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ABSTRACT
Experimentation is one of the key techniques to gain knowl-
edge in science. Physical computing is increasingly gain-
ing attention in computer science; it shares several features
with experimentation so that it seems plausible to build on
established models of experimentation for physical comput-
ing based computer science education. This paper presents
a theoretically derived physical computing model and com-
pares it to established models of scientific inquiry, point-
ing out common elements such as similar phases, but also
potential differences. In a physical computing pilot study,
we analyzed student behavior based on the theoretically de-
rived model in order to see if this model – when used to
analyze student behavior – is (1) reasonably applicable, and
(2) potentially helpful for teachers. The results of the study
generally confirm the appropriateness of the model as an
analytical lens for describing student activities in physical
computing exercises. At the same time, the study results
also motivate slight modifications of the model. Finally, the
study results may serve as a guide for teachers who want to
conduct physical computing lessons.

CCS Concepts
•Social and professional topics → K-12 education;
•Computer systems organization → Embedded and
cyber-physical systems; Robotics;

Keywords
Physical computing; experimentation; scientific inquiry; com-
puter science education

1. INTRODUCTION
Physical computing is increasingly used in schools and is

becoming more and more a focus of research on computer
science education. Physical computing can be characterized
by using devices such as robotics, Raspberry Pis and Ar-
duinos in education. As put by Przybylla and Romeike in
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their definition of physical computing, “Interactive Objects
[...] perceive their environment with sensors, which in turn
deliver data to be processed by the microcontroller. Ac-
cording to the configuration of the systems these data are
processed and passed on to the actuators. In this way, in-
teractive objects communicate with their environment” [22].
Using physical computing in education can improve moti-
vation, in particular for girls [8], and there is initial evi-
dence for positive learning outcomes of physical computing
approaches in computer science and other STEM subjects
[28].
STEM education has a long tradition of scientific inquiry
and inquiry learning as problem solving strategies that are
used to gain knowledge in science and to learn epistemolog-
ical views, scientific reasoning and practical skills [15]. One
specific working technique of scientific inquiry is experimen-
tation, which is very popular in science. Experimentation
shares many surface features with physical computing. We
were thus interested in more deeply investigating if physical
computing can indeed be conceived as a working technique
for scientific inquiry. In section 2 of this paper, we review the
relevant literature on physical computing and elicit a phase
model for physical computing processes. We compare this
model to established models of scientific inquiry to identify
commonalities and differences. Subsequently, we describe a
pilot study we conducted. In this study, we analyzed stu-
dent behavior in a physical computing task based on the
theory-derived model. The analysis confirms the general
applicability of the model to describe physical computing
processes, yet at the same time also gives initial evidence
for some refinements and adjustments to the model. The
analysis of student behavior in the study (and its relation to
the phases in the model) also yields some results that may
serve as guidance for computer science teachers who want
to introduce physical computing in their classrooms.

2. THEORETICAL BACKGROUND
In this section we first describe the theory of experimen-

tation in natural sciences and selected results in the field of
science education. Experimentation is a key component in
the general theory of scientific inquiry (SI). The boundary
between SI and inquiry learning (IL) will be explained to
give an overview independent of domains. Next, we analyze
the role of SI specifically for computer science (CS) edu-
cation and compare this to physical computing. Finally we
derive our physical computing (PhC) model from theory and
compare our model to an existing model of experimentation
in STEM.



2.1 SI and Experimentation in STEM
SI and IL are based on a general theory of problem solv-

ing, which is widely accepted in the natural science com-
munity [15]. The purpose of SI is to learn about gaining
knowledge in science, which includes skills in working tech-
niques and ways of thinking. Different models of SI exist.
Bybee describes the core of SI as consisting of the follow-
ing five phases: observation, hypothesis, interference, test
and feedback [2]. He also defines observation and exper-
imentation as working techniques for SI. Modeling is a
widespread method for SI [32] and in CS. This paper focuses
on experimentation as a working technique. SI is often ex-
plained but less explicitly modeled as a cycle. It is obvious
that after one pass through the five phases, typically not all
relevant knowledge is gained with respect to a problem or
phenomenon at hand. In the process, new hypotheses are
often generated which need to be investigated. Passing the
cycle exactly one time is thus a rather theoretical case.
SI is well researched in natural sciences and includes experi-
mentation as a key element and working technique. Schreiber
et al. developed a model of experimentation in science [27].
This model is based on Hammann [7] who derived from
Klahr’s model [10, p. 21–39] and expanded this model with
empirical results. Hammann divided the process into three
phases: searching and forming a hypothesis, planning and
performing experiments, and analyzing data. Schreiber et
al. differentiated this model further, using the categories
preparation, performance and evaluation. Preparation in-
cludes developing a question as a result of observing an un-
known phenomena. Clarifying a question could be a starting
point if a phenomenon is observed during the first step or if
the question for investigation is given. Afterwards expecta-
tions about the outcomes need to be formulated, leading to
a hypothesis. The shift between the preparation phase and
the performance phase is characterized by a change from an
abstract to a real model of an experimental design and an
experimental draft. The control of different parameters is
important for that. To start the performance phase it is
necessary to make sure that all devices are available. Then
the experimental design should be built and tested. This is
an iteration of either the whole phase or sub-phases from
the creation of an experimental design to testing this de-
sign, until it seems to be accurate. After the planning, the
experiment is ran and data is collected and documented.
The following part, handling problems and errors, can ei-
ther belong to the preparation or the evaluation phase as it
may involve producing further data (performance) or pro-
cessing data (evaluation). In the evaluation phase, the data
is prepared, for example in table form or graphically. After-
wards the data is processed and analyzed according to the
hypothesis which was set up in the beginning. It is impor-
tant that there is no fixed order within these three phases.
Not every sub-phase needs to occur (e.g. existence of er-
rors), sub-phases can be re-ordered, or may be iterated.
Hammann also constructed a model for experimental com-
petences. Indeed, several such models exist, but they often
only focus on selected aspects. Schreiber et al. focus on
performance, while Mayer concentrates on preparation and
building hypotheses. In Mayer’s description, performance is
a part of practical work and not directly part of the experi-
mentation process.
Patzwaldt et al. validated phases and sub-phases for exper-
imental competences in chemistry [19]. They identified al-

most all phases from literature, yet the evaluation phase was
sometimes shortened or omitted. In a study they divided the
task into sub-tasks which correlate to the SI process. Find-
ings are: (1) cognitive processes are parallel to sub-tasks; (2)
the phases of preparation, performance and evaluation are
iterative, and (3) in performance there are oscillating steps
backwards to preparation.

2.2 Scientific Inquiry and Inquiry Learning
SI is considered as a part of general education [2] and a key

competence in the sciences [20, p. 31][29, p. 53]. SI is a gen-
eral theory of gaining knowledge in science independent of
domains. It is divided into different phases and sub-phases,
which need to be passed in the learning process (see above).
The term Inquiry Learning is related to SI, but focuses more
on specific educational interventions that do not necessarily
have to include all phases of the SI process. Computer sim-
ulations are common to support students by giving domain
specific feedback to improve inquiry. Related literature can
be seen in section 2.3.
There is evidence that students of different ages often have
problems acquiring SI competences – which is a key mo-
tivation for conducting IL to help learn specifically those
competences that students have trouble with. Some of the
related research results are presented in the following para-
graph. We selected results from literature reviews [6, 33].
Students frequently have difficulties in building hypotheses
in general. In particular, this involves forming hypotheses
which are testable and drawing right conclusions from re-
sults. Combining hypotheses with results is critical if the
results contradict student’s expectations or experience [3].
Assembling the experimental design to test desired variables
is also a problem for many students [12]. Students also of-
ten change more than one variable at once [9]. They also
frequently choose wrong variables to test [34]. Students are
often not aware of how they should do an experiment: Dur-
ing experimentation, they try to reach a certain goal state,
not realizing they are no longer testing a hypothesis [25].
The general preparation is often abbreviated and important
tasks are skipped [14]. In evaluating data, students have
different tendencies when collected data does not fit to their
theory (anomalous data). This includes ignoring data, re-
jecting data or assuming that the theory has changed [4]. It
is possible that students sometimes react irrationally when
considering data. In general, they have difficulties to dis-
tinguish data (or rather evidence) from theory [5]. Students
have problems in adapting their theory and build a new
one if they have not enough knowledge in this context [24].
In conclusion, these results show that students need sup-
port when acquiring SI competence, which motivates IL ap-
proaches. Strategies like control of variables are often used
as a investigative strategy. Other scaffoldings like choosing
one hypothesis from a set of hypotheses have been used to
support inquiry [30].

2.3 The Role of Computers in SI
Computers are often used in an IL context. This includes

the use of learning tools to support group processes and
to gain knowledge by combining modeling and learning by
collaborative inquiry. Frequently, the computer based tools
provide scaffolding or give feedback to students [21].
Another IL approach involving computers as tools is a cre-
ation of a learning environment where simulations can be



modeled or built in a remote laboratory to support collabo-
rative discovery learning in natural sciences [31].
Resnick et al. commented on the role of building and de-
signing own instruments beside observing and measuring in
scientific inquiry [23]. They argue that Galileo constructed
his own telescope to conduct research and so did other sci-
entists. The benefit of this process is that they understand
the functions of the instrument and limits: “By building
their own instruments [...] scientists have historically gained
deeper insights into nature of the phenomena under investi-
gation” [p.8]. This illustrates a strong connection to scien-
tific inquiry. Building devices should produce transparency
for learners. Constructing own devices can thus be an impor-
tant component for designing experiments. When building
their own (specifically also computer based) devices, stu-
dents may thus become more critical and obtain a better
understanding for suitable measures and formulate possible
reasons for unexpected or anomalous data – as compared
to using off-the-shelf devices. If devices are computer based,
the design and implementation necessarily involves CS skills
like handling sensors and actuators and programming.
We conclude that very frequently computer based tools play
a role in SI and IL processes. Yet, the improvement of CS
competences beyond the mere use of existing digital devices
is relatively rare. A working technique which improves CS
and SI skills would have several benefits – and physical com-
puting seems to be an appropriate choice, as we shall argue
in the next sections.

2.4 Identifying the Process of PhC
In literature we find only few explicit descriptions of typi-

cal PhC processes. Existing publications show a spectrum of
different and very creative projects which can be built with
sensors and actuators, with a growing number of educational
questions and approaches covered by PhC. Yet, an overall
process model of physical computing has not been proposed.
One considerable characterization is given by O’Sullivan and
Igoe [17, p. xix–xxix, 49–86]. Their starting point is a de-
scription of what should happen by the interaction of an ar-
bitrary device with the environment. The focus is on what
the person who builds or uses the device can see, hear, or
feel when the interaction happens. The interacting person
gets in the foreground of the process laid out by O’Sullivan
and Igoe. In their approach, the description is formulated in
natural language without a specific programming language.
The overall process occurs in a loop. In the preparation
phase it is necessary to find an approach or have a first idea
how to solve a given problem. If it is possible, depending
on experience in PhC, problems in later phases should be
anticipated at the beginning. At this time it is practical to
share problems in a community, according to O’Sullivan and
Igoe: There are a lot of existing platforms, e.g. for makers
[13], so that it is likely that other users may have had similar
problems and solutions. A more general recommendation of
O’Sullivan and Igoe is to divide the main task into sub-tasks
for switching around if a person is stuck.
After some iterations during preparation the implementation
phase starts. The first step is thinking about specific devices
and input, output and processing. At this point, decisions
should be taken about which input and output should be
used and whether analog or digital is appropriate. For pro-
cessing it should be clear which process needs to be serial
or parallel. After planning in detail, coding starts. Read-

ing sensor values, turning actuators on and off and sending
messages to other devices is included in the programming ac-
tivities. After running the program it is necessary to identify
problems, because it is unlikely that software and hardware
are running completely correct by the first try. This is well
known as debugging in CS. Therefore in every step only one
variable should be changed to make sure about the problem.
Changes can be done by replacing single pieces of hardware
or software to exclude sources of error.

Figure 1: Physical computing phases model derived
from literature [17, 16, 1]

Focusing on the PhC process, Banzi states: “Arduino was
born to teach Interaction Design, a design discipline that
puts prototyping at the centre of its methodology” [1, p. 5].
“Interaction Design” focuses on the interfaces between hu-
mans and objects, encouraging iterative working processes.
This position also emphasizes the importance of debugging
in PhC when the quality of prototypes is increasing. Banzi
explained, “classic engineering relies on a strict process for
getting from A to B; the Arduino Way delights in the pos-
sibility of getting lost on the way and finding C instead”
and influences of prototyping, tinkering and patching on the
Arduino Way. This idea is more focused on outcomes as a
product with clear goal orientation.
Okita choses a more process oriented approach in problem
solving with robots [16]. She investigated the so-called re-
cursive feedback which is necessarily provided in robotics
activity. This kind of feedback occurs due to the previous
formulation of rules on how a robot should act (in a pro-
gramming environment). After programming, students run
the program and observe the outcomes without having in-
fluence on their program at this time. In the performance
phase, students observe outcomes and need to figure out dis-
crepancies between their formal program and the observable
outcomes. Therefore it is necessary to find implications of
the program code that were not intended. Then they match
which part of the program is responsible to solve the prob-
lem this way. One important difference to other processes is
that there is a relation between student’s effort and feedback
provided. Okita argues that recursive feedback improves the
anticipation of visible outcomes in performance and in this
way learning conditions for problem solving. If the students
have no ideas about possible outcomes it is very challenging
to use the given feedback.
The problem solving context for robotics was provided ear-
lier by Papert, who postulated that design, iterations and
testing are important to solve real problems [18].
Based on the above suggestions of typical PhC process el-
ements derived from literature, we have constructed the
model shown in Fig. 1. This model includes phases and
sub-phases of PhC (while not every sub-phase has to be in-



cluded in every PhC process). During a PhC activity, the
process is traversed iteratively.

2.5 Comparison of Theories and Aim of Study
Next we compare our model of PhC developed above to

models of experimental competence. Table 1 gives an over-
view of explicitly formulated phases and sub-phases in exper-
imentation (as formulated by Schreiber et al. [27]) and com-
pares this to the elements of our own PhC model. The ab-
sence of sub-phases does certainly not mean that this phase
can not be included in the process, but it was not explicitly
foreseen by the authors.
The preparation phase is quite similar, most importantly
pointing out the idea and forming the hypothesis, but the
intention for the process is different. Both set the goal to
gain knowledge. In addition in PhC a product is often built
to improve daily life or to explore technology.

The idea of sharing problems is widely spread and estab-
lished in the nature of CS. In PhC often no phenomena are
observed. More frequently, the task is an individual choice
of a state which is declared as the goal. That is possible
in science as well. The division of tasks into sub-tasks in
preparation seems to be special for PhC.
Sub-phases of an experimental design, selection and assem-
bling of devices (performance in experimentation) in PhC
are included in the implementation phase. In both models
there are iterations in preparation and transition to perfor-
mance (testing experimental design) or rather in preparation
and implementation.
Performing experiments, for instance in physics, implies col-
lection and documentation of data. In PhC documentation
and collection is usually implicit. It is important to pay at-
tention to outcomes in performance. Handling problems or
errors is only done in experimentation.
Preparing and processing data is not very prominent in PhC.
The evaluation phase in PhC is short or sometimes even not
included at all. After evaluation, transferring results back
to the hypothesis is important for gaining knowledge in sci-
ence. Iterations of the process within sub-phases is included
in both models. In PhC it is unlikely to have no repetition of
the cycle. In experimentation, an iteration between perfor-
mance and going back to the hypothesis is often important.
In summary, based on the findings available in literature,
PhC and scientific experimentation processes share many
elements (but also show some differences) which may war-
rant interpreting PhC as a CS specific technique of scientific
experimentation. Our next goal was to substantiate this by
testing the applicability of the process model in a small-scale
pilot study.

3. PILOT STUDY DESIGN
In order to analyze typical student behavior in a physi-

cal computing task (without explicit process guidance), we
designed a study which was divided into two main phases
as schematically illustrated in Fig. 2. At first the students
received an introduction to the LEGO Mindstorms program-
ming environment that uses a block based GUI without pro-
gramming code included. In every block there are several
variables to define actions. For example one “motor block”
has options to turn a motor on, off, set time in seconds, set
quantity how often wheels rotate or a degree for rotation.
This block is able to control two motors at the same time
– for two wheels on a vehicle. Using several simple tasks,

Table 1: Comparison of models for experimentation
according to Schreiber et al. [27] and our present
model for PhC (Fig. 1).

Model according to Present work
Schreiber et al.

Phase Experim. PhC Phase
Clarify question/ Clarify goal
develop question

Prep. Form hypothesis Plan an Prep.
attempt

Express Express
expectations expectations

Divide task
Share problems

Prep./ Create experi-
Perf. mental design Choose input,

Collect devices output and Impl.
Assemble exp- processing
erimental setup

Perf. Coding
Perform Run program Perf.
measurements
Document Observe
measurements outcomes

Perf./ Cope with prob-
Eval. lems and errors

Prepare data
Process data

Eval. Interpret results Eval.
Merge outcomes
and program
Identify
problems
Change variable
Restart loop

the students were informed how to handle the programming
environment, the hardware and to anticipate the outcomes
of their programs. These tasks were simple movements, the
use of touch sensors or identifying limits of ultrasonic sen-
sors. They were also introduced to a second tool within this
environment. This tool is called “experimentation environ-
ment” and can visualize sensor values in graphs. After this
first introduction phase, the second main phase consisted
of a single task, which provides data for the study. In this
phase, students got the task to program a robot that is able
to drive around a box (approx. 30cm× 50cm× 20cm) using
one ultrasonic sensor. The only demand for the algorithm
was that the robot should be capable to drive around ev-
ery possible box. The students were asked to choose a good
starting position of the robot related to the box. They had
70 minutes to solve the task. A worksheet was provided as
support (but no explicit instructions on phases they would
have to follow). This sheet was divided into four sub-tasks:
(1) “How should the robot act to solve the problem? When
is this problem solved?”, (2) “What should your program
do? How is it changing?”, (3) “What do you observe dur-
ing performance?”, and (4). “Do you need to make addi-
tional changes in order to solve the problem?”. Students
were asked to fill in the blanks in the worksheet. They only
received help from the experimenter in the following three



cases: (A) they explicitly asked for help; (B) there was no
interaction between the students or with the technical de-
vices for several minutes; or (C) the students were obviously
getting discouraged. Students were not allowed to use the
Internet to get help.

Figure 2: Study design

3.1 Participants
In the spring of 2016, we conducted the study described

above with nine participants aged between 14 and 17 years
(m = 15), six girls and three boys. The students were at-
tending secondary school and participating in a voluntary
robotics workshop at Humboldt-Universität zu Berlin. Only
one of them had experience in programming LEGO Mind-
storm robots. Two not had any computer science lessons in
school, five were currently in a optional CS course and two
had already passed a CS course successfully. The students
were divided into four dyads and one student (the one with
experience in robots programming) working individually. To
get an idea of his thoughts, he was requested to talk about
what he was thinking about. He got help in the same way
as the others.

3.2 Methodology of Evaluation
Dyads were video recorded in the working phase. These

videos were transcribed, focusing on verbal interaction within
the groups and also on important changes in the imple-
mentation and on the outcomes in performance. The tran-
script was coded using the above described phases as codes:
preparation, implementation, performance and evaluation.
In addition we coded other noteworthy aspects we could
not find in computer science literature or in other STEM
research. At first we did a qualitative analysis which was
quantified afterwards. To back our coding we calculated
an inter-coder-reliability using Cohen’s Kappa. Therefore
a second coder observed 10% of the transcripts from three
groups. We reached κ = 0.74 for implementation, κ = 0.68
for hypothesis, κ = 0.86 for performance and κ = 0.68 for
evaluation. Compared to Landis and Koch the consistency

is substantial to almost perfect [11]. In the qualitative anal-
ysis we defined which action was included in which phases
to characterize the sub-phases for physical computing that
were derived from literature. Then we observed the changes
between phases and the order of the phases. Therefore we
investigated which phases were often connected or what were
possible ways to pass or bypass the cycle. Then we quanti-
fied the phases by a counting of coded phases for the main
task to interpret how students worked.
Qualitative analysis was conducted with the MaxQDA soft-
ware, where the phases preparation, implementation, per-
formance and evaluation were coded as follows:

• Preparation: all thoughts about general functions
and getting an idea about a solution without thinking
about concrete implementation. Anticipation of prob-
lems is included here too.

• Implementation: starting an interaction with the
programming environment, like observing available blo-
cks or with the robot (for instance, checking inputs and
outputs). Coding and thinking about producing or
changing code. Reconstructing hardware components
like position of sensors or wires to improve functional-
ity.

• Performance: running a program or parts of it. One
successful run (starting program and robot is moving)
is counted as one phase. Use of experimental environ-
ment to check sensor data is included here too.

• Evaluation: direct reaction of students while or after
observing outcomes of performance. Suggesting con-
crete interventions like changing any values or hard-
ware after performance or refining hypothesis. De-
scription, interpretation or evaluation of outcomes. If
a completely new hypothesis is generated or a task is
divided into sub-tasks then this evaluation phase leads
to a new preparation phase.

• Problems and errors: changing hardware or soft-
ware components suspected as the source of error. Sen-
sor errors or problems handling the sensor because of
construction (cable in front of the sensor) or inatten-
tion of students (hand in front of the sensor).

4. RESULTS
We next first describe the general observations during the

study, followed by the results of the qualitative and quanti-
tative phase based analysis.

4.1 General Observations
In the first two groups, no intervention by the experi-

menter was conducted. Students only got help in cases
stated above. The evaluation phase of these groups was
very short or not existent, though. As a result, we decided
to inquire to get more information about students’ observa-
tions and the reasons of their ensuing decisions. So, in the
other three groups, the experimenter inquired what prob-
lems were recognized in performance in case the group did
not start an evaluation phase on their own.
With this exception, the study proceeded as planned. All
students were interested in the tasks and tried to solve them.
Few technical problems occurred when running the program,



because there were several programs with the same name on
one robot. After the first pass of the loop almost no dyad
ever looked at the worksheet again and thus forgot about
filling the blanks. The students asked for help only rarely.
They tried to solve their problems without help and asked
the experimenter only if they suspected a technical prob-
lem might have occurred. The one student without partner
asked the teacher two times, when he felt completely at loss
about how to go on. The students had problems finding the
source of error when changes in the program did not influ-
ence the outcomes. Sometimes the wrong program was exe-
cuted. In the first 35 minutes there were few interventions by
the experimenter. But he needed to intervene several times
in the last 35 minutes. Three of five groups got discouraged
and needed help to find a new way to solve their problems.
The students needed support in drawing conclusions from
the observed outcomes and in finding concrete interventions
to solve their problem.

4.2 Qualitative Phase Analysis
To examine how the robot needs to act in order to drive

around the box, four out of the five groups came up with
an idea first. Subsequently, they generated a hypothesis or
specifically an algorithm based on this idea. During this
process they made suggestions and some constructed a pic-
ture or pointed out their idea with gesture or nearby mate-
rial. At first, building a hypothesis often took a long time.
Within dyads they discussed several times until both part-
ners were sure that they had the same concept of a solution
and the functionality of the robot. They anticipated di-
verse potential problems. One exemplary problem was their
uncertainty about the limits of the sensor and the result-
ing starting point of the robot – either in front or parallel
to the box. The only possibility for sharing problems was
asking the experimenter, which no group did during the first
preparation phase. Within this phase they often switched
from forming a hypothesis by anticipating a hidden problem
to going back building a new hypothesis or rethink other
sub-phases. In the first run all dyads tried to solve the prob-
lem with one single program without dividing the problem
into sub-tasks. They revisited the preparation phase several
times, but only during the first half of the whole session.
When the groups were sure that their solution would be re-
alizable with the given code boxes provided by the program
or their theoretical part was finished, they approached the
implementation phase. Only one group started without
planning of their approach and tried to develop an idea while
programming. Most groups thought deeper about the prob-
lem and developed a solution iteratively by improving their
code. They thought about concrete input and output, and
implemented these in their program. Decisions about serial
and parallel processes needed to be made. Three groups had
some problems to handle the programming environment and
predefined variables, e.g. “threshold value” which defines in
which distance to the box the robot should react. Group D
did not understand the function of loops and if-else-clauses
and mixed these up in their implementation several times.
The same students had difficulties to understand the func-
tionality of the ultrasonic sensor. Finally they concluded
falsely that this sensor had a kind of searching function by
using given parts of the program. Group D suggested “we
need to choose a starting point where the robot sees the box,
then he is aware of the box position for the whole time”.

Some groups built a program including a lot of commands.
This made it impossible for them to check the correctness
of the program or to find possible problems within the code.
When students decided to run the program, this was either
to pass the cycle several times to get feedback or because of
their increasing tiredness. Then they positioned the robot
to start. Performance is started by running the program.
Several groups chose a wrong program and the robot did not
move. This case was not counted for the performance phase.
During the performance the students could not interact (e.g.
discuss or evaluate). They observed the outcomes and went
back to their workplace to discuss the results. Group A, B,
C and D ran the program several times without leaving the
phase because they started no evaluation. In this case the
starting position was sometimes changed by the students.
Group C executed the program very often in different sce-
narios to localize the existing problem. It was not clear in all
cases if the students were aware of what their program was
doing. They changed the driving direction of the robot with-
out changing the program although mostly the program was
designed for one specific direction. Only group C changed
the real world test environment and thereby shortened their
way. They did not use the box when it was not necessary. In-
stead they tested simple functions at a wall near their work-
place or kept the robot in the air while testing the orders to
drive forward and backward without leaving their workplace.
They observed only the direction the wheels turned into. All
groups interacted with the robot during performance. If the
robot was not able to drive around a corner students dragged
the robot backwards to retry. When the program was run-
ning and the students instantaneously decided to move the
robot closer to the box they did not start the program again.
Only one group restarted the program for every test. After
finishing performance the students evaluated their outcomes
and sometimes formed a new hypothesis or went back to the
implementation phase. The evaluation phase began di-
rectly after performance. In group A, D and E the phase
was not always existent, very short (like “no”) or there was
no visible connection to the outcomes. Most interventions
which were planned during the evaluation included the ma-
nipulation of values e.g. to improve the accuracy of a bend.
All groups checked their program, remembered what they
saw and tried to find out which output was produced by
which part of their program. Some groups had many prob-
lems while identifying problems within the outcomes, others
saw many possible approaches to intervene after the first
run.

4.3 Quantitative Phase Analysis
We applied an analysis on the qualitative data. The coded

phases were counted (as shown in Fig. 3). All five groups are
illustrated separately. The frequencies of the single phases
are: preparation (6, 3%), implementation (28, 6%), perfor-
mance (37, 4%) and evaluation (27, 7%). Most groups were
in the preparation phase 4 to 6 times and formed multiple
hypotheses. Implementation happened 17 to 23 times, which
is considerably more than preparation. Four out of five
groups did more performance than implementation. Only
one group did one more implementation than performance.
Eye-catching is group C, which performed 74 times. Other
groups passed this phase 16 to 28 times. Evaluation hap-
pened 16 to 47 times. Quantitatively groups A, B, D and
E were quite similar. It seems that D and E worked a bit



Figure 3: Quantitative analysis

slower because of fewer passes of the cycle in the same time.
Group C worked quite fast and tested a lot, sometimes they
only changed values to perform better. There seems to be a
correlation between implementation and evaluation. Possi-
bly was clear to students that they needed to evaluate their
code and rework it to have better outcomes.

4.4 Adjusted PhC Model
The observations in our study confirm most of the ele-

ments and phases of the initial PhC model (Fig. 1). Yet,
our results also give some initial evidence for suggesting ad-
justments and refinements of the model. We did find most of
the initially proposed PhC phases and also other anticipated
phases. After gathering data some phases were reordered.
In addition to reordering some sub-phases, we expanded the
initial model with the phases that we observed in our study
but that were not contained in the initial model. The slightly
revised model, shown in Fig. 4, is divided into four cate-
gories: preparation, implementation, performance and eval-
uation. The highlighted sub-phases have been added to the
model based on the empirical insights. We found supportive

Figure 4: Adjusted physical computing model

evidence for all of the phases described in the literature with
the one exception of sharing problems – this was not possible
for the participants in the study design that we employed.
Formulating a goal or an algorithm and finding a way how
to construct a solution was observable. In the implemen-
tation phase, the solution was defined and decisions about
input, output and processing were made. Running the pro-
gram and observing the output are fundamental sub-phases
for PhC. Afterwards the observed outcomes needed to be

merged with program parts and problems were identified.
Therefore it was necessary to decide which variable should
be changed in a next iteration of the cycle. The division into
sub-tasks was theoretically classified as preparation, but in
reality happened only during the evaluation phase since the
outcomes were discussed in conjunction with planning next
steps. After the evaluation the students went back to restart
the cycle using different new entry points. A look at these
new entry points after the evaluation phase is interesting.
Next, we will thus concentrate on iterations in the PhC
process. Three different cases for outcomes of activities
in the evaluation phase are possible (as shown in Fig. 5).
One case (which is very unlikely) is getting the solution of
a task correct after one pass through all phases. The usual
case is that students have no complete solution for the task
and need to go back in other phases: (1) going back to the
performance phase to see outcomes again or to test if the
problem is reproduced if the starting point for the machine
is changed. (2) Changing the implementation because it
was observable that some smaller changes of values could
be necessary or (because of no other ideas) students tested
different values and code parts on a seemingly random base.
(3) A new hypothesis is built based on the outcomes. Case
three is characterized by not focusing on the original task
again at the beginning of the second cycle. Here the prob-
lem is divided into sub-tasks which need to be solved for
attaining the goal. This could be a program which stops if
the robot is in a specific distance to the box. This approach
seemed to be usual for many PhC activities, though not re-
ported on in the general IL literature oftentimes. We found

Figure 5: Observed steps after evaluation

(measurement) uncertainties and sources of error. In the
model, we included these in the transition between perfor-
mance and evaluation because the observations are made in
the performance phase and mostly interpreted in the eval-
uation phase. We modeled this as a separate sub-phase of
PhC because it is an important part which has big impact
on the PhC process, learning about situations and practical
use as well. As with the other process models, the revised
model does not prescribe a strict order. Most sub-phases
will likely be included in every PhC process, but not neces-
sarily all sub-phases will be, and possibly the ordering may
change.

5. DISCUSSION AND CONCLUSION
In this paper, we have presented a PhC process model

elicited from literature. We found a lot of commonalities in
the structure and contents of this model when comparing
it to established models of scientific experimentation. We
therefore have initial evidence that PhC can be conceived
as a working technique that is related – though not entirely
the same – to experimentation in SI.
In a small-scale pilot study, we analyzed the appropriateness



of the theoretically derived PhC process model for describing
student activities. On a theoretical level, the results of the
study confirm the general appropriateness of the model, but
also motivate some possible refinements and adjustments of
the model. In order to empirically validate the PhC process
model, further (and more controlled) research studies will
be needed.
On a practical level, the results of the study may be rele-
vant for teachers of physical computing classes. One impor-
tant observation we made relates to student’s handling of
anomalous data. If the results are not compatible with their
hypothesis, students oftentimes ignored the data. Some-
times they were apparently biased based on their everyday
knowledge and trusted their intuition more than the data
which was produced by themselves. It was difficult for some
students to implement their ideas and make a hypothesis
testable. While programming, they changed diverse vari-
ables which made a new evaluation difficult as well. Most
of the problems we identified were related to observing out-
comes and drawing a conclusion. Students needed several
runs of the program to identify a problem and the quality
of conclusion was often poor. Finding the sources of errors
was difficult for the students.
To address some these issues, it may be helpful for teach-
ers to make the process model of PhC explicit to students,
thereby encouraging them to reflect on the different phases.
Specifically, methods for systematically testing a variable
and evaluate changes carefully (to avoid random testing)
could thus be learned, thereby also supporting the acqui-
sition of competences related to evaluation phases in the
process model.
In our future work, we intend to conduct studies which em-
ploy more explicit forms of process guidance. This can po-
tentially take many forms such as different task assignments,
changes to the worksheet, modifications to the role of the
teacher/experimenter, or even process guidance provided by
the computer that the student is using. In our investiga-
tions, we will likely focus on the evaluation phase, given its
importance in the process and the difficulties that students
encountered in the phase in our pilot study. We expect
to gain further insights for the educational design of phys-
ical computing lessons from these studies. We also intend
to more deeply investigate the connection between CS and
STEM with PhC. SI literature differentiates between exper-
imentation in natural sciences and engineering [26]. This
difference may be interesting when further examining PhC
in its relation to SI, especially since CS shares properties of
engineering with properties of natural sciences.

6. REFERENCES
[1] M. Banzi. Getting started with Arduino. O’Reilly

Media, Inc., Sebastopol, 2011.

[2] R. W. Bybee. Scientific inquiry, student learning, and
the science curriculum. Learning science and the
science of learning, pages 25–35, 2002.

[3] C. A. Chinn and W. F. Brewer. The role of anomalous
data in knowledge acquisition: A theoretical
framework and implications for science instruction.
Review of educational research, 63(1):1–49, 1993.

[4] C. A. Chinn and W. F. Brewer. An empirical test of a
taxonomy of responses to anomalous data in science.

Journal of Research in Science teaching,
35(6):623–654, 1998.

[5] C. A. Chinn and W. F. Brewer. Models of data: A
theory of how people evaluate data. Cognition and
Instruction, 19(3):323–393, 2001.

[6] T. De Jong. Technological advances in inquiry
learning. Science, pages 532–533, 2006.

[7] M. Hammann. Kompetenzentwicklungsmodelle
Merkmale und ihre Bedeutung - dargestellt anhand
von Kompetenzen beim Experimentieren. Der
mathematische und naturwissenschaftliche Unterricht,
pages 196–203, 2004.

[8] F. Kaloti-Hallak, M. Armoni, and M. M. Ben-Ari.
Students’ attitudes and motivation during robotics
activities. In Proceedings of the Workshop in Primary
and Secondary Computing Education, pages 102–110.
ACM, 2015.

[9] A. Keselman. Supporting inquiry learning by
promoting normative understanding of multivariable
causality. Journal of Research in Science Teaching,
40(9):898–921, 2003.

[10] D. Klahr. Exploring science: The Cognition and
Development of Discovery Processes. MIT Press, 2000.

[11] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. biometrics,
pages 159–174, 1977.

[12] A. E. Lawson. Sound and faulty arguments generated
by preservice biology teachers when testing hypotheses
involving unobservable entities*. Journal of Research
in Science Teaching, 39(3):237–252, 2002.

[13] Maker Media, Inc. Makerspace.
https://makerspace.com/, last accessed 2016-08-29.

[14] S. Manlove, A. W. Lazonder, and T. D. Jong.
Regulative support for collaborative scientific inquiry
learning. Journal of Computer Assisted Learning,
22(2):87–98, 2006.

[15] J. Mayer. Erkenntnisgewinnung als wissenschaftliches
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