the key distinction between problems of
this class and Class 3. For instance, a classical chess problem
is the following: given a chess board with some chess
pieces, the goal of the solver is to achieve a task. For

instance, the white player has to checkmate black in N
moves. Given a known chess problem, an expert has a
number of tactics (e.g., cross-check, decoy, deflection) and
strategies (artificial castling, exchange) which can be

considered as “solution strategies.” Since these solution
strategies can be anticipated, this chess problem is an
instance of Class 3. However, if given a chess board with
initial setting, a chess expert would not be able to estimate
which solution strategy can be applied to checkmate the

opponent within N moves (because the chess problem has
to be redefined after a single move). As such, playing
complete games of chess is an instance of Class 4. This is in
consistence with the view of Simon [5] who suggested that

chess playing is ill-defined when it is viewed as the play of
an entire game, whereas it can be regarded as well defined
if it is viewed as single moves.

Class 5: Multiple solution strategies, and solution correctness

cannot be verified automatically. Solutions of problems of this
class cannot be verified automatically. This can, for

instance, occur if one criterion for a good solution is that
it should be considered “useful” or acceptable by a large
number of stakeholders. The latter requirement usually
results in controversial opinions and renders solutions not

formally verifiable. The following problems are instances of
this class: Develop the most relaxed travel plan from city A to

city B; Develop an investment simulation system; Develop the

most elegant formula to calculate the area of the triangle ADE.

Since the concepts “relaxed, elegant, investment system”

are open-textured, they need to be interpreted and rechar-
acterized. Actually, parts of these problems may be well
defined, because some aspects of the problem solutions can
be validated. For example, the task of developing a travel

plan can be executed computationally (using an algorithm)
and the resulting travel plans can be verified as correct or
incorrect. Only the aspect “most relaxed” is ill-defined as
discussed. This class of problems has also been named
“wicked problems” [14] whose solutions are not right or

wrong, but rather possible solutions need to be accepted by
all stakeholders and thus are subject to debate.

Since an automated check for solution correctness is not
possible for problems of this class, an automated provision
of feedback on student solutions through intelligent

educational systems is a nontrivial matter.

5 PROBLEM CLASSIFICATION: THE BENEFITS

The classification of educational problems into five classes
with an increasing degree of ill-definedness, as proposed in
the previous section, serves two purposes. First, it enables

designers of intelligent educational systems to choose or
develop an appropriate technique for dealing with educa-
tional problems (Section 5.1). Second, it provides the
learning technologies research community a communica-

tion means to more precisely characterize sorts of educa-
tional problems (see Section 5.2).

LE ET AL.: OPERATIONALIZING THE CONTINUUM BETWEEN WELL-DEFINED AND ILL-DEFINED PROBLEMS FOR EDUCATIONAL... 263



5.1 Approaches for Building Intelligent Educational
Systems

Researchers have devised numerous approaches to building
intelligent educational systems. In the following, we review
some of these approaches in the light of the proposed
classification. Note that this discussion, while illustrating
typical exemplary approaches suitable for the different
classes, does neither claim to be exclusive nor exhaustive.
Some approaches are suitable to be used across multiple
classes (even though they are typically used for one class),
and certainly the list of approaches discussed in this paper
cannot be complete.

5.1.1 Computer-Aided Instruction for Class 1

Class 1 problems can be solved by applying a single
solution strategy and have a single solution. Problems of
this kind are usually referred to as drilling exercises and
have often been deployed in CAI systems. These systems
are intended to test whether students have acquired
sufficient knowledge so far and to reinforce the required
knowledge [15]. For example, AnimalWatch, a system
which helps students solve arithmetic problems, poses the
following problem [16, p. 23]:

A book says that one whale can eat 21 pounds of plankton in an
hour. How many pounds can it eat it 7 hours? Enter your
answer here: ________

The task of the student is to input an appropriate number in
the given solution template. The system checks the
correctness of the student’s solution. In the negative case,
the system gives a hint indicating that the solution is
incorrect without explaining the reason (because the answer
provides too little information). In addition to indicating
whether a student’s answer is correct or not, CAIs are able
to provide a correct answer. To check the correctness of
solutions to such an exercise, the system simply needs to
compare the student’s solution against the prespecified
value in the system’s knowledge base.

5.1.2 Model-Based Approaches for Class 2

Problems of this level can be solved by applying a single
solution strategy that can be implemented in many different
variants. As compared to CAI systems, this allows addres-
sing more challenging problems while still providing
personalized feedback to students’ solutions. Currently,
model-tracing and constraint-based modeling (CBM) tech-
niques are the two most prominent approaches which have
been applied successfully for building ITSs for different
domains. Model-tracing tutors have been built for many
domains, including physics [2] and geometry [17]. In a
model-tracing system, error diagnosis and instruction are
carried out on the basis of an expert model and a set of
buggy rules. This model represents one or more solution
paths to a given problem (more if multiple implementation
variants for the strategy exist). A solution path consists of
many production rules, each of them composed as a pair of
situation and action. Buggy rules represent typical erro-
neous problem solving paths of students. Whenever a
student solution deviates from the expert model, the system
identifies the situation where the student has carried out a
wrong action.

While model-tracing systems are based on an expert
model and buggy rules, a CBM tutor is built based on a
predefined set of constraints. Researchers have successfully
developed constraint-based ITSs for various domains, for
instance, German grammar [18], or SQL [19]. Constraints
can be used both to represent general knowledge of a
domain [20] and to model properties of correct solutions to
a specific given problem. Constraints of the former type are
called principle constraints. Constraints for the latter
purpose are referred to as semantic constraints and are
used to check the semantic correctness of a student solution
by comparing components of an ideal solution with the
student solution [21]. While principle constraints are
independent of problems (and, therefore, of solution
strategies), semantic constraints are strategy-specific. Error
diagnosis is based on evaluating constraints. If a solution
violates a constraint, that means that the solution does not
adhere to a principle of the domain being learned or does
not satisfy a semantic requirement of correct solutions. The
CBM approach is able to handle different implementation
variants of the ideal solution, but it has not been designed
with a specific focus on supporting multiple solution
strategies. As a result, diagnostic information returned
from a constraint-based tutor might mislead students if the
solution strategy underlying the ideal solution is not the
same as the strategy intended by the student [19], [22].
Therefore, the CBM approach (or, more specifically, the
semantic constraints within this approach) is well suited for
problems of Class 2, where only a single solution strategy is
allowed, but problematic for higher classes of our classifica-
tion hierarchy. Of course, principle constraints can still be
used to model principled domain knowledge, and a CBM
tutor can be built based on these constraints—but then, the
feedback of this tutor is, of course, not specific to the
problem at hand.

5.1.3 Strategy Recognizing Approaches for Class 3

Class 3 problems can be solved by applying several
alternative solution strategies which can be implemented
in many ways. In principle, the example approaches
discussed in the previous subsection can be used to build
intelligent educational systems for Class 3 as well. For
instance, a CBM tutor without semantic constraints can be
used for Class 3 (and higher) problems. Also, production
rules can be used to model all possible correct solution
paths for all possible implementation variants of multiple
solution strategies. Andes, a model-tracing tutor for physics
[2], is a representative of this approach. However, defining
plausible expert models and buggy rules is a very laborious
task even for one solution strategy, and even more for
multiple strategies because one has to identify all possible
ideal solution paths and enough buggy rules for each of
these [22], [16, p. 85]. Except Andes, we are not aware of any
other “classical” model-tracing tutor that is able to support
alternative solution strategies. However, there are some
other approaches—partly related to model-tracing or
CBM—that are able to handle multiple solution strategies
and still give problem-specific feedback to students.

Since creating the cognitive model for model-tracing
tutors is laborious, Matsuda et al. [23] recently developed
a machine learning technique called programming by

264 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013



demonstration. In their approach, a “SimStudent” learns
problem solving skills from humans and automatically
generates production rules. The author of a model-tracing
tutor, thus, simply needs to demonstrate possible solutions
which may be instances of different solution strategies.
The SimStudent generalizes those solutions and generates
production rules for alternative solution strategies. This
requires less effort than “classical” model-tracing tutor
development, since demonstrating possible solutions for a
given problem is less laborious than designing a cognitive
model. The SimStudent worked very well: with a cognitive
model generated based on 20 problems solved by a group
of human students, the SimStudent was able to explain
82 percent of the problem-solving steps by another group
of human students correctly [23].

Jeuring et al. [24] developed a tutoring system for the
functional programming language Haskell, emphasizing
the use of “programming strategies.” For each problem
contained in their system, alternative model solutions that
represent different solution strategies are associated. Each
solution strategy consists of a sequences of refinement rules
(which refine programs) and rewriting rules which express
a program construct in another way (this corresponds to the
aspect of implementation variability in Section 3.2). For
example, a problem can be split into two subproblems,
solutions of which then together constitute solutions of the
original problem. Using refinement rules of this (and other)
type, errors in the student solution are detected and
appropriate feedback is returned to the student. This
approach is similar to model-tracing in that the refinement
rules describe the routes leading to correct solutions. The
authors claimed that the language which they use to
describe solution strategies can be used in other domains
in which procedures are expressed in terms of rewriting
and refinement rules.

Le and Menzel [25] proposed to apply soft computing
techniques to enhance the capability of error diagnosis for
CBM tutors, because constraint-based error diagnosis is a
constraint satisfaction problem (CSP) where the goal is to
identify inconsistencies between an erroneous solution and
a constraint system. Fargier and Lang [26] adopted a
probabilistic approach for solving CSPs and developed a
weighted constraint-based model (WCBM) for intelligent
educational systems. In their approach, the process of
diagnosing errors in a student solution consists of two
interwoven tasks (hypotheses generation and hypotheses
evaluation) which take place on two levels. First, on the
strategy level, the system generates hypotheses about the
student’s intention by iteratively matching the student
solution against multiple solution strategies specified in
a semantic table. After each solution strategy has been
matched, on the implementation variant level, the process
generates hypotheses about the student’s implementation
variant by matching components of the student solution
against corresponding components of the selected solution
strategy. The generated hypotheses are evaluated with
respect to their plausibility by aggregating the weight value
of violated constraints. As a consequence, the most
plausible solution strategy intended by the student is
determined. Le and Pinkwart [27], [28] have shown that

this approach is more effective in analyzing student’s
solution strategies correctly than a CBM tutor that has
several sets of semantic constraints (one for each strategy)
but does not use constraint weights.

For UML, Soler et al. [29] proposed a tool for teaching
class diagrams. This tool assesses UML class diagrams
provided by a student and gives feedback. For each
problem, the system has a set of correct solutions (which
represent different solution strategies). When a solution is
entered by a student, the system compares it to the set of
known correct solutions. The system then selects the correct
solution which is most similar to the one proposed by the
student and returns a corresponding feedback message to
the student. For example, if the number of classes is
incorrect, a message like “more/less classes are required” is
returned. The system has been evaluated by comparing an
experimental group and a control group. In the experi-
mental group, the teacher used the system to perform some
example exercises, then a personalized workbook with four
exercises was assigned to each student. The control group
used the same procedure and examples, but did not use the
system. At the end, the students of both groups had to pass
an exam, where the students of the experimental group
outperformed their peers in the control group.

All the approaches discussed in this section have
demonstrated to be appropriate for Class 3 problems.
Whereas the SimStudent and the approach devised by
Jeuring et al. [24] have been tested in several domains, the
WCBM approach has been applied for the domain of logic
programming only, and the approach of [29] is specific to
UML. For problems of Classes 4 and 5, where the number of
possible solution strategies is not a priori known (i.e., there
may be strategies that are beyond the anticipation of a
human tutor), the approaches may reach their limitation,
because they all rely on a known number of typical solution
strategies for each problem.

5.1.4 Educational Data Mining Techniques for Class 4

Intelligent educational systems for Class 4 problems, which
are characterized by a great variety of solution strategies
and by the fact that any solution is automatically verifiable,
are rarely found in the literature. Most of the existing
systems which support problems of this class apply data
mining approaches. CanadarmTutor [30] can be considered
as an educational system which has shown to support
Class 4 problems. This system is intended to teach
astronauts how to operate a robot manipulator deployed
on the international space station (ISS). While solving the
problem, the student does not have a direct view of the
scene of operation on the ISS: the robot manipulation
(i.e., moving the manipulator, berthing, mating) must rely
on cameras mounted on the manipulator and at strategic
places in the environment where it operates. Thus, it is not
possible to define a complete domain model for such a
robot manipulation problem. The problems provided by
CanadarmTutor can be considered instances of Class 4,
because given a robot manipulation problem, there are
many possibilities for moving the robot to the goal position
and each solution (a sequence of movements) can be
verified as correct when the sequence of movements of the
robot reaches a desired position. To deal with the issue of

LE ET AL.: OPERATIONALIZING THE CONTINUUM BETWEEN WELL-DEFINED AND ILL-DEFINED PROBLEMS FOR EDUCATIONAL... 265



the great variability of possible solutions of problems
supported by CanadarmTutor, Nkambou et al. [31]
proposed to combine two knowledge discovery techniques:
sequential pattern mining and association rule mining.
This approach assumes that actions of experts, intermedi-
ate, and novice users are recorded and annotated.
Sequential pattern mining detects frequent action se-
quences of the annotated actions. Using the mined
patterns, a generic basis of association rules, which
represent links among the patterns, is generated. This
aggregated information is then used to guide learners in
problem-solving situations. The approach of combining
different data mining techniques has demonstrated to be
an effective way of building a domain model for an
intelligent educational system automatically by mining
knowledge from recorded structured/unstructured data.

Barnes and Stamper [32] used student data to create
student models for an intelligent tutor for the domain of
logic proof. Instead of modeling student behavior using
production rules according to the model-tracing approach,
the authors proposed to generate Markov decision pro-
cesses (MDPs) representing possible student approaches to
a particular problem. When a new student works on a
problem, the student solution represented in graphs is
matched against the MDPs. Using these MDPs, hints are
generated automatically. This method reduces the intensive
work for modeling expert’s knowledge. Studies showed
that this approach was able to generate hints over 80 percent
of the time.

Recently, another data mining approach to building
intelligent educational systems has been proposed. This
approach can autonomously infer structures and feedback
options from given data (e.g., student solutions) [33]. The
proposed approach uses prototype-based learning methods
and nonvectorial data structures, extended in a way that
they allow to simultaneously structure solution spaces,
learn metrics for structures, align student solutions with
clusters of other solutions, and infer appropriate feedback
based thereon. While the proposed approach has not been
completely implemented, a first pilot validation of the
approach was conducted using a data set from the domain
of programming. The results show that clusters of structu-
rally similar solutions could be detected, and that an
automated provision of student feedback based on this
clustering seems feasible.

5.1.5 Heuristic Techniques for Class 5

The most challenging problems for educational purposes, of
course, are instances of Class 5. The main challenge here is
that solutions cannot easily be judged right or wrong. This
differentiates this class from the other classes. Nevertheless,
it is often-times possible to distinguish between aspects of
student solutions that are “typical” of good and poor
solutions. A good solution is characterized by a high
acceptance of end users, whereas a bad solution is not
traceable by users that are familiar with the problem
domain. Researchers have devised various approaches to
building intelligent educational systems for this class of
problems, including peer review, computer-supported
collaborative argumentation, and case-based or rule-based
reasoning techniques. As a common aspect, all these

techniques rely on some form of heuristics that “guesses”
if a student solution is good or not, and the system then
provides feedback based on this estimation.

Peer review. One way of providing feedback on solutions
of Class 5 problems is to rely on human judgment about the
quality of student solutions. This can, for instance, be
approached via peer review—an approach which is also
used in other noneducational contexts, such as the quality
management of scientific conferences and journals. In the
learning context, this approach requests the system users to
review and assess alternative solutions of their peers. This
can be done in textual form or as a numeric assessment
using scales. An example for the latter is the CITUC system
[34] which has been used to support students in exam
preparation. Here, the students assess the quality of
solutions (for the same task) provided by their peers. Based
on the aggregation of all assessments, a peer-review system
is able to classify a student solution correctly. Alternative
systems that make use of a textual peer-review approach
include SWoRD [35] and PeerGrader [36].

In contrast to using only peer-reviews for the purpose of
assessing student solutions (as the systems listed above do),
Ogan et al. [37] proposed to define a multidimensional
expert model using the results of an empirical analysis of
relevant issues for building an intelligent educational
system for the domain of intercultural competence. The
expert model serves to rate the quality of student solutions
based on both automated and human assessment. The
human assessment is carried out by asking students to rate
the solutions of their peers according to the dimensions
specified in the expert model.

All the peer-review approaches have in common that the
respective intelligent educational systems involve human
knowledge to give feedback to students’ solutions. A
downside of this approach is that feedback often cannot
be provided immediately, because humans themselves
need time to analyze student solutions.

Computer-supported collaborative argumentation. While
peer-review can be conceived as an indirect form of student
interaction which enables the computer system (via the
reviews) to assign a quality score to a student solution (in
the numeric case), some systems favor a more direct way of
student interaction to achieve a similar effect. A common
practice to deal with problems of Class 5 is argumentation,
where multiple users discuss about a problem pondering
pros and cons until an agreement upon a solution that
satisfies all discussants is found. The focus of automated
support here typically is not on the content, but on the
structure of argumentation. This argumentation process can
be supported by computer tools providing (potentially
shared) graphical representations like graphs, matrices or
threads (see [38]). The elements available for this represen-
tation can be used to build constraints. An example is a
language consisting of hypothesis and fact elements in
combination with pro and contra relations. Here, the
argumentation should follow a pattern typical for science:
a hypothesis is stated and supported or falsified by facts.
An intelligent educational system can be able to recognize
weaknesses by means of these constraints—for instance, if a
student does not specify a hypothesis at all, or if the

266 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013



argument representation created by the student contains
facts claimed to support each other (instead of supporting a
hypothesis). To detect these kinds of weaknesses, various
approaches have been proposed. The first approach,
implemented in an early version of the Belvedere system
[39] is pattern based. Here, students are only allowed to use
predefined argumentation chunks to model their argument.
Based on these argumentation chunks, the system is able to
compare the student solution to an expert model of the
same argument. However, this approach is work-intensive
and not applicable to argumentation tasks where users are
required to state their own opinions.

A second approach is the use of machine learning
techniques. Based on experts’ by-hand classification of
argumentation moves, an intelligent educational system can
learn to classify argumentation moves. This approach is
used, for instance, in the ARGUNAUT system [40], which is
an argumentation moderator assistant system in the sense
that feedback will not be sent to the users who argue but to
a human moderator. The reason for this is simple: the
classification can result in erroneous diagnoses. The
moderator’s role is, therefore, to decide which kind of
feedback is appropriate.

Another approach to detect weaknesses is using graph
grammars as done in LARGO [41]. This system makes use
of a set of predefined structural rules in graph grammar
format that will be applied on demand to the overall
argumentation structure. If a violation of one of the rules is
detected, the system provides the student with a feedback
message that highlights the possible weakness in the
argument, and asks the student to self-explain this argu-
ment part (possibly changing it as a consequence).

The detection of structural weaknesses is only one
possibility of analyzing student solutions. Another ap-
proach is checking the logical consistency, as for instance
done by the ECHO algorithm of the argumentation system
Convince Me [42]. Based on user assigned believability
scores for each argumentation move, the system calculates
the believability of the final conclusion and hence, the
consistency of the overall argumentation. The user is asked
to compare his final score with the one calculated by
ECHO. Thus, the user is requested to check the internal
logic of his argumentation.

Case-based and rule-based reasoning. Law students are
often given study cases and have to find out how legal rules
have been applied in past decisions and arguments [43].
Several researchers have adopted this strategy and have
developed intelligent educational systems for the legal
domain, including Thermis [44], Lites [45], or IKBALS II
[46]. Case-based reasoning techniques can check the
similarity between old cases to assess new problems.
Rule-based reasoning techniques serve to model normative
knowledge which enables the validation of a penal
situation. Both techniques can be seen as heuristics: If cases
are similar, then they should typically be decided in a
similar way and thus the similarity can be exploited for
intelligent educational systems—but this is, of course, not a
rule without exceptions.

5.2 A Communication Means

The second benefit of the problem classification is that it
serves the community of learning technology researchers

and users as a communication means to characterize
educational problems more precisely. In today’s literature
on learning technologies, we often find fuzzy descriptions
about educational problems. In the domain of program-
ming, for instance, we can find numerous vague character-
izations for programming problems which are used to help
students improve programming skills: “It [APT, a pro-
gramming tutor] is designed as a programming environ-
ment to help students complete short programming
assignments” [47, p. 152], “The ACT programming tutor
helps students as they complete short programming
exercises” [48], “Experiments have shown that, in the case
of PROUST [a programming tutor for PASCAL], high
performance in recognizing errors is achieved with simple
programs. But the system has difficulties in understanding
programs of a certain complexity and its capacity for
identifying errors decreases drastically.” [49, p. 131], “They
[unit pages] include different interactive activities: simple
questions and programming problems that the students can
solve using the possibilities of WWW fill-out forms” [49,
p. 135], “Java Intelligent Tutoring Systems (JITS) was
designed to recognize small Java programs and provide
intelligent feedback even when there is no authored
solution available.” [50, p. 50]. It remains unclear whether
phrases such as short programming exercises, simple programs,
certain complexity, simple questions and programming problems,
or small Java programs have the same meaning and whether
human tutors from different institutions would agree with
these classifications: simple programs of a class in a K-12
school may be easier than simple programs provided in a
course at the University graduate level. Therefore, we
suggest using the problem classification to formulate these
phrases more precisely and objectively, so that the
capability of a computer-supported educational system
can be described accurately.

Similar vague characterization of problems can also be
found in the literature for other domains, for instance, in the
domain of computational modeling using UML. Some
existing intelligent educational systems which are intended
to help students create class diagrams include Collect-UML
[51], DesignFirst-ITS [52], and ACME-DB [29]. No doubt,
creating a class diagram is a design activity and UML
designs can be considered ill-defined. However, these
systems provide different types of problems. Collect-UML
supports students in creating UML class diagrams colla-
boratively. By adding a new class diagram component,
“the students need to select the component’s names from
the problem text by highlighting or double-clicking on the
words.” [51, p. 167]. The system uses a prespecified ideal
solution for each problem to compare to the student’s class
diagram. The authors of Collect-UML stated that “the
system allows for alternative ways of solving a problem, as
there are constraints that check for equivalent constructs
between the student solution and the stored [ideal]
solution” [51, p. 164]. However, due to the restriction of
deciding for a new diagram element based on highlighted
words or phrases in the problem description, this system
narrows down the space of solution variability consider-
ably. This certainly facilitates the analysis and can also be
considered as beneficial from an educational point of view,

LE ET AL.: OPERATIONALIZING THE CONTINUUM BETWEEN WELL-DEFINED AND ILL-DEFINED PROBLEMS FOR EDUCATIONAL... 267



since the critical skill in UML modeling that students
should focus on during learning is not the selection of
names but the identification of types of components. Yet,
this approach can also be critiqued. Moritz and Blank
commented on Collect-UML as follows [52, p. 36]: “No free-
form entry of element names is allowed. This approach
avoids the need to understand the student’s intent from
natural language terms. A pedagogical drawback of this
approach is that the student must eventually learn how to
transfer to a less structured problem-solving environment.”
Since this system allows students to create different class
diagram variants which are similar to a prespecified ideal
solution, problems provided by this system can be classified
as Class 2.

Different from Collect-UML, DesignFirst-ITS allows
students to name components of a class diagram freely by
adding classes, methods, and attributes. To diagnose errors
in a student’s class diagram, an Expert Evaluator module
evaluates each step of the student’s design process by
comparing it with a solution template that has been created
by an human instructor. To match the student’s component
name to a name in the solution template, the Expert
Evaluator uses the SimMetrics algorithm to determine the
similarity between the student’s component name and
component names in the solution template. Although the
authors argued that “DesignFirst-ITS provides a relatively
unstructured environment that allows students freedom to
build their design.” [52, p. 39], it still restricts students via
the solution template specified by a human instructor. Thus,
design problems supported by this system can be con-
sidered instances of Class 2.

Instead of checking the student’s class diagram based on
a single ideal solution or a solution template, ACME-DB
compares the student’s class diagram to a set of prespeci-
fied possible correct solutions for a design problem (see
Section 5.1.3). Since this system supports different solution
strategies represented by different possible correct solu-
tions, problems supported by this system belong to Class 3
of the proposed problem classification. The authors of
ACME-DB claimed that using this system, students are only
restricted to attributes marked in brackets in the problem
description. There is no restriction on names of classes or
relationships. Classes are assessed by considering the set of
attributes attached to them. Relationships are evaluated in
terms of the classes they relate to.

As a conclusion, all three systems provide UML design
problems to students to improve their computational
modeling skills. The systems are very similar in nature.
However, ACME-DB addresses Class 3 problems, while the
others are designed to handle Class 2 problems.

6 CONCLUSIONS AND RESEARCH DIRECTIONS

In this paper, we have identified three qualitative attributes
for characterizing problems for educational purposes: the
existence of alternative solution strategies, the variability of
implementation, and the verifiability of solutions. Based on
these categories, a classification of problems has been
proposed, ranging from “one solution strategy, one
variant” to “a great number of solution strategies, and it’s
not possible to check a solution for correctness.” This

classification can be conceived as a scale for the degree of
well- or ill-definedness of a problem. The more possible
implementation variants and the more possible solution
strategies are possible, the more ill-defined is a problem.
The nonverifiability of solutions determines the highest
degree of ill-definedness in our classification. The very
well-defined problems are least complex and can be solved
by submitting a correct value (i.e., Class 1 problems). The
most ill-defined problems are most complex because in
addition to the existence of many alternative solution
strategies, solutions for these kinds of problems cannot be
verified as correct or not correct automatically (Class 5).

Based on this classification, we have discussed example
approaches for building intelligent educational systems for
each class of problems (see [4], [7] for other review and
example approaches). While “classic” CAI methods are
only applicable within Class 1, today’s most prominent ITS
paradigms (model-tracing and CBM) are typically used for
Class 2, where only one single solution strategy is allowed.
Some approaches have been proposed to extend the range
of applications for CBM and model-tracing to also Class 3
problems, which are characterized by a known number of
(a priori known) solution strategies, so that the system has
to determine the strategy pursued by the student. However,
these approaches are not applicable to problems of Class 4
where the number of available solution strategies may be
very large (or even unknown). Intelligent educational
systems for Class 4 problems are indeed rare as of
today—yet, as has been argued, approaches with data
mining components have the potential to be used for
problems of this class. For Class 5 problems, where it is not
possible to determine if a solution is correct or not, we have
identified a variety of approaches relying on heuristic
techniques such as peer review, collaborative computer-
supported argumentation, case-based reasoning, and rule-
based reasoning. The problem classification and this review
are intended to help designers of intelligent educational
systems choose a corresponding modeling approach for a
class of problems. In addition, the problem classification
serves as a communication means to characterize educa-
tional problems more precisely.

We are aware that the borderline between Classes 3 and
4 is not sharp. One can argue that for both classes, a number
of possible solution strategies is possible. The difference
between these two problem classes is the number of
possible solution strategies which can be anticipated by
human tutors. We suggest that a problem whose solution
strategies can be anticipated by a human tutor should be
considered an instance of Class 3. Otherwise, if for a
problem there exist a range of many possible solution
strategies which are beyond the anticipation of a human
tutor (where the correctness of any given specific solution
can be verified automatically), this problem is an instance of
Class 4. This difference, even if not sharp, is of enormous
relevance for educational technology designers. For Class 3,
they can build complete models that cover all solution
strategies, while this is not feasible for Class 4.

The classification does not say anything about sizes of
solution spaces. It may well be the case that the solution
space of a problem of Class 2 is larger than one of a Class 3
problem. For instance, a problem of Class 2 may have only

268 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013



one solution strategy but many implementation variants,
whereas another problem of Class 3 may have only few
solution strategies with few implementation variants. Also,
the classification does explicitly not target at judging or
comparing the quality or suitability of intelligent educa-
tional system approaches. It certainly is not the case that an
approach which is usable for Class 5 problems is “better”
than one that can only be used for Class 1 problems. In fact,
one can even argue that approaches (like CBM or model-
tracing) typically used for Classes 1 or 2 have proven highly
effective in that they can give specific, helpful support to
students—while many approaches for the “higher” classes
struggle with possibly erroneous diagnoses and less specific
feedback options.

A surprising result of the classification is that, while
systems for problem Classes 1 and 2 are very well known
and have been investigated over decades, also for Class 5
there are quite a few systems which take different
approaches for “guessing” the correctness of a student
solution (and the solution strategy that the student may
have pursued). Yet, for the intermediary Classes 3 and 4,
which are arguably simpler than Class 5, only relatively few
approaches have been proposed, and empirical evidence of
their success is sparse. Of course, approaches that can
handle Class 5 problems are also applicable to Classes 3 and
4 problems, but such a use does not fully exploit the
potential for educational technology construction (e.g.,
error-prone heuristics or costly peer reviews would not
really be required for Classes 3 and 4). Also, Classes 3 and 4
are really important for education, since problems of these
classes allow for multiple solution strategies and can thus
encourage critical, creative thinking, and decision-making.

The classification and the review of approaches also
showed some opportunities for future research. For
instance, educational data mining techniques have demon-
strated their potential as an effective approach for Class 4
problems. In general, as one way of constructing Class 4
intelligent educational systems, one could imagine a
combination of methods for Classes 1-3 and a collaborative
data collection approach. Based on the collected data,
alternative good and poor solution strategies to a problem
could be learned and could be used to generate feedback
even for Class 4 problems. To our knowledge, there is
currently no approach which is able to do so.

For problems of Class 5, building a complete domain
model for diagnosing errors and student’s intention auto-
matically may be an infeasible task. Therefore, researchers
currently try to combine successful modeling techniques
(e.g., model-tracing and CBM) with other educational
approaches (collaborative argumentation, peer-review).
Although this approach cannot return feedback to the
student’s solution immediately (because humans need time
for analyzing solutions), this kind of combination seems to
be a fruitful way to support students solve problems of this
level and should be investigated further.

There exist numerous approaches for developing in-
telligent educational systems, and many of them have
demonstrated their success for educational problems of
Classes 1 and 2, where solutions are limited to a single
solution strategy. Here, not much choice is left to students

as they construct solutions. While this may be OK (and
perhaps even desirable) for introductory lessons and
problems to help the student focus on the skills to be
learned, it considerably narrows down the possibilities of
applying (or even critically comparing) different solution
strategies and thereby experiment with domain constructs.
In future research, intelligent educational systems should be
able to provide problems of different classes to students
adaptively. That is, after students have mastered problems
of Classes 1 and 2, they should have the opportunity to face
more ill-defined problems (e.g., problems of Classes 3-5).

REFERENCES

[1] K.R. Koedinger, J.R. Anderson, W.H. Hadley, and M.A. Mark,
“Intelligent Tutoring Goes to School in the Big City,” Int’l
J. Artificial Intelligence in Education, vol. 8, pp. 30-43, 1997.

[2] K. VanLehn, C. Lynch, K. Schulze, J.A. Shapiro, R. Shelby, L.
Taylor, D. Treacy, A. Weinstein, and M. Wintersgill, “The Andes
Physics Tutoring System: Lessons Learned,” Int’l J. Artificial
Intelligence in Education, vol. 15, no. 3, pp. 147-204, 2005.

[3] C. Lynch, K. Ashley, A. Mitrovic, V. Dimitrova, N. Pinkwart, and
V. Aleven, Proc. 10th Int’l Workshop on Intelligent Tutoring Systems
and Ill-Defined Domains Held at the 10th Int’l Conf. Intelligent
Tutoring Systems (ITS ’10), 2010.

[4] A. Mitrovic and A. Weerasinghe, “Revisiting Ill-Definedness and
the Consequences for ITSs,” Proc. 14th Int’l Conf. Artificial
Intelligence in Education (AIED ’09), pp. 375-382, 2009.

[5] H.A. Simon, “The Structure of Ill Structured Problems,” Artificial
Intelligence, vol. 4, no. 3, pp. 181-201, 1973.

[6] P. Fournier-Viger, R. Nkambou, and E. Nguifo, “Building
Intelligent Tutoring Systems for Ill-Defined Domains,” Proc.
Advances in Intelligent Tutoring Systems Conf., pp. 81-101, 2010.

[7] C. Lynch, K.D. Ashley, N. Pinkwart, and V. Aleven, “Concepts,
Structures, and Goals: Redefining Ill-Definedness,” Int’l J. Artificial
Intelligence in Education, vol. 19, no. 3, pp. 253-266, 2009.

[8] D.H. Jonassen, “Instructional Design Models for Well-Structured
and Ill-Structured Problem-Solving Learning Outcomes,” Educa-
tional Technology Research and Development, vol. 45, no. 1, pp. 65-94,
1997.

[9] M. Chi and K. VanLehn, “Meta-Cognitive Strategy Instruction in
Intelligent Tutoring Systems: How, When, and Why,” Educational
Technology and Soc., vol. 13, pp. 25-39, 2010.

[10] J.-M. Hoc, Cognitive Psychology of Planning. Academic Press, 1988.
[11] M.L. Gick, “Problem-Solving Strategies,” Education Psychologist,

vol. 21, pp. 99-120, 1986.
[12] S. Ohlsson and N. Bee, “Radical Strategy Variability: A Challenge

to Models of Procedural Learning,” Proc. Int’l Conf. Learning
Science, pp. 351-356, 1991.

[13] J. McCarthy, “The Inversion of Functions Defined by Turing
Machines,” Automata Studies, 1956.

[14] J. Conklin, “Wicked Problems & Social Complexity,” Dialogue
Mapping: Building Shared Understanding of Wicked Problems, Wiley,
2005.

[15] P. Suppes, M. Jerman, and D. Brian, Computer Assisted Instruction:
Stanford’s 1965-66 Arithmetic Program. Academic Press, 1968.

[16] B.P. Woolf, Building Intelligent Interactive Tutors. Morgan Kaufman,
2009.

[17] V. Aleven and K.R. Koedinger, “An Effective Metacognitive
Strategy: Learning by Doing and Explaining with a Computer-
Based Cognitive Tutor,” Cognitive Science, vol. 26, no. 2, pp. 147-
179, 2002.

[18] W. Menzel, “Diagnosing Grammatical Faults—A Deep-Modelled
Approach,” Proc. Third Int’l Conf. AI: Methodology, Systems,
Applications, pp. 319-326, 1988.

[19] B. Martin, “Intelligent Tutoring Systems: The Practical Implemen-
tation of Constraint-Based Modelling,” PhD dissertation, Univ. of
Canterbury, 2001.

[20] S. Ohlsson and E. Rees, “The Function of Conceptual Under-
standing in the Learning of Arithmetic Procedures,” J. Cognition
and Instruction, vol. 8, no. 2, pp. 103-179, 1991.

[21] S. Ohlsson and A. Mitrovic, “Constraint-Based Knowledge
Representation for Individualized Instruction,” Computer Science
and Information Systems, vol. 3, no. 1, pp. 1-22, 2006.

LE ET AL.: OPERATIONALIZING THE CONTINUUM BETWEEN WELL-DEFINED AND ILL-DEFINED PROBLEMS FOR EDUCATIONAL... 269



[22] V. Kodaganallur, R. Weitz, and D. Rosenthal, “An Assessment of
Constraint-Based Tutors: A Response to Mitrovic and Ohlsson’s
critique of ‘a Comparison of Model-Tracing and Constraint-Based
Intelligent Tutoring Paradigms,’” Int’l J. Artificial Intelligence in
Education, vol. 16, pp. 291-321, 2006.

[23] N. Matsuda, W.W. Cohen, J. Sewall, G. Lacerda, and K.R.
Koedinger, “Evaluating a Simulated Student Using Real Students
Data for Training and Testing,” Proc. 11th Int’l Conf. User Modeling,
pp. 107-116, 2007.

[24] J. Jeuring, A. Gerdes, and B. Heeren, “A Programming Tutor for
Haskell,” Proc. Central European School on Functional Programming
Conf., pp. 1-45, 2011.

[25] N.-T. Le and W. Menzel, “Using Weighted Constraints to
Diagnose Errors in Logic Programming—The Case of an Ill-
Defined Domain,” Int’l J. Artificial Intelligence in Education, vol. 19,
no. 4, pp. 381-400, 2009.

[26] H. Fargier and J. Lang, “Uncertainty in Constraint Satisfaction
Problems: A Probabilistic Approach,” Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, vol. 747, pp. 97-104,
Springer, 1993.

[27] N.T. Le and N. Pinkwart, “Adding Weights to Constraints in
Intelligent Tutoring Systems: Does It Improve the Error Diag-
nosis?” Proc. Sixth European Conf. Technology Enhanced Learning,
pp. 233-247, 2011.

[28] N.-T. Le and N. Pinkwart, “Can Soft Computing Techniques
Enhance the Error Diagnosis Accuracy for Intelligent Tutors?”
Proc. 11th Int’l Conf. Intelligent Tutoring Systems, pp. 320-329, 2012.

[29] J. Soler, I. Boada, F. Prados, J. Poch, and R. Fabregat, “A Web-
Based E-Learning Tool for UML Class Diagrams,” Proc. IEEE
Education Eng. Conf., pp. 973-979, 2010.

[30] P. Fournier-Viger, R. Nkambou, and E.M. Nguifo, “Exploiting
Partial Problem Spaces Learned from Users’ Interactions to
Provide Key Tutoring Services in Procedural and Ill-Defined
Domains,” Proc. Conf. Artificial Intelligence in Education, pp. 383-
390, 2009.

[31] R. Nkambou, P. Fournier-Viger, and E.M. Nguifo, “Learning Task
Models in Ill-Defined Domain Using an Hybrid Knowledge
Discovery Framework,” Knowledge-Based Systems, vol. 24, no. 1,
pp. 176-185, 2010.

[32] T. Barnes and J.C. Stamper, “Automatic Hint Generation for Logic
Proof Tutoring Using Historical Data,” Educational Technology and
Soc., vol. 13, no. 1, pp. 3-12, 2010.

[33] S. Gross, X. Zhu, B. Hammer, and N. Pinkwart, “Cluster Based
Feedback Provision Strategies in Intelligent Tutoring Systems,”
Proc. 11th Int’l Conf. Intelligent Tutoring Systems, pp. 699-700, 2012.

[34] F. Loll and N. Pinkwart, “Using Collaborative Filtering Algo-
rithms as Elearning Tools,” Proc. 42nd Hawaii Int’l Conf. System
Sciences, pp. 1-10, 2009.

[35] K. Cho and C.D. Schunn, “Scaffolded Writing and Rewriting in
the Discipline: A Web-Based Reciprocal Peer Review System,”
Computers and Education, vol. 48, no. 3, pp. 409-426, 2007.

[36] E. Gehringer, “Electronic Peer Review and Peer Grading in
Computer-Science Courses,” Proc. 32nd Technical Symp. Computer
Science Education, pp. 139-143, 2001.

[37] A. Ogan, V. Aleven, and C. Jones, “Advancing Development of
Intercultural Competence through Supporting Predictions in
Narrative Video,” Int’l J. Artificial Intelligence in Education,
vol. 19, pp. 267-288, 2009.

[38] O. Scheuer, F. Loll, B.M. McLaren, and N. Pinkwart, “Computer-
Supported Argumentation: A Review of the State-of-the-Art,” Int’l
J. Computer-Supported Collaborative Learning, vol. 5, no. 1, pp. 43-
102, 2010.

[39] D.D. Suthers, “Representational Guidance for Collaborative
Inquiry,” Arguing to Learn, Computer-Support Collaborative
Learning Series, J. Andriessen, M. Baker, and D.D. Suthers, eds.
vol. 1, pp. 27-46, Springer, 2003.

[40] R. de Groot, R. Drachman, R. Hever, B.B. Schwarz, U. Hoppe, A.
Harrer, M. de Laat, R. Wegerif, B.M. McLaren, and B. Baurens,
“Computer Supported Moderation of E-Discussions: The ARGU-
NAUT Approach,” Proc. Conf. Computer-Supported Collaborative
Learning, pp. 168-170, 2007.

[41] N. Pinkwart, K. Ashley, C. Lynch, and V. Aleven, “Graph
Grammars: An ITS Technology for Diagram Representations,”
Proc. 21st Int’l FLAIRS Conf., pp. 433-438, 2008.

[42] P. Schank and M. Ranney, “Improved Reasoning with Convince
Me,” Proc. Conf. Companion on Human Factors in Computing Systems
(CHI ’95), pp. 276-277, 1995.

[43] V. Aleven, K.D. Ashley, and C. Lynch, “Helping Law Students to
Understand US Supreme Court Oral Arguments: A Planned
Experiment,” Proc. 10th Int’l Conf. AI and Law, pp. 55-59, 2005.

[44] I. Bittencourt, E. Costa, B. Fonseca, G. Maia, and I. Calado,
“Themis, a Legal Agent-Based ITS,” Proc. 13th Int’l Conf. Artificial
Intelligence in Education Workshop, pp. 11-20, 2007.

[45] G. Span, “LITES, an Intelligent Tutoring System for Legal Problem
Solving in the Domain of Dutch Civil Law,” Proc. Fourth Int’l Conf.
AI and Law, pp. 76-81, 1993.

[46] G. Vossos, J. Zeleznikow, T. Dillon, and V. Vossos, “An Example
of Integrating Legal Case Based Reasoning with Object-Oriented
Rule-Based Systems: IKBALS II,” Proc. Third Int’l Conf. AI and Law,
pp. 31-41, 1991.

[47] F.P. Deek and J. McHugh, “A Survey and Critical Review of Tools
for Learning Programming,” J. Computer Science Education, vol. 8,
no. 2, pp. 130-178, 1999.

[48] A. Corbett and J.R. Anderson, “Student Modeling in an Intelligent
Programming Tutor,” Cognitive Models and Intelligent Environments
for Learning Programming, E. Lemut, B. du Boulay, and G. Dettori,
eds., pp. 1-10, Springer, 1993.

[49] M. Gomez-Albarran, “The Teaching and Learning of Program-
ming: A Survey of Supporting Software Tools,” Computer J.,
vol. 48, no. 2, pp. 130-144, 2005.

[50] E.R. Sykes, “Qualitative Evaluation of the Java Intelligent Tutoring
System,” J. Systemics, Cybernetics and Informatics, vol. 3, no. 5,
pp. 49-60, 2005.

[51] N. Baghaei, A. Mitrovic, and W. Irwin, “Supporting Collaborative
Learning and Problem-Solving in a Constraint-Based CSCL
Environment for UML Class Diagrams,” Int’l J. Computer-
Supported Collaborative Learning, vol. 2, no. 2, pp. 159-190, 2007.

[52] S. Moritz and G. Blank, “Generating and Evaluating Object-
Oriented Designs for Instructors and Novice Students,” Proc.
Nineth Int’l Conf. Intelligent Tutoring Systems Workshop Intelligent
Tutoring Systems for Ill-Defined Domains, pp. 35-45, 2008.

Nguyen-Thinh Le received the PhD degree in
intelligent educational technology systems for
programming from the University of Hamburg,
Germany. He is a lecturer and researcher in the
Department of Informatics, Clausthal University
of Technology. Currently, he performs research
in crowd-sourcing and data mining for educa-
tional technology systems.

Frank Loll received the PhD degree in domain-
independent support for computer-based educa-
tion of argumentation skills from Clausthal
University of Technology in 2012.

Niels Pinkwart is a professor for the Human-
Centered Information Systems Reasearch Group
at Clausthal University of Technology. He has a
research background at the intersection of
computer science, educational and collaborative
technology, and human-computer interaction.
His research interests include adaptive educa-
tional technologies for ill-defined problems.

270 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 3, JULY-SEPTEMBER 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


