(©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: [10.1109/ICALT.2015.75

Towards an Integrative Learning Environment
for Java Programming

Sebastian Gross and Niels Pinkwart

Humboldt-Universitit zu Berlin, Department of Computer Science
Unter den Linden 6, 10099 Berlin, Germany
{sebastian.gross,niels.pinkwart}@hu-berlin.de

Abstract—Learning programming can be a challenging task
for students that not only requires them to acquire knowledge
but also to make use of their knowledge in solving real-world
problems. In this paper, we introduce an intelligent, adaptive
and adaptable learning environment for Java programming
called FIT Java Tutor. The learning environment integrates
several pedagogical approaches in order to help learners learn
programming considering individual needs. For testing purposes,
we prepared a set of learning resources consisting of video tuto-
rials, programming tasks, quizzes and multiple-choice tests, and
deployed the learning system in an introductory programming
class at Humboldt-Universitit zu Berlin. Based on experiences
gained from this setup, we derived three research questions for
investigation in future studies.

Index Terms—Ilearning environment, integrative, adaptive tu-
toring, Java, programming

I. INTRODUCTION

Programming is a useful skill and teaching basics of pro-
gramming is part of many curricula in universities and higher
education. Learning a programming language, however, cannot
be approached theoretically only but requires a lot of practice
in order to develop technical expertise regarding programming
concepts as well as algorithmic thinking for mapping real-
world problems to program code structures. Several studies
(e.g. [, [2]) have shown that many students already expe-
rience serious difficulties with the basics of a programming
language. In order to deal with this issue, many academic
institutions make use of computer-supported learning systems
to facilitate the process of learning programming and to give
students an additional tool to learn whenever and wherever
they want to. In this paper, we introduce an integrative
learning system for Java programming that considers learner’s
individual needs in learning, and provides instructional support
for problem-solving.

The remainder of this paper is organized as follows: First, in
Section [T} we review the state of the art of computer-supported
learning systems for programming and derive requirements for
such systems. In Section we then describe our system in
more detail. In Section we outline our experiences from an
introductory programming class in which our system was used,
and we derive and discuss research questions for investigation
in future studies. Finally, in Section [V] we conclude and give
an outlook on future work.

II. COMPUTER-SUPPORTED LEARNING ENVIRONMENTS
FOR PROGRAMMING

There are several approaches for computer-supported teach-
ing and learning of programming languages. These approaches
can be distinguished by the pedagogical principles that are
implemented to support learning.

Learning Management Systems (LMS) help educators orga-
nize learning resources, and enable them to provide learning
tools to learners. For instance, the GREWPtool has been
integrated into the Moodle LMS to enable students to collab-
orate as they learn Java programming. An evaluation of this
approach has shown that students using this collaborative tool
have significantly higher success rates than those who learned
in a traditional way [3|.

Adaptive learning systems (ALE) are personalized environ-
ments that aim at tailoring computer assisted learning process
to learner’s needs. For instance, the JavaGuide provides adap-
tive navigation support to prevent learners from selecting too
simple or too complicated problems [4]. Another approach
for adaptive support is to recommend learners appropriate
content. For instance, Proteus is a tutoring system for Java
programming that uses principles of learning style identifica-
tion in order to provide content recommendations for course
personalization [5]].

Exploratory learning environments (ELE) help learners ac-
quire knowledge allowing or scaffolding them to freely explore
the environment. For instance, Hohl and colleagues [6] pro-
posed a hypertext system that facilitates exploratory learning
of Common Lisp using a hyperspace of topics. A more
recent approach that supports exploratory learning is the "FLIP
Learning’ system for learning JavaScript [7].

Intelligent Tutoring Systems (ITS) are a specific type of
ALEs. They use Al techniques in order to instruct learners,
and thus facilitate learning in many fields such as algebra []]
or intercultural competence [9]. In the domain of program-
ming, Le and colleagues [[10] reviewed Al-supported tutoring
approaches and classified them into six categories: example-
based, simulation-based, collaboration-based, dialogue-based,
program analysis-based, and feedback-based approaches. The
NavEx tutor, for instance, pursues the example-based learning
approach in order to give learners explanations on how to solve
programming problems by providing annotated program code
examples instead of bare solutions [[11].



http://dx.doi.org/10.1109/ICALT.2015.75

As stated above, there are several approaches to support
learning programming using different pedagogical principles.
While some systems support learning by providing pedagog-
ically structured learning resources such as LMSs, or support
exploratory learning such as ELEs, these systems, however,
may have no adaptive and intelligent support (as ITSs provide
if learners got stuck in problem-solving), or they do not sup-
port interactions among groups of learners (as it is supported
by collaborative programming tools). Furthermore, systems
rarely consider how to support learner groups containing
students of different expertise, from very beginners to more
advanced or expert learners.

Based on our review of the state of the art of computer-
supported learning approaches, we determined the following
requirements to be met by learning supporting systems for pro-
gramming in order to support heterogeneous groups of learners
(e.g. from very beginners to advanced). Hence, we argue that
a computer-supported learning environment is supposed to

R1 instruct a learner if she got stuck in problem-solving,

R2 provide a learner with pedagogically structured learning
resources,

R3 enable a learner to explore the environment taking into
account her (lack of) knowledge,

R4 enable a learner to adapt the environment to her individual
needs, and

RS enable a learner to interact with other learners in collab-
orative activities.

In this paper, we propose an integrative approach that ad-
dresses these requirements. We therefore implemented an in-
telligent, adaptive and adaptable learning environment for Java
programming that integrated several pedagogical principles.

III. SYSTEM DESIGN AND IMPLEMENTATION

In previous work [12]], we proposed and implemented an
ITS middleware architecture which facilitates the construction
of ITSs. In our approach, we replaced domain models typically
used in ITSs for providing feedback to learners by solution
spaces. We developed machine learning techniques [13]] that
are capable of automatically inferring structures from data
sets consisting of student solution attempts and sample solu-
tions. Based on these structured solution spaces, we proposed
feedback provision strategies [14] that employ example-based
learning methods comparing student solution attempts to ap-
propriate sample solutions. We implemented our approach in a
web-based programming environment that provides feedback
to learners while solving programming problems.

In recent work, we elaborated the web-based programming
environment to such an extent that the system does not only
implement instructional support (requirement R1) but also in-
tegrates several pedagogical strategies in order to consider in-
dividual learner’s needs. We implemented our approach in the
FIT Java Tutor, an integrative learning environment for Java
programming. Technically, it is a web-based system (running
in modern web browsers) that uses standard web technologies
such as HTMLS, JavaScript and SVG: the JavaServer Faces
(JSF) framework is used to create dynamic web pages, and

JavaScript libraries such as JQuery and D3.js [[L5] are used to
implement dynamic behavior on client side and to generate
dynamic and interactive visualizations based on SVG. For
(a)synchronous, secure and reliable communication between
client and server, the FIT Java Tutor uses HTTP, AJAX
and web socket connections over SSL. In order to provide
instructional support to learners, the learning environment
communicates with the above mentioned ITS middleware via
web services.

The client application of the FIT Java Tutor basically
comprises two components: the programming environment
component enables learners to directly solve programming
problems by writing Java program code, and the resource
presentation component provides learners with an overview
of resources they can use for learning.

A. Programming Environment Component

Problem-based learning (PBL) is an instructional approach
that requires students to solve an authentic problem and aims
at enhancing students’ knowledge, problem-solving and self-
directed learning skills while solving a given problem [16].
Since learning programming requires learners not only to know
basics of a programming language but also to be able to
apply their knowledge, solving typical problems is essential
for learning programming. In computer-supported learning
programming, Kumar, for instance, investigated the effective-
ness of a problem-solving tutor, and has shown that using
this tutor improves students’ programming skills [17]. The
FIT Java Tutor supports PBL by integrating a programming
environment (illustrated in Fig.[T) which enables users to solve
programming problems by writing, compiling and executing
Java programs. It supports code-highlighting as implemented
in the popular Eclipse development environment. Compiler
and interpreter outputs are displayed, thus users have access to
standard error messages generated while compiling/executing
a Java program. Furthermore, learners can request feedback
on their programs. These requests are then forwarded to and
processed by the ITS middleware which provides feedback,
and thus instructs learners in problem-solving (R1) based on
sample solutions (as illustrated in the right panel in Fig. [I).

To give learners an indication of their progress in learning,
the programming environment provides four indicator lamps
reflecting syntactic and semantic correctness of a program in
respect of a given problem: the first indicator lamp reflects
whether a program can be compiled, the second reflects
whether a program can be executed, the third indicates whether
the program terminates in some predefined time, and the fourth
indicates whether the program’s output is the expected one.

Learner’s problem-solving processes are often character-
ized by making and correcting errors. To support learners
in stepping forward and backward while solving a given
problem, the programming environment provides an interactive
visualization of a graph (as illustrated in Fig. [J)) that represents
steps in problem-solving. This visualization enables a learner
to go back to a previous program version (e.g. if she wants to
apply another problem-solving strategy), or to restore a more
advanced version.



public class Recursion {
public static void main(String[] args) {
Recursion recursion = new Recursion();
int result = recursion.recursive(5);
System.out.printin(result);

public int recursive(int num) {
return recursive(num - 1) + num;

public class Recursion {
public static void main(String[] args){
Recursion recursion = new Recursion();
int result = recursion.recursive(5);
System.out.printin(result);

public int recursive(int num) {
if(num > 0)
num = recursive(num - 1) + num;

¥
return num;
¥
Program:\compilel execute' Java messages: Feedback: |request: hidel

Exception in thread "main" java.lang.StackOverflowError
at Recursion.recursive(Recursion.java:9)
at Recursion.recursive(Recursion.java:9)
at Recursion.recursive(Recursion.java:9)
at Recursion.recursive(Recursion.java:9)

The system has determined a certain similarity between your program
and the program shown above. Compare the two programs and modify

your program if necessary.

Please rate the feedback
(helpful, fair, not helpful):

Fig. 1: Screenshot of the programming environment component integrated in the FIT Java Tutor.

B. Resource Presentation Component

The purpose of the second component is to provide users
with an overview of learning resources they can utilize for
learning. SCORM, LOM, and the Tin Can API help modelling
resources for use in learning systems (e.g. in the domain
of programming [[18]]), and thus ease the sharing of learning
objects between different systems. These standards, however,
also impose special requirements for presenting contents of
learning objects. Since, in our approach, we focused on how
to design views on resources in order to address different
pedagogical requirements, we simplified the representation by
designing learning objects as digital artifacts containing text
and multimedia data. Here, an artifact can be related to a set of
tags that describe its content. We implemented several views
on these artifacts in order to address the requirements defined
in Sec. [

1) Course-oriented View: The presentation of learning ob-
jects in computer-supported learning systems often relies on
pedagogical concepts that reflect learning goals. Some LMSs,
for instance, provide courses and make use of hypermedia
to structure learning objects taking into account different
learning objectives. In the FIT Java Tutor, we implemented
a course view that visualizes artifacts structured into course
units representing concepts in Java programming such as
“Recursion” (illustrated in Fig.[3). Since a course often consist
of several units, the course view is also able to visualize de-
pendencies between units implementing a logical sequence of
learning objectives (e.g. the concept of backtracking requires
the concept of recursion). Addressing R2, this view aims at
providing learners with pedagogically structured resources.

oce
o000

Fig. 2: Graph of program versions where nodes represent steps in problem-
solving. Users can restore a previous program version by clicking on the
corresponding node.

00

2) Problem-oriented View: As stated in Sec. [[IIFA] PBL
is a promising approach to support learning programming.
To give learners an overview of all available programming

9
a =
3 E
2

Fig. 3: Course unit “Recursion” composed of two consecutive video tutorials,
followed by four programming tasks, and a final test.

L=og =

problems, we implemented a dynamic task list where each
entry of the list includes a description of the task, and a
colored bar indicating the difficulty of the task (ranging from
green for easy tasks to red for hard tasks). The difficulty
of a task is calculated from learners’ and experts’ ratings,
respectively. Addressing R2, this view aims at enabling a
learner to identify appropriate problems that correspond to her
level of knowledge.

3) Resource-oriented View: In the FIT Java Tutor, we im-
plemented a dynamic visualization (based on a force-directed
layout) of artifacts represented as resource space (illustrated
in Fig. @) that emphasizes artifacts, relations and learners’
contributions. In contrast to the course view which requires
educators to manually structure artifacts into course units,
the resource space view visualizes structures based on logical
relations (e.g. a sample solution is related to a programming
task) and semantic proximities. As mentioned above, an arti-
fact can be related to a set of tags that describe its content.
To calculate semantic proximities among a set of artifacts,
we use a similarity measure based on tag sets proposed by
Zhou and colleagues [19]]. These proximities are then mapped
to (invisible) edges between artifacts that define the visual
structure of the resource space. To consider individual needs
of learners, users can apply filters to the resource space in
order to hide or display artifacts considering quality (e.g. to
display highly rated artifacts only), artifact type (e.g. to display
programming tasks only), and related tags (e.g. to display
artifacts related to “recursion” only). Addressing R3, this view
aims at supporting learners as they explore the environment.
The structuring of learning resources into semantically similar



© b

Fig. 4: Excerpt from the resource space view: visualization of artifacts
(represented by nodes) and their logical relations (represented by edges). The
distance between two artifacts reflects their semantic proximity.

clusters has the goal of allowing learner to identify knowledge
(represented by sets of artifacts) she has already acquired and
she is still lacking, respectively. Addressing R4, the filtering
options aims at enabling a learner to adapt the resource space
view to her individual needs.

4) Concept-oriented View: There are several approaches
(such as semantic networks) to model relations among data
sets of knowledge. Here, concept maps are a common ap-
proach to visualize these relations. In the FIT Java Tutor, we
employed this approach by implementing a tag cloud (illus-
trated in Fig. [5) that reflects concepts in Java programming.
By clicking on a tag, related artifacts are displayed in the
resource space (see Sec. [[IlI-B3). When selecting two or more
tags, learner can see concepts that are interrelated within the
resource space.

C. Community-oriented Features

The FIT Java Tutor implements awareness features that
notify a user about learning activities of other users (e.g. if
a user has worked on a programming problem). Addressing
RS, the system also provides several community-oriented and
cooperative features that enable a learner (I) to rate the diffi-
culty of programming problems, (II) to rate and to comment
on artifacts, (III) to add tags to artifacts, (IV) to create artifacts
(e.g. a programming problem a learner is unable to solve
on her own), (V) to share her own solution attempts for
programming problems with other users, and (VI) to review
solution attempts that other users have shared before.

In summary, these features aim at engaging a learner to en-
rich learning resources by metadata (such as ratings, comments
and tags) and, thus, to reflect on them, to extend educational
data sets by new learner created resources, and thus to support
the emergence of learning communities.

IV. EXPERIENCES FROM AN INTRODUCTORY
PROGRAMMING COURSE FOR JAVA

In the winter term 2014/15, we deployed the FIT Java Tutor
in an introductory programming class at Humboldt-Universitét
zu Berlin which was attended by about 400 students. In
addition to lecture and exercise sessions, the use of the
FIT Java Tutor was voluntary for students. In advance, a

RUQORAMMILUDD

M
BEDINGUNG m
® )
A m
2 pel
£- DEKLARATION = 225 o
& - NQ
" @ INITIALISIERUNG m %a
O INT %53
N= FLOAT = rﬁn Gé
60 VOID - s Ch
zC U ADDITION O = o
T I AL om
PROZEDUR E

Fig. 5: Excerpt from the tag cloud: visualization of keywords which describe
concepts in Java programming. The font size of a tag indicates how many
artifacts are related to the corresponding tag.

student assistant with teaching experience (supported by two
experienced Java programmers) developed an online course for
Java beginners composed of 12 course units covering basic
concepts such as conditional statements or loops, and also
more advanced topics such as recursion or backtracking. He
also defined a logical sequence between these units. For each
course unit the student assistant also identified and prepared
learning resources resulting in a set of artifacts consisting of 25
video tutorials (hosted on YouTube and embedded using the
YouTube Video Player), 39 programming tasks (and sample
solutions for feedback provision), 4 quizzes (each consisting
of a program and several questions about its behavior while
executing), and 12 multiple choice tests. Finally, he defined
a logical sequence (with respect to learning objectives) of
artifacts within each unit. This course data is visualized in
the course view (see Sec. [[lI-BT). The set of learning objects
represents the artifacts in the resource space (see Sec. [[lI-B3).
From this data set, the learning system automatically extracted
all programming tasks to be displayed in the task list (see
Sec. [M-B2). In addition, the expert tagged each artifact with
Java related keywords. These tags were the basis of the
tag cloud (see Sec. [[lI-B4). Overall, the preparation of the
learning resources summed up to an effort of about 100 hours
whereof 20 hours were spent on designing the course, 70 hours
were spent on identifying and preparing appropriate learning
resources, and 10 hours were spent on technical issues.

At the time of writing this paper, the FIT Java Tutor is still
in use. We therefore outline our experiences after 10 weeks
of usage in the introductory programming class. Up to that
point, more than 100 of the 400 students (regularly) used
the tutor as an additional learning tool for watching video
tutorials, writing programs for programming tasks, and solving
quizzes/tests. Students have made use of artifacts for learning
about 1,900 times: video tutorials have been used 355 times,
programming tasks 1,317 times, quizzes 77 times, and tests
148 times. In terms of usage of the different views the system
provides, the course-oriented view (see Sec. has a
usage percentage of 90%, followed by the problem-oriented
view (see Sec. [[I-B2) with 8%. For solving programming
tasks, students could write Java programs using the integrated



programming environment (see Sec. [[IlI-A). Students have used
this environment to compile and execute more than 3,200 Java
programs. The feedback option has been used 390 times.
Programming tasks were learners’ preferred artifact type.
Moreover, the data indicate that instructing a learner while
solving a problem (as addressed in R1) is crucial for learning
programming. While the course view (see has been
students’ preferred view, the resource-oriented view has sur-
prisingly been used only a few times. A possible explanation
for students’ preference could be that, since most of them were
probably very beginners, students rather needed orientation in
learning as offered by the course view (that addresses R2)
than exploration support (as addressed in R3) or adaptation
features (as addressed in R4). However, learners’ behavior
might change over time (e.g. when students prepare for exam
or get more experienced). Assuming that learners’ needs
change over time, we derive the following three research
questions: (1) How do learners’ needs change over time while
learning programming? (2) When do learners need additional
support (as addressed in R3 to R5)? Manually designing an
online course as it is necessary for the course view means a
huge effort — whereas the resource-oriented view automatically
structures learning resources based on semantic proximities.
This leads to question (3) whether it is possible to derive
learning objectives from learning data (e.g. learners’ activities
during learning) automatically in order to structure learning
resources based on pedagogical relations, and thus to enhance
the resource-oriented view so that it not only visualizes
semantic proximities among a set of artifacts but also contains
reasonable learning objectives via clusters of artifacts.

V. CONCLUSION & OUTLOOK

In this paper, we introduced a learning environment for
Java programming called the FIT Java Tutor. The environment
integrates several pedagogical principles in order to provide
instructional support for problem-solving, to structure learning
resources taking into account learning objectives, to support
exploratory and collaborative learning, and to enable a learner
to adapt the environment to her needs. The system has been
deployed in an introductory programming class at Humboldt-
Universitdt zu Berlin. The students of this class extensively
used the learning environment overall, however some of the
views/features provided by the system were paid little attention
to by them. From these experiences, we derived three research
questions. In future research, we plan to investigate these
questions and to evaluate the FIT Java Tutor in terms of
usability, scalability and its effect on learning outcomes.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) under the grant “FIT — Learning Feedback in
Intelligent Tutoring Systems.” (PI 767/6).

REFERENCES

[1] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppild, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference
on Computing Education Research, ser. Koli Calling ’10. New

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

York, NY, USA: ACM, 2010, pp. 86-93. Available:
http://doi.acm.org/10.1145/1930464.1930480

T. Jenkins, “A participative approach to teaching programming,” in
Proceedings of the 6th annual conference on the teaching of computing
and the 3rd annual conference on Integrating technology into computer
science education: Changing the delivery of computer science education,
ser. ITiICSE "98. New York, NY, USA: ACM, 1998, pp. 125-129.
[Online]. Available: http://doi.acm.org/10.1145/282991.283090,

N. Cavus and D. Ibrahim, “Assessing the success rate of students using
a learning management system together with a collaborative tool in
web-based teaching of programming languages,” Journal of educational
computing research, vol. 36, no. 3, pp. 301-321, 2007.

I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky, “Guiding students
to the right questions: adaptive navigation support in an e-learning
system for java programming,” Journal of Computer Assisted
Learning, vol. 26, no. 4, pp. 270-283, 2010. [Online]. Available:
http://dx.doi.org/10.1111/1.1365-2729.2010.00365.x

B. Vesin, M. Ivanovi, A. Klanja-Milievi, and Z. Budimac, “Protus 2.0:
Ontology-based semantic recommendation in programming tutoring
system,” Expert Systems with Applications, vol. 39, no. 15, pp.
12229 — 12246, 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0957417412006495

H. Hohl, H.-D. Bcker, and R. Gunzenhuser, “Hypadapter: An adaptive
hypertext system for exploratory learning and programming,” in
Adaptive Hypertext and Hypermedia, P. Brusilovsky, A. Kobsa, and
J. Vassileva, Eds. Springer Netherlands, 1998, pp. 117-142. [Online].
Available: http://dx.doi.org/10.1007/978-94-017-0617-9_5

S. Karkalas and S. Gutierrez-Santos, “Enhanced javascript learning using
code quality tools and a rule-based system in the flip exploratory learning
environment,” in Advanced Learning Technologies (ICALT), 2014 IEEE
14th International Conference on, July 2014, pp. 84-88.

K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark,
“Intelligent tutoring goes to school in the big city,” International Journal
of Al in Education, vol. 8, pp. 30-43, 1997.

A. Ogan, V. Aleven, and C. Jones, “Advancing development of
intercultural competence through supporting predictions in narrative
video,” International Journal of Al in Education, vol. 19, no. 3,
pp. 267-288, Aug. 2009. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1891970.1891972

N. T. Le, S. Strickroth, S. Gross, and N. Pinkwart, “A review of Al-
supported tutoring approaches for learning programming,” in Accepted
for the International Conference on Computer Science, Applied Mathe-
matics and Applications 2013, Warsaw, Poland. Springer Verlag, 2013.
P. Brusilovsky and M. Yudelson, “From webex to navex: Interactive
access to annotated program examples,” Proceedings of the IEEE,
vol. 96, no. 6, pp. 990 999, june 2008.

S. Gross, B. Mokbel, B. Hammer, and N. Pinkwart, “Towards a domain-
independent its middleware architecture,” in Proc. of the 13th IEEE
International Conference on Advanced Learning Technologies (ICALT),
N.-S. Chen, R. Huang, Kinshuk, Y. Li, and D. G. Sampson, Eds. Los
Alamitos, CA: IEEE Computer Society Press, 2013, pp. 408—409.

B. Mokbel, S. Gross, B. Paassen, N. Pinkwart, and B. Hammer,
“Domain-independent proximity measures in intelligent tutoring sys-
tems,” in Proceedings of the 6th International Conference on Educa-
tional Data Mining (EDM), S. K. D’Mello, R. A. Calvo, and A. Olney,
Eds., Memphis, TN, 2013, pp. 334-335.

S. Gross, B. Mokbel, B. Paassen, B. Hammer, and N. Pinkwart,
“Example-based feedback provision using structured solution spaces,”
Int. J. of Learning Technology, vol. 9, no. 3, pp. 248-280, 2014.

M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.
[Online]. Available: http://vis.stanford.edu/papers/d3

W. Hung, D. H. Jonassen, R. Liu et al., “Problem-based learning,”
Handbook of research on educational communications and technology,
vol. 3, pp. 485-506, 2008.

A. N. Kumar, “Learning programming by solving problems,” in Infor-
matics Curricula and Teaching Methods. Springer, 2003, pp. 29-39.
C. Qu and W. Nejdl, “Towards interoperability and reusability of learn-
ing resources: A scorm-conformant courseware for computer science
education,” in Proc. of the 2nd IEEE International Conf. on Advanced
Learning Technologies (ICALT), Kazan, Tatarstan, Russia, 2002.

J. Zhou, X. Nie, L. Qin, and J. Zhu, “Web clustering based
on tag set similarity,” Journal of Computers, vol. 6, no. 1,
2011. [Online]. Available: http://ojs.academypublisher.com/index.php/
jep/article/view/06015966

[Online].


http://doi.acm.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/282991.283090
http://dx.doi.org/10.1111/j.1365-2729.2010.00365.x
http://www.sciencedirect.com/science/article/pii/S0957417412006495
http://www.sciencedirect.com/science/article/pii/S0957417412006495
http://dx.doi.org/10.1007/978-94-017-0617-9_5
http://dl.acm.org/citation.cfm?id=1891970.1891972
http://dl.acm.org/citation.cfm?id=1891970.1891972
http://vis.stanford.edu/papers/d3
http://ojs.academypublisher.com/index.php/jcp/article/view/06015966
http://ojs.academypublisher.com/index.php/jcp/article/view/06015966

	Introduction
	Computer-supported Learning Environments for Programming
	System Design and Implementation
	Programming Environment Component
	Resource Presentation Component
	Course-oriented View
	Problem-oriented View
	Resource-oriented View
	Concept-oriented View

	Community-oriented Features

	Experiences from an Introductory Programming Course for Java
	Conclusion & Outlook
	References

