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Abstract. This paper presents an approach to support collaborative
modeling with graph based representations. In particular, the problem
of partially shared models with associated semantics is addressed, and
an architectural solution to enable flexible modes of partial application
synchronization under the constraint of retaining a common semantics
in the shared model parts is presented.

1 Introduction

In science, the term model refers to a schematic, simplified and idealized repre-
sentation of an object or a domain in which the relations and functions of the
elements of the objects are made explicit. There is an analogy between the model
and the object it describes in the sense that these two are structurally identical.
Modeling is understood as the activity of creating, manipulating and using mod-
els. As models are a simplified and manageable means of understanding complex
real phenomena, the importance of modeling in a number of professional and
educational usage scenarios is evident [6].

A general function that computers can have in the domain of modeling is
that they can serve as tools that execute models or run simulations based on
models. Both is possible for many rather formal modeling languages like, e.g.,
Petri Nets [10] or System Dynamics [3]. Current networked computer systems
are technically able to go beyond this. Archival and retrieval functions can, e.g.,
foster the exchange and re-use of modeling material. Networking also principally
enables a cooperative synchronous use of modeling tools.

Among the variety of representations that can serve as a means for modeling,
this paper concentrates on graph based ones - i.e., models consisting of visually
explicit objects and their relationships. Several studies [8,12] indicate that this
representational type (as opposed to, eg., textual forms or formulas) has certain
advantages - including aspects like guidance for the users, the explicit structure
of the model, and the fact that graphs seem to be inviting to users to ”try out”
creative solutions, which is an important aspect in modeling.

In addition, graph based representations are widely used, and the variety of
modeling languages that rely on graph based representations (or that can, as
one alternative, be represented in such a notation) is impressing. More formal
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languages with exactly defined semantics are, e.g., Petri Nets [10], System Dy-
namics [3], or Entity-Relationship diagrams [2]. Languages with an intermediary
level of formality (i.e., some parts of the expressions allow for an automatic in-
terpretation and simulation, while others do not) include, e.g., most diagram
types of the unified modeling language UML [1]. Finally, there are also a lot of
qualitative modeling techniques that make use of graph based representations.
In those, the object and link types can usually be exactly distinguished and are
possible subject of interpretation, the content of these objects and links however
is usually not accessible to computer based interpretation techniques. Examples
of this category include mapping techniques like concept mapping [9].

This paper describes an approach that, retaining openness concerning the
range of supported graph based modeling languages, focuses on the critical ques-
tion of how to gain flexibly while (partially) sharing models that have associated
formal or semiformal semantics.

2 Synchronization Contexts in Graph Based Modeling

2.1 Basics

Attempting to formalize shared graph based models, it is reasonable to start
with a description of visual graph models:

Definition 1. Let N be a set of elements called node types, and let N be a set
of nodes. Then a mapping dom : N �→ N is called a node type mapping. The
image of dom, written dom(N), is called node domain of N. Edge type mappings
and edge domains are defined in analogy. If domN : N �→ N and domE : E �→ E
are node type and edge type mappings, then a graph G=(N,E) is called a typed
graph over (N ,E).

The following definition adds visual information to the concept of typed
graphs:

Definition 2. Given two sets VN and VE, called visual node attributes and
visual edge attributes, then a pair L=(λN , λE) of mappings with λN : N �→ VN

and λE : E �→ VE is called a layout of a Graph G=(N,E).

A typed graph with associated visual attributes is referred to as a visual
typed graph. This definition of a layout for a graph is abstract in the sense that
it does not prescribe concrete sets VN and VE . Typical parameters would, e.g.,
be cartesian coordinates. Yet, a variety of alternatives (like, e.g., explored in
visual language theory), are possible here.

To enhance visual typed graphs to ”real” models, two more ingredients are
necessary: syntax and semantics. While syntactic issues can be addressed using
constraints over the visual typed graphs, the following definition for semantics
is based on the formal notion of computational model semantics [5]:
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Definition 3. Let G be a set of visual typed graphs. Then a couple (D,Ip), con-
sisting of a semantic domain D and a semantic mapping Ip : G �→ D is called a
graph semantics for G.

This notion of graph semantics is independent of node and edge domains.
Though this may appear unusual, as typically the semantics of graph based
models are tightly bound to a modeling language and its primitives, the approach
of partially decoupling semantics from concrete node and edge domains can
contribute to model interoperability: it allows for defining semantic mappings
that bridge gaps between modeling languages.

Although the semantic mapping is defined on the graph level, a lot of mod-
eling languages allow for a decomposition of the semantic mapping in the sense
of concrete node and edge semantics: here, notations like Ip(nG) (n being a node
in the graph G) and, correspondingly, Ip(eG) make sense. Two examples:

– The semantics of a node in a calculation tree can be defined as the result of
computing the value of the subtree.

– In the field of Petri Nets, the semantics of a place node can be identified as
the number of tokens that the place contains.

2.2 Synchronization Contexts

One of the distinguishing factors between the present work and comparable ap-
proaches in the domains of metamodeling and visual languages is the explicit
support for collaborative usage scenarios with flexibly shared representations.
Though typically the concrete support for these mechanisms will be done on the
concrete implementation level, there is a foundational issue that can be dealt
with well already on the conceptual level: sharing graph structures, there is a
possible discrepancy between flexibility of synchronization and coherence (or clo-
sure) requirements of models. The logical consequence of aiming at maximum
degree of flexibility in sharing graph structures is to allow for a synchronization
of arbitrary substructures (i.e. subgraphs) to the extreme case of having only
single nodes synchronized. These partially shared structures have interesting
application areas and allow for flexible work modes. An example for this is the
following: with partially synchronized graphs, it is possible for users to privately
work on the construction of a model and to ”publish” only selected parts of it,
e.g., a subgraph that contains some explicitly marked result elements. Insight
into the way that these results were elaborated does not necessarily have to
be granted to the group. There are also many ways of orchestrating these pri-
vate/shared collaboration scenarios with partially shared models, as exemplified
in the domain of mathematics [7].

While this degree of flexibility sounds attractive, there are also situations
in which partially shared models may be problematic. Apart from the general
question how edges could be coupled without also sharing the nodes that an
edge connects, a critical point is that partially sharing models may lead to dis-
crepancies between the semantics of the shared model parts. This is due to the
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Fig. 1. The problems of partial synchronization

fact that the semantic mapping function is, in general, not context-free. It is
not only the general graph semantics that varies, but also that of single nodes
which are contained in both of the partially shared models. Figure 1 illustrates
this problem with the example domain of Petri Nets. The two workspaces are
partially synchronized and differ only in the presence of one single place (p1) and
its connection to the transition t1. This causes the semantics of t1 to change,
and in particular also affects the semantics of the whole graph: the left net is
dead, whereas the right one is non-terminating.

Any general attempt to retain a common semantics between only partially
shared (and therefore non-identical) models has to face one problem: either one
single global semantics is preserved in the system (and the result is a mismatch
between local representation and global semantics), or the semantics is only
related to the respective local models. In the latter case, the problem is (as
shown in figure 1) the non-existence of a common result.

One possible strategy to deal with this problem is to restrict the degree of
flexibility concerning sharing entities. If the semantic mapping of a node does
not depend on other entities, then it is reasonable to allow this node to be
coupled independently of any other elements in the model graph. Otherwise, the
(recursively determined) set of needed model elements has to be included in the
set of shared elements:

Definition 4. Let G=(N,E) be a visual typed graph with a semantics Ip(G),
and let n ∈ N be a node of G. If n has an associated semantic value (i.e.,
the semantic mapping Ip(nG) of n in G is defined), then a synchronization
context of n in G, denoted by Sync(nG), is a subgraph of G containing n so
that Ip(nG) = Ip(nSync(nG)). A function S : N �→ P(G) so that each node
is mapped to a corresponding synchronization context is called synchronization
context mapping. A function S : N × G �→ P(G) which accepts a node and a
graph (containing that node) as input and returns a subgraph which is a syn-
chronization context of the node in the graph is called a generic synchronization
context mapping.
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Definition 5. A synchronization context Sync(nG) is called minimal if no real
subgraph of Sync(nG) fulfills the synchronization context condition for n in G.

Proposition 1. Let G=(N,E) be a visual typed graph with a semantics Ip(G),
and let n ∈ N be a node of G with defined semantic mapping Ip(nG). Then a
minimal synchronization context of n in G exists but is, in general, not unique.

Proof. A trivial synchronization context of n in G is obviously G itself, so that
the existence is shown. The fact that Sync(nG) is in general not unique can be
shown with a counterexample: a calculation tree consisting of the root node n1

of type ”×”, and three child nodes n2, n3, n4 of n1 that are all of type ”number”
with Ip(n2) = Ip(n3) = 0 and Ip(n4) = 1. Here, two different minimal synchro-
nization contexts of n1 in G are spanned by the node sets N1 = {n1, n2} and
N2 = {n1, n3}.

The proof of proposition 1 shows that the minimal synchronization context
of a node in a graph can depend on the values of semantic attributes. This means
that upon a change in semantics (e.g., caused by a model simulation step), the
minimal synchronization context may change. Using synchronization contexts as
foundations for partially coupled models, this has to be taken into account: in
collaborative work contexts, a non-minimal but stable synchronization context
may be superior to a minimal but frequently changing one.

For a number of modeling languages, minimal synchronization contexts can
be defined easily, as the following example illustrates for the case of Petri Nets:

Example 1. Petri Nets are visual typed graphs that have the node type set
N = {place, transition}. For a visual typed graph G=(N,E), a minimal syn-
chronization context mapping S is as follows (for reasons of simplicity, only the
nodes that span the synchronization context graph are given):

S(n) :=
{{n} if type(n) = place
{n} ∪ {m ∈ G : (m, n) ∈ E ∨ (n, m) ∈ E} else

This expresses that places can by synchronized node-wise, whereas the ac-
tivation state and therefore the semantics of transitions depends on their input
and output places, and thus on their complete neighborhood.

A strict consideration of synchronization contexts solves the dilemma be-
tween coupling flexibility versus coherence of models. If minimal synchroniza-
tion contexts are used, the solution is even optimal in the sense that only the
”absolutely required” information is shared. Yet, even apart from the dynamics
of the minimal synchronization contexts (which may be a serious problem for
collaborative work scenarios), one problem remains: there is no generic calcula-
tion algorithm for a minimal synchronization contexts. Especially in the case of
modeling languages with non-formal semantics (like, e.g., concept maps), it is
even unclear what such an algorithm should calculate. The next section of this
paper shows an approach to solve at least some of these challenges.
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3 Reference Frame Synchronization

Typically, all the concepts presented in the previous section have to be combined
in order to express the characteristics of a certain modeling language. E.g., a
specific constraint mapping usually belongs to a particular set of node and edge
types, and a graph semantics may in turn rely on certain syntactic integrity
constraints. For this reason, a central concept that bundles together all the
ingredients makes sense. This can be conceived as the formalized abstraction of
a visual modeling language:

Definition 6. Let N denote a set of node types and E a set of edge types, and let
VN and VE be visual node and edge attributes. For a set C of constraint mappings,
a semantic domain D, a semantic mapping Ip, and a generic synchronization
context mapping S, the tuple R = 〈N , E , VN , VE , C, D, Ip,S〉 is called a Reference
Frame.

Based on this conceptual notion, a system architecture that allows for dynam-
ically plugging in Reference Frames has been implemented in Java [11]. Details
about type definitions, constraint mappings, and model semantics are beyond
the scope of this paper - focusing on the group work support, we concentrate on
the description of the synchronization contexts in the following:

The synchronization context mapping has an explicit representation in the
ReferenceFrame interface: a method synchronizeContext(Node, JGraph) ac-
cepts a node and a visual typed graph as parameters. In conformance with
definition 4, the policy for implementations of this method is that it calculates
a synchronization context of the parameter node in the parameter graph, and
couples the whole context instead of only the node. This way, an attempt of
synchronizing a node in a graph with other graph instances can be processed
locally, and lead to a coherently synchronized subgraph.

An alternative to this, which disburdens the developer from implementing
the (non-trivial) method, would be the automatic calculation of (in the best
case minimal) synchronization contexts. However, such a calculation is prac-
tically not reasonable unless restricting the semantics calculation severely. In
particular, the following three steps would be required: (1) a way to make ex-
plicit all the variables in nodes, edges, graph, and the Reference Frame itself
which belong to the semantics, (2) a method to compare these variables with
partially synchronized applications, and (3) a technique to build the minimal
synchronization context based on the results of the comparison. In particular
the third point is the problematic one:

– Straightforward algorithms that simply test which subgraph is a minimal
synchronization context are no real option due to their complexity, especially
taking into account that (in step 2) this is a distributed algorithm.

– The idea of relying on the comparison results (step 2 in the algorithm) does
not work either: even if the nodes and edges with varying semantics are
known, the step of determining which elements of the graph must minimally
be synchronized in order to ”repair” the inconsistency cannot be derived
easily due to the (required!) openness of the semantic mapping function.
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Fig. 2. Synchronization contexts as strategies for Reference Frames

– Finally, algorithms that go into detail about the interdependencies and are
able to calculate a suitable synchronization context based on the comparison
results are very similar (and not less complex!) than the ones required for
implementations of synchronizeContext(Node, JGraph).

In order to assist the developer in the task of defining suitable synchronization
contexts, a number of typical algorithms that are applicable for a variety of
modeling languages can be pre-defined and implemented in form of a Strategy
pattern [4]:

Single Node. This simple implementation does not add any nodes to be addi-
tionally synchronized. This algorithm makes sense if the semantics of a node
does not depend on the surrounding context in the graph.

Whole Graph. The second trivial case always synchronizes the whole graph
upon the attempt to synchronize one node. This strategy guarantees a syn-
chronization context, but obviously in most cases synchronizes too much.

Connectivity Component. In modeling languages where the graph structure
plays an important role, the semantics may often be retained if the con-
nectivity component that a node belongs to is synchronized along with the
node.

Subgraph induced by Reference Frame. Typically, for ”closed” (non-
interoperable) modeling languages the subgraph of the graph which con-
sists only of types known by the Reference Frame is a good candidate for a
synchronization context.

4 Conclusions and Outlook

This paper introduced a means for adding a degree of flexibility to shared
workspace systems that make use of graphs as primary representations: us-
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ing synchronization contexts, also semantically rich structures can be partially
shared - the method ensures that the joint parts in all the involved applica-
tions have the same ”local interpretation”. Current versions of the Cool Modes
software [11] support the synchronization contexts as presented in this paper.

Ongoing research deals with the question if the minimal synchronization
contexts, though formally providing shared semantically rich artifacts for col-
laborative work, are sufficient in the sense of producing a shared understanding
in the involved user group - or if, on the other hand, there are certain situations
in which a full model sharing is more suitable than partial sharing with even
well-designed synchronization contexts and appropriate awareness mechanisms.
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